
P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
1
)
1
7
3

Strangeness S=-2 baryon-bayon interactions from
lattice QCD

K. Sasaki ∗
Center of Computational Sciences, University of Tsukuba
Tsukuba, Ibaraki 305-8577, Japan
E-mail: kenjis@het.ph.tsukuba.ac.jp

for HAL QCD collaboration

We investigate baryon-baryon interactions with the strangenessS= −2 system in 2+ 1 flavor

lattice QCD, using gauge configurations provided by the CP-PACS/JLQCD Collaborations. The

potential matrix is extracted by the Nambu-Bethe-Salpeter amplitudes from lattice QCD simu-

lation through theΛΛ, NΞ, ΣΣ andΛΣ coupled-channel Schrödinger equation. We confirmed

that qualitative features of the potential matrix are consistent with those from SU(3) symmetric

calculations and effects of SU(3) breaking in baryon-baryon interactions are still small even in

the situation ofmπ ≃ 661MeV andmπ/mK = 0.86.

The XXIX International Symposium on Lattice Field Theory - Lattice 2011
July 10-16, 2011
Squaw Valley, Lake Tahoe, California

∗Speaker.

c⃝ Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:kenjis@het.ph.tsukuba.ac.jp


P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
1
)
1
7
3

Strangeness S=-2 baryon-bayon interactions from lattice QCD K. Sasaki

1. Introduction

In recent years strangenessS= −2 multi-baryon systems attract much attention both theo-
retically and experimentally, since they are the first step toward the understanding of the multi-
strangeness nuclear physics. At J-PARC experimental efforts in this field have been devoted to
investigate structures of double-Λ hypernucleus, which is a nucleus with two-Λ’s, and to search
a Ξ hypernucleus. These investigations are expected to indirectly provide some informations of
strangenessS= −2 baryon-baryon interaction. However, baryon-baryon scattering experiments
with strangenessS=−2 are still thought to be very hard.

On theoretical side, it is important to complete the knowledge of the generalized nuclear force,
which includes not only the nucleon-nucleon (NN) interaction but also hyperon-nucleon (YN) and
hyperon-hyperon (YY) interactions, for the deeper understanding of atomic nuclei, structure of
neutron stars and supernova explosions. A satisfactory theoretical description of the generalized
nuclear force in phenomenological model approaches, however, had not existed yet due to the lack
of the YN andYY scattering data in free-space, which is crucial to fix some model parameters
such as a cutoff of interaction vertices and a size of hard cores. This situation starts changing by a
series of investigations by HAL QCD collaboration [1, 2, 3, 4, 5, 6, 7], which determines baryon-
baryon (BB) potentials in lattice QCD. Since potentials obtained in their method are faithful to the
scattering phase shifts, the method would potentially be a complement to baryon-baryon scattering
experiments.

As a related issue, it is interesting to investigate a possibility for an existence of a bound state
in two-baryon system withS=−2. In the flavorSU(3) symmetric world realized in lattice QCD,
the investigation by the above method indicates an existence of the bound state in flavor singlet
channel with strangenessS= −2 [8], which corresponds to theH-dibaryon state, first predicted
by R. L. Jaffe in 1977 [9]. Even if the smallSU(3) breaking effect is introduced, by applying the
conventional Lüscher formula, it is shown that theH-dibaryon state exists with the binding energy
of ∼ 17 MeV atmπ ∼ 389MeV[10].

An aim of this work is to extend the potential description in the HAL QCD method to the case
that the coupled channel analysis is necessary, in order to investigateBB interactions and the fate
of theH-dibaryon at the physical quark masses with the (large) SU(3) breaking.

2. Potential matrix

A general form of the Schrödinger equation for the full wave functionΨ(⃗r,E) with a relativis-
tic energyE is given as [

Ẽ−H0
]

Ψ(⃗r,E) =
∫

d3r⃗ ′U (⃗r ,⃗ r ′)Ψ(⃗r ′,E) (2.1)

whereH0 is the free Hamiltonian,U (⃗r ,⃗ r ′) is an energy independent non-local potential andẼ a
non-relativistic energy obtained from the relativistic energy asE−m1−m2 ≃ Ẽ. At low energies,
the non-local potential can be expanded in terms of the velocityv⃗= −i∇⃗/µ asU (⃗r ,⃗ r ′) = (VLO+

VNLO+VNNLO+ · · ·)δ (⃗r − r⃗ ′), whereNnLO term is ofO(vn).
If we assume that the full wave functionΨ(⃗r,E) contains two independent states, denoted as

α andβ , eq. (2.1) leads to the following coupled channel Schrödinger equation at the leading order
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of the velocity expansion for the non-local potential.(
H0α + Ẽα

)
ψα (⃗r,E) = ∑

γ=α,β
Vα

γ (⃗r)ψγ (⃗r,E)(
H0β + Ẽβ

)
ψβ (⃗r,E) = ∑

γ=α,β
Vβ

γ (⃗r)ψγ (⃗r,E)
(2.2)

where free Hamiltonians and non-relativistic energies for channelα andβ are given by

H0α =− ∇2

2µα
, H0β =− ∇2

2µβ
, Ẽα = E−mα1 −mα2 ≃

p2

2µα
and Ẽβ ≃ q2

2µβ
(2.3)

with reduced massµ and asymptotic momentap andq related to energy of state as

E =
√

m2
α1
+ p2+

√
m2

α2
+ p2 =

√
m2

β1
+q2+

√
m2

β2
+q2. (2.4)

Therefore the potential matrix can be obtained from the equal-time Nambu-Bethe-Salpeter (NBS)
wave functions through the coupled channel Schrödinger equation (2.2). This is an extension of
the HAL QCD method[11].

The NBS wave function is defined with a local composite operator for a baryonB(⃗x) as

ψB1B2 (⃗r,E) = ∑⃗
x

⟨0 | B1(⃗x+ r⃗)B2(⃗x) | E⟩, (2.5)

which is extracted from the 4-point correlation function given by

WB1B2
I (t − t0,⃗ r) = ∑⃗

x

⟨0 | B1(t, x⃗+ r⃗)B2(t, x⃗)Ī (t0) | 0⟩ ∝ AEψB1B2 (⃗r,E)e−E(t−t0) (2.6)

for a moderate value oft, whereAE = ⟨E | Ī (t0) | 0⟩ andI is a well-optimized source operator,
which creates the eigenstate of the energyE with a baryon numberB= 2.

In order to extractBB potentials in the above method, we have to determine the asymptotic
momentap andq. For this purpose, we introduce a so-calledR-correlator, defined by

RB1B2
I (t − t0,⃗ r) = e(m1+m2)(t−t0)WB1B2

I (t − t0,⃗ r) ∝ AEψB1B2 (⃗r,E)e−(E−m1−m2)(t−t0) (2.7)

wherep is related toE by eq. (2.4). Using the non-relativistic expansion thatE−m1−m2 ≃ p2/2µ,
we can easily obtain the kinetic energy term by the time derivative of theR-correlator as

− ∂
∂ t

RB1B2
I (t − t0,⃗ r) ∝

p2

2µ
AEψB1B2 (⃗r,E)e−(E−m1−m2)(t−t0). (2.8)

Combining a time dependent version of eq. (2.2) at two differentI ’s (energies), we obtain(
Vα

α (⃗r)
Vα

β (⃗r)

)
=

(
Wα

I1
(t ,⃗ r) Wβ

I1
(t ,⃗ r)

Wα
I2
(t ,⃗ r) Wβ

I2
(t ,⃗ r)

)−1(
− ∇2

2µα
Wα

I1
(t ,⃗ r)−e(m1+m2)t ∂

∂ t R
α
I1
(t ,⃗ r)

− ∇2

2µα
Wα

I2
(t ,⃗ r)−e(m1+m2)t ∂

∂ t R
α
I2
(t ,⃗ r)

)
. (2.9)

This extraction of the potential matrix is valid as long asI1 andI2 generate linearly indepen-
dent wave functions. Suppose that optimized source operators,I1 andI2, are constructed from
two-baryon operatorsIA andIB as(

I1

I2

)
=

(
U1

A U1
B

U2
A U2

B

)(
IA

IB

)
, (2.10)

eq.(2.9) is valid also for a pairIA, IB, as long as the matrixU is invertible. Therefore optimized
source operators are NOT necessary to extract the potential matrix. This property is an advantage
of the time-dependent Schrödinger type equation over the equation (2.2).
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Table 1: A number of gauge configurations and calculated hadron masses in unit of [MeV].

Ncon f mπ mK mN mΛ mΣ mΞ

800 661(1) 768(1) 1482(3) 1557(3) 1576(3) 1640(3)
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Figure 1: Potential in the1S0(I = 2) channel
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Figure 2: Potential in the3S1(I = 0) channel

3. Numerical simulations

In the calculation we employ 2+1-flavor full QCD gauge configurations from Japan Lattice
Data Grid(JLDG)/International Lattice Data Grid(ILDG) [13]. They are generated by the CP-
PACS and JLQCD Collaborations with a renormalization-group improved gauge action and a non-
perturbativelyO(a) improved clover quark action atβ = 6/g2 = 1.83, corresponding to lattice
spacings ofa= 0.1209 fm [14], on L3×T = 163×32 lattice, about(2.0 fm)3×4.0 fm in physical
unit. The hopping parameter are given byκu,d = 0.13825 for light quarks andκs = 0.13710 for
thes-quark. Quark propagators are calculated with the spatial wall source att0 with the Dirichlet
boundary condition in temporal direction att = 16+t0. An average over the cubic group is taken for
the sink operator, in order to obtain the S-wave in theBB wave function. Numerical computation
have been carried out on the kaon and jpsi clusters at Fermilab. Calculated hadron masses are given
in Table1.

4. Results

The potential matricesV i
j s calculated by using the NBS wave functions att− t0 = 9 are shown

in Figures1-5. A symmetric difference int is employed for the time derivative term in this paper.
We first consider the single channels,1S0 with I = 2 and3S1 with I = 0. Fig. 1 shows the

potential in the1S0 and I = 2 channel. This potential corresponds to the 27-plet in the SU(3)
irreducible representation, to which theNN potential belongs. As in the case of theNN potential,
we observe a repulsion at short short distance while an attraction at long distance. The potential in
the 3S1 andI = 0 channel, which has an one-to-one correspondence with the 8a-plet, is shown in
Fig. 2. A repulsion at short distance is expected to be weak since the Pauli blocking effect is not
strong in this channel according to the constituent quark model. Our result in Fig.2 is consistent
with this expectation.
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Figure 3: Elements of potential matrix in the1S0(I = 1) channel

.

The potentials in the1S0 andI = 1 channel, obtained by solving 2×2 coupled channel equa-
tions, are shown in Fig.3. As seen in the SU(3) symmetric calculation[4], diagonal elements of
the potential matrix in this channel,VNΞ−NΞ andVΛΣ−ΛΣ, are both strongly repulsive and transition
potentials betweenNΞ andΛΣ states become large at the short distance.

Potential matrices in the3S1 with I = 1 and1S0 with I = 0 channels are shown in Figs.4 and5,
respectively. In both cases, the potential matrix is calculated from 3×3 coupled channel equations.

In Fig. 4, all diagonal potentials have a mid-range attraction and a repulsion at short distance
(repulsive core) which are not so strong comparing to the other channels. The largest attraction in
this channel is seen in the diagonalΣΣ potential. Transition potentials betweenΛΣ channel andNΞ
or ΣΣ channel are much smaller than theNΞ - ΣΣ transition potential. A smallness of the former
transition potentials indicates that theΛΣ channel is more or less isolated from other channels.

Finally, we consider the potential matrix in the1S0 andI = 0 channel, in which theH dibaryon
state appears if exists. As shown in Fig.5, all diagonal components of the potential matrix have
a repulsion at short distance. The strength of the repulsion in each channel, however, varies, re-
flecting properties of its main component in the irreducible representation of the flavor SU(3): The
diagonal potential in theΣΣ channel, whose main component is the symmetric-octet in SU(3), is
most repulsive, since the symmetric-octet has the strongest repulsion at all distances in the SU(3)
limit[ 4] and this property holds even with the SU(3) breaking. On the other hand, diagonal po-
tentials inNΞ andΛΛ channels has not only a repulsion at short distance but also an attraction at
medium distance, due to a mixture between the repulsive symmetric-octet potential and the attrac-
tive flavor singlet potential[4]. It is noted that theΛΛ - NΞ transition potential is smaller than other
transition potentials. Therefore, theNΞ to ΛΛ decay rate is expected to be relatively suppressed.
This property favors a formation and an observation of theΞ hypernuclei in experiments.

5. Conclusions

We have investigated theS= −2 BB potentials from 2+1 flavor lattice QCD by considering
theΛΛ, NΞ, ΣΣ andΛΣ coupled channels. By using the extended HAL QCD method for coupled
channels [11, 12], we successfully extract a potential matrix for a coupled channel. Combining the
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Figure 4: Elements of the potential matrix in the3S1(I = 1) channel
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Figure 5: Elements of the potential matrix in the1S0(I = 0) channel
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coupled channel formalism with the time-dependent Schrödinger type equation [12], we can get
rid of ambiguities of potential and avoid the diagonalization procedure for the source operators.

We have found that potentials in particle basis with the SU(3) breaking have similar properties
to those of unitary rotatedBB potentials in SU(3) limit [4]. In this calculation, however, effects
of SU(3) breaking are still small, so we will introduce larger SU(3) breaking effects in future
investigations.
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