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1. Introduction

The finite temperature transition for QCD at zero baryon itgihsis been a subject of intense
study for the lattice gauge theory community. The naturénefgthase transition and the value for
the pseudo-critical temperatufeis not only of fundamental interest, but also has phenonogiol
cal implications for experimental studies of relatividtieavy ion collisions, as well as the evolution
of the early universe.

Most large-scale studies of the QCD transition on the lattiave used staggered fermions.
Staggered fermions are computationally inexpensive, aesbpve & (1) remnant of the&U(2), ®
SU(2)r chiral symmetry at finite lattice spacing. However, lattézéfacts in the staggered formu-
lation break flavor symmetry, leading t.g. artificial mass splittings in the hadron spectrum.

It would be desirable to use a lattice action that more falthfreproduces the continuum
symmetries of QCD. One such action is known as domain wathifars (DWF). DWF possesses
an exactSU(2) @ SU(2) chiral symmetry, even at finite lattice spacing. This is aeplished by
adding a fictitious fifth dimension into the lattice actiorheve the physical chiral modes are bound
to opposite four-dimensional walls. If the fifth dimensianinfinitely large, the chiral modes are
isolated and the chiral symmetry is exact. However, for @aylattice calculation, one must choose
a finite fifth-dimensional sizd,s. In such a calculation, s controls the amount of mixing between
the chiral modes, and thus the residual chiral symmetrykilmga

There have been some past studies of chiral symmetry bgeakth domain wall fermions
[1, 2]. However, in these past studies, it has been difficuttantrol the residual chiral symmetry
breaking, which increases very quickly as one moves towsirdsg coupling. In this work, we
present a new study of the transition region with domain \iexinions, employing a modified
gauge action, the Dislocation Suppressing Determinanb RREDR) with the lwasaki action on
the gauge links. This combination keeps residual chiralregtry breaking small, allowing us to
study the transition region while keeping the physical piwass fixedm;; =~ 200 MeV.

2. Method

2.1 Didocation Suppressing Determinant Ratio (DSDR)

In our lattice calculation, we use domain wall fermions,rgavith the DSDR method and
the Iwasaki gauge action. The finite fifth dimension resuita residual chiral symmetry breaking
caused by a mixing of the chiral modes between the four-desoeal walls. To leading order,
this results in a simple additive renormalization to therguaasses, the residual masges The
residual mass may be parameterized by [3]:

e_ACLS
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Mres= C1P0H (A¢)

wherepy (A) denotes the eigenvalue density of the effective four-dsimeral Hamiltonian. The
first term in egn. 2.1 comes from de-localized states witemiglues near the mobility edg,,
while the second term comes from localized "lattice didioces" with near zero eigenvalue. As
one moves to strong coupling, the rapid proliferation ofsthéocalized dislocations means that
the latter term in egn. 2.1 dominates the residual mass fatenate values ofs ~ 16— 32. In
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this regime mres~ 1/Ls, meaning that it becomes very inefficient to reduce the thyrmmetry
breaking by increasing the size of the fifth dimension.

The near-zero eigenmodes of the effective Hamiltonian kosety related to the near-zero
eigenmodes of the the Hermitian Wilson-Dirac operaltty= y’Dw(—Mo), whereM is the do-
main wall height. Thus, it has been suggested that augngetitéhaction with the determinant of
Hs will suppress exactly those modes that make the biggestilbotion tomyresg[4, 5]. However, it
is exactly these near-zero modedHsfthat allow topology to change during a molecular dynamics
evolution. In order to allow for topology change during ouoiMe Carlo calculation, we instead
introduce the following weight factor into our action:

det: w(—Mo+igs VS)Dw(—MoJriEfYS)}

D, (—
det :DJV(—MO +igpy?)Dw(—Mo + iEbVS)]

det[ D}, (—Mo)Dw(—Mo) + s?]

W (Mo, &, €5) = (2.2)

det| D}, (—Mo)Dw (—Mo) + eg] ’

whereg, ande; are chirally-twisted mass terms. By tuniggand&; appropriately, we can find
a weighting factor that reducesyes sufficiently without completely eliminating topology chga
during our HMC evolution. The choice ef = 0.02 ands, = 0.50 satisfies these conditions [6]. We
call the weighting factor’ (Mo, &, €1 ) the Dislocation Suppressing Determinant Ratio (DSDR).

2.2 Lineof congtant physics

Using the DSDR method, we can choose our input bare lightkguessesn such that the
total quark massygt = m + Mrescorresponds to a fixed physical pion masg,~ 200 MeV. We
have produced configurations at 7 different temperaturés spatial sizeN; = 16 and temporal
extentN; = 8, spanning the temperature rangec [139195 MeV. This corresponds to lattice
spacings o~ 0.13— 0.18 fm. For each ensemble, we have produced between 2996RT0IR0-
ular dynamics trajectories. Table 1 summarizes the passttat we use in our finite temperature
ensembles.

Fig. 1 shows a comparison ofresas a function of temperature between our current calcula-
tion with domain wall fermions and the DSDR method, compaoetbmain wall fermions without
the DSDR method, both &; = 8. With Lg = 32, the DSDR method offers a substantial improve-
ment in residual chiral symmetry breaking. In fact, for tergiuresT > 170 MeV, one needs to
have at leadts = 96 in order to achieve residual masses equal to what can amebdtusing DSDR
atLs = 32.

In order to determine the lattice scales in our calculatiog the quark masses needed in our
finite temperature ensembles, we have also used resultzBmremperature calculations at three
values of the gauge coupling = 1.70,1.75,1.82 that lie within our range of interest. Table 2
summarizes the parameters for our zero temperature ersembl

Using interpolations and extrapolations from the zero terajure data, we are able to deter-
mine the total bare light quark masseggt = m + mresrequired to keep the physical pion mass
fixed tom; = 200 MeV. Fig. 2 shows this value ofigt as a function of the bare coupling.
Also shown are the values aifresobtained on the DSDR finite temperature lattices Wih= 32
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andLgs = 48. Even withLg = 48, the lowest temperature ensemlifle={ 1.633) requires a negative
input light quark mass. AB = 1.671 we have generated two separate ensembled with32 and

Ls = 48, with a negative and positive input light quark mass, @espely, in order to test if the neg-
ative quark mass produces any deleterious effects. Wittetparameters, we found no evidence
of any "exceptional configurations" that are, in princig@ssible with a negative quark mass.
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Figure 2: The solid black curve plots the total

Figure 1: Comparison ofmres from domain
wall fermions without the DSDR method la§ =
32,96 and what is obtained using DSDRLat=
32.

bare quark massyqt required for a fixed physi-
cal pion massn; =200 MeV as a function of the
bare coupling3. The red curve and points show
mres for the Ls = 32 DSDR lattices. The blue
points shownresfor theLs = 48 ensembles.

Finite Temperature Ensembles

TMeV) B L ma ma Mes  Mp(MeV) Xidise/T?2 XV5o/T? Traj.
139(6) 1.633 48 -0.00136 0.0519 0.00588(39)  191(7) 37(3) .2(1#) 2996
149(5) 1.671 32 -0.00189 0.0464 0.00643(9)  199(5) 443) 9(18) 6000
149(5) 1671 48 0.00173 0.0500 0.00295(3)  202(5) 41(2)  (2B.5 7000
159(4) 1707 32 0.000551 0.0449 0.00377(11)  202(3) 43(4) .8(18) 3659
168(4) 1740 32 0.00175 0.0427 0.00209(9)  197(2) 35(5) (24)9 3343
177(4) 1771 32 0.00232 0.0403 0.00132(6)  198(2) 25(4)  (10)4 3540
186(5) 1.801 32 0.00258 0.0379 0.00076(3)  195(3) 11(4) 145 4715
195(6) 1.829 32 0.00265 0.0357 0.00047(1)  194(4) 5(3)  2P(1 6991

Table 1: Summary of finite temperature ensembles with DSDR and e$oittthe disconnected chiral
susceptibility,x| gisc-

3. Chiral Symmetry Restor ation

On our finite temperature lattice ensembles we have comph&edonnected, spatial two-
point functions in various mesonic channe®;(x). From these, we can trivially calculate the
corresponding connected susceptibilities,

(3.1)

X"\
T2 = NT Z Gr (X)
X
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Zero Temperature Ensembles

B Ng N; Ls ma msa NMres m; (MeV) ro/a al(GeVv) Tra.
1.70 16 32 32 0.013 0.047 0.00420(2) 394(9) 2.895(11) 1)27(41360
170 16 32 32 0.006 0.047 0.00408(6) 303(7) 2.992(27) 1)27(41200
1.75% 32 64 32 0.0042 0.045 0.00180(5) 246(5) 3.349(20) 1.36(3) 8812
175 32 64 32 0.001 0.045 0.00180(5) 172(4) 3.356(22) 1.36(3) 0156
182 16 32 32 0.013 0.040 0.00062(2) 398(9) 3.743(28) 1)55(82235
1.82 16 32 32 0.007 0.040 0.00063(2) 304(7) 3.779(37) 1)55(2134

Table 22 Summary of zero temperature ensembles with DSDR. Lattiedesadetermined using =
0.487(9) fm, after extrapolation to the chiral limit*: 3 = 1.75 results are RBC-UKQCD preliminary
results.

We have also measured the one-flavor scalar chiral conderigaty) and the pseudoscalar
condensate(, >4 ) with a stochastic estimator. Using these, we can computeittennected
scalar and pseudoscalar susceptibilities,

disc
X-I|—2 = NGN? (<(WI Ww)?) — (@ l/—’|>2> (3.2)
xgise N3RS 2\ 2

T2 ~ No Ny (<(W|V5WI) ) <H7|V51.U|> ) (3.3)

With the connected and disconnected susceptibilities, avetidvially reconstruct the flavor
singlet @) and non-singletd) susceptibilities in the scalar channel,

& B chon_|_XIdisc. & B chon

T2 T2 T2 T2
and also the flavor singlef) and non-singletrf) susceptibilities in the pseudoscalar channel,

(3.4)

Xﬂ B Xscon_Xgisc. Xt B Xscon
T2 T2 T2 T

One of the signatures for chiral symmetry restoration isdivergence of the disconnected
chiral susceptibility deiSC) at T, along with the correspondin@(4) scaling neaf, in the chiral
limit. Thus, one method to identify the crossover tempegaai finite quark mass is by the peak
in the chiral susceptibility. Fig. 3 is a comparison of theadinnected chiral susceptibility in our
current calculation with the earlier results from [2], wiiwvere not performed along a line of
constant physics. Although there is a clear peak fiearl70 MeV in the earlier results, the results
in the low temperature region are significantly distortechpared to our current calculation. In our
calculation, a peak is visible ne@ir~ 160 MeV.

Fig. 4 compares our results with the results of various inmgdostaggered actions [7]. In
order to compare results from different actions, all resatie converted into thdS renormaliza-
tion scheme. While the lightest pions in the staggered tation correspond to a physical quark
mass that is approximately half as light as in our calcutatibere seems to be reasonably good
agreement fo;S(IOIiSC for T > T.. However, whereas the location of the peal| ¢ T, ~ 160 MeV
is approximately the same as for the HISQ action With= 12, the magnitude of the susceptibility

(3.5)



The finite temperature phase transition from domain walhiens

Michael Cheng

50 ——— —

* } -—-DWF L=32
4o {' { eoDWF DSDR
| 30 \\

10—

1 1 1 1 1 1 1 1 |
920 130 140 150 160 170 180 190 200 210 22

T (MeV)

Figure3: Comparison of the disconnected chiral
susceptibility in our calculation (DWF DSDR)
with earlier results [2] (DWH_s = 32), where
the finite temperature ensembles do not lie along
a line of constant physics.
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Figure 4: Comparison of the disconnected chi-
ral susceptibility with results from various stag-
gered actions [7]. All results have been con-
verted to theMS renormalization scheme.

for T < T is significantly greater for DWF than the various staggeretibas. This may be due
to finite volume effects, as the DWF calculation has an ancspéo Ny /N; = 2, compared to

Ng/N; = 4 for the staggered calculations.

In the chirally-restored phase, we can also derive relatimiween the scalar and pseudoscalar
susceptibilities. The chiral transformation mix the scalad pseudoscalar channels, so that in the
high temperature phase, we have the relatjpps- X, and alsgxs = x,. Thus, we expect that the
differences in these susceptibilities should vanish indtieal limit at temperatures where chiral

symmetry is restored.

Using the definitions in eqns. 3.4 and 3.5,
we can also show that the difference in the
pseudoscalar and scalar disconnected sus-
ceptibilities, Agisc = X&'¢— x'5¢ should also
vanish in the chirally restored phase. Fig.
5 showsAdisc/T2 as well as the difference
(Xn— Xo)/T2. Even though we are not in
the chiral limit, both of these differences are
already consistent with zero far ~ 170—
180 MeV, suggesting that chiral symmetry is
already well restored at those temperatures.
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Figure5: Plot of Agisc/T? = xdisey /T2
and(xr— Xo)/T? as a function of temperature.
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4. Conclusion

In this work, we have examined the restoration of chiral syatmnin finite temperature QCD
using domain wall fermions on lattices of spatial shkkig= 16 and temporal extemM; = 8 in the
temperature rang€ € [139,195 MeV. In order to control the residual chiral symmetry brewki
we have employed the DSDR method, augmenting the gaugaatiibb a weighting factor that
suppresses the localized dislocations that contribute toosres By controlling residual chiral
symmetry breaking, we were able to use a fixed, physical piassm; ~ 200 MeV.

In order to find the chirally restored phase, we examined itite¢ Hisconnected chiral sus-
ceptibility, which exhibits a peak at the crossover tempueeal.. A comparison with an earlier
domain wall calculation, which did not have a fixed pion mas®aw the distortions introduced if
one does not do calculations along a line of constant phy&icemparison with recent results with
improved staggered fermions shows significant differeniedle chiral susceptibility, especially
for T < T.. Another signature of chiral symmetry restoration that waneined were the scalar
and pseudoscalar susceptibilities, both the flavor siragidtnon-singlet channels. By examining
the differences in these susceptibilities, we could searamp chiral restoration foF ~ 170— 180
MeV.

In addition to the restoration of chiral symmetry, we havsaixamined the effective restora-
tion of U(1)a symmetry as well as the eigenvalue spectrum on these fimtpeature lattices.
These results are presented in these proceedings in [8efjectively. Future calculations are
underway to extend these results to larger spatial volunoedar to control finite-volume effects,
as well as to smaller quark masses, so that we can examinaidink impass dependence of these
guantities.
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