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We present results on the finite temperature QCD transition with 2+1 flavors using Domain Wall

Fermions (DWF) with the Dislocation Suppressing Determinant Ratio (DSDR). In particular,

we discuss how the use of DSDR allows us to study the finite temperature transition at the coarse

lattice spacings corresponding to the transition region (T = 139−195 MeV) with DWF atNτ = 8.

The residual chiral symmetry breaking at these lattice spacings is sufficiently small so that a

constant pion mass ofmπ ≈ 200 MeV is obtained in our calculations. The strange quark mass

is set to near its physical value. We show results on the restoration of chiral symmetry and

deconfinement at finite temperature.
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1. Introduction

The finite temperature transition for QCD at zero baryon density has been a subject of intense
study for the lattice gauge theory community. The nature of the phase transition and the value for
the pseudo-critical temperatureTc is not only of fundamental interest, but also has phenomenologi-
cal implications for experimental studies of relativisticheavy ion collisions, as well as the evolution
of the early universe.

Most large-scale studies of the QCD transition on the lattice have used staggered fermions.
Staggered fermions are computationally inexpensive, and preserve aU(1) remnant of theSU(2)L⊗

SU(2)R chiral symmetry at finite lattice spacing. However, latticeartifacts in the staggered formu-
lation break flavor symmetry, leading to,e.g.artificial mass splittings in the hadron spectrum.

It would be desirable to use a lattice action that more faithfully reproduces the continuum
symmetries of QCD. One such action is known as domain wall fermions (DWF). DWF possesses
an exactSU(2)⊗SU(2) chiral symmetry, even at finite lattice spacing. This is accomplished by
adding a fictitious fifth dimension into the lattice action, where the physical chiral modes are bound
to opposite four-dimensional walls. If the fifth dimension is infinitely large, the chiral modes are
isolated and the chiral symmetry is exact. However, for any real lattice calculation, one must choose
a finite fifth-dimensional size,Ls. In such a calculation,Ls controls the amount of mixing between
the chiral modes, and thus the residual chiral symmetry breaking.

There have been some past studies of chiral symmetry breaking with domain wall fermions
[1, 2]. However, in these past studies, it has been difficult to control the residual chiral symmetry
breaking, which increases very quickly as one moves towardsstrong coupling. In this work, we
present a new study of the transition region with domain wallfermions, employing a modified
gauge action, the Dislocation Suppressing Determinant Ratio (DSDR) with the Iwasaki action on
the gauge links. This combination keeps residual chiral symmetry breaking small, allowing us to
study the transition region while keeping the physical pionmass fixed,mπ ≈ 200 MeV.

2. Method

2.1 Dislocation Suppressing Determinant Ratio (DSDR)

In our lattice calculation, we use domain wall fermions, along with the DSDR method and
the Iwasaki gauge action. The finite fifth dimension results in a residual chiral symmetry breaking
caused by a mixing of the chiral modes between the four-dimensional walls. To leading order,
this results in a simple additive renormalization to the quark masses, the residual massmres. The
residual mass may be parameterized by [3]:

mres= c1ρH(λc)
e−λcLs

Ls
+c2ρH(0)

1
Ls

, (2.1)

whereρH(λ ) denotes the eigenvalue density of the effective four-dimensional Hamiltonian. The
first term in eqn. 2.1 comes from de-localized states with eigenvalues near the mobility edge,λc,
while the second term comes from localized "lattice dislocations" with near zero eigenvalue. As
one moves to strong coupling, the rapid proliferation of these localized dislocations means that
the latter term in eqn. 2.1 dominates the residual mass for moderate values ofLs ∼ 16− 32. In
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this regime,mres∼ 1/Ls, meaning that it becomes very inefficient to reduce the chiral symmetry
breaking by increasing the size of the fifth dimension.

The near-zero eigenmodes of the effective Hamiltonian are closely related to the near-zero
eigenmodes of the the Hermitian Wilson-Dirac operator,H5 = γ5DW(−M0), whereM0 is the do-
main wall height. Thus, it has been suggested that augmenting the action with the determinant of
H5 will suppress exactly those modes that make the biggest contribution tomres[4, 5]. However, it
is exactly these near-zero modes ofH5 that allow topology to change during a molecular dynamics
evolution. In order to allow for topology change during our Monte Carlo calculation, we instead
introduce the following weight factor into our action:

W (M0,εb,ε f ) =
det

[

D†
W(−M0+ iε f γ5)DW(−M0 + iε f γ5)

]

det
[

D†
W(−M0+ iεbγ5)DW(−M0 + iεbγ5)

] (2.2)

=
det

[

D†
W(−M0)DW(−M0)+ ε2

f

]

det
[

D†
W(−M0)DW(−M0)+ ε2

b

] ,

whereεb andε f are chirally-twisted mass terms. By tuningεb andε f appropriately, we can find
a weighting factor that reducesmressufficiently without completely eliminating topology change
during our HMC evolution. The choice ofε f = 0.02 andεb = 0.50 satisfies these conditions [6]. We
call the weighting factor,W (M0,εb,ε f ) the Dislocation Suppressing Determinant Ratio (DSDR).

2.2 Line of constant physics

Using the DSDR method, we can choose our input bare light quark massesml such that the
total quark massmtot = ml +mrescorresponds to a fixed physical pion mass,mπ ≈ 200 MeV. We
have produced configurations at 7 different temperatures with spatial sizeNσ = 16 and temporal
extentNτ = 8, spanning the temperature rangeT ∈ [139,195] MeV. This corresponds to lattice
spacings ofa≈ 0.13−0.18 fm. For each ensemble, we have produced between 2996-7000molec-
ular dynamics trajectories. Table 1 summarizes the parameters that we use in our finite temperature
ensembles.

Fig. 1 shows a comparison ofmresas a function of temperature between our current calcula-
tion with domain wall fermions and the DSDR method, comparedto domain wall fermions without
the DSDR method, both atNτ = 8. With Ls = 32, the DSDR method offers a substantial improve-
ment in residual chiral symmetry breaking. In fact, for temperaturesT > 170 MeV, one needs to
have at leastLs = 96 in order to achieve residual masses equal to what can be obtained using DSDR
at Ls = 32.

In order to determine the lattice scales in our calculation and the quark masses needed in our
finite temperature ensembles, we have also used results fromzero temperature calculations at three
values of the gauge couplingβ = 1.70,1.75,1.82 that lie within our range of interest. Table 2
summarizes the parameters for our zero temperature ensembles.

Using interpolations and extrapolations from the zero temperature data, we are able to deter-
mine the total bare light quark masses,mtot = ml + mresrequired to keep the physical pion mass
fixed to mπ = 200 MeV. Fig. 2 shows this value ofmtot as a function of the bare coupling,β .
Also shown are the values ofmresobtained on the DSDR finite temperature lattices withLs = 32
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andLs = 48. Even withLs = 48, the lowest temperature ensemble (β = 1.633) requires a negative
input light quark mass. Atβ = 1.671 we have generated two separate ensembles withLs = 32 and
Ls = 48, with a negative and positive input light quark mass, respectively, in order to test if the neg-
ative quark mass produces any deleterious effects. With these parameters, we found no evidence
of any "exceptional configurations" that are, in principal,possible with a negative quark mass.
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Figure 1: Comparison ofmres from domain
wall fermions without the DSDR method atLs =

32,96 and what is obtained using DSDR atLs =

32.
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Figure 2: The solid black curve plots the total
bare quark massmtot required for a fixed physi-
cal pion massmπ = 200 MeV as a function of the
bare couplingβ . The red curve and points show
mres for the Ls = 32 DSDR lattices. The blue
points showmresfor theLs = 48 ensembles.

Finite Temperature Ensembles

T (MeV) β Ls mla msa mres mπ (MeV) χl ,disc/T2 χMS
l .disc/T2 Traj.

139(6) 1.633 48 -0.00136 0.0519 0.00588(39) 191(7) 37(3) 17.2(14) 2996
149(5) 1.671 32 -0.00189 0.0464 0.00643(9) 199(5) 44(3) 19.9(10) 6000
149(5) 1.671 48 0.00173 0.0500 0.00295(3) 202(5) 41(2) 18.5(9) 7000
159(4) 1.707 32 0.000551 0.0449 0.00377(11) 202(3) 43(4) 18.8(18) 3659
168(4) 1.740 32 0.00175 0.0427 0.00209(9) 197(2) 35(5) 14.9(21) 3343
177(4) 1.771 32 0.00232 0.0403 0.00132(6) 198(2) 25(4) 10.4(17) 3540
186(5) 1.801 32 0.00258 0.0379 0.00076(3) 195(3) 11(4) 4.5(1.6) 4715
195(6) 1.829 32 0.00265 0.0357 0.00047(1) 194(4) 5(3) 2.0(1.2) 6991

Table 1: Summary of finite temperature ensembles with DSDR and results for the disconnected chiral
susceptibility,χl ,disc.

3. Chiral Symmetry Restoration

On our finite temperature lattice ensembles we have computedthe connected, spatial two-
point functions in various mesonic channels,GΓ(x). From these, we can trivially calculate the
corresponding connected susceptibilities,

χcon
Γ
T2 = N2

τ ∑
x

GΓ(x). (3.1)

4



P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
1
)
1
8
6

The finite temperature phase transition from domain wall fermions Michael Cheng

Zero Temperature Ensembles

β Nσ Nτ Ls mla msa mres mπ (MeV) r0/a a−1 (GeV) Traj.

1.70 16 32 32 0.013 0.047 0.00420(2) 394(9) 2.895(11) 1.27(4) 1360
1.70 16 32 32 0.006 0.047 0.00408(6) 303(7) 2.992(27) 1.27(4) 1200
1.75∗ 32 64 32 0.0042 0.045 0.00180(5) 246(5) 3.349(20) 1.36(3) 1288
1.75∗ 32 64 32 0.001 0.045 0.00180(5) 172(4) 3.356(22) 1.36(3) 1560
1.82 16 32 32 0.013 0.040 0.00062(2) 398(9) 3.743(28) 1.55(5) 2235
1.82 16 32 32 0.007 0.040 0.00063(2) 304(7) 3.779(37) 1.55(5) 2134

Table 2: Summary of zero temperature ensembles with DSDR. Lattice scales determined usingr0 =

0.487(9) fm, after extrapolation to the chiral limit.∗: β = 1.75 results are RBC-UKQCD preliminary
results.

We have also measured the one-flavor scalar chiral condensate, 〈ψ l ψl 〉 and the pseudoscalar
condensate,

〈

ψ l γ5ψl
〉

with a stochastic estimator. Using these, we can compute thedisconnected
scalar and pseudoscalar susceptibilities,

χdisc
l

T2 = N3
σ N3

τ

(

〈

(ψ l ψl )
2〉−〈ψ l ψl 〉

2
)

(3.2)

χdisc
5

T2 = N3
σ N3

τ

(

〈

(ψ l γ
5ψl )

2〉−
〈

ψ l γ
5ψl

〉2
)

(3.3)

With the connected and disconnected susceptibilities, we can trivially reconstruct the flavor
singlet (σ ) and non-singlet (δ ) susceptibilities in the scalar channel,

χσ
T2 =

χcon
l + χdisc

l

T2 ;
χδ
T2 =

χcon
l

T2 , (3.4)

and also the flavor singlet (η) and non-singlet (π) susceptibilities in the pseudoscalar channel,

χη

T2 =
χcon

5 − χdisc
5

T2 ;
χπ

T2 =
χcon

5

T2 . (3.5)

One of the signatures for chiral symmetry restoration is thedivergence of the disconnected
chiral susceptibility (χdisc

l ) at Tc, along with the correspondingO(4) scaling nearTc, in the chiral
limit. Thus, one method to identify the crossover temperature at finite quark mass is by the peak
in the chiral susceptibility. Fig. 3 is a comparison of the disconnected chiral susceptibility in our
current calculation with the earlier results from [2], which were not performed along a line of
constant physics. Although there is a clear peak nearT ≈ 170 MeV in the earlier results, the results
in the low temperature region are significantly distorted compared to our current calculation. In our
calculation, a peak is visible nearT ≈ 160 MeV.

Fig. 4 compares our results with the results of various improved staggered actions [7]. In
order to compare results from different actions, all results are converted into theMS renormaliza-
tion scheme. While the lightest pions in the staggered calculation correspond to a physical quark
mass that is approximately half as light as in our calculation, there seems to be reasonably good
agreement forχdisc

l for T > Tc. However, whereas the location of the peak inχdisc
l , Tc ≈ 160 MeV

is approximately the same as for the HISQ action withNτ = 12, the magnitude of the susceptibility
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Figure 3: Comparison of the disconnected chiral
susceptibility in our calculation (DWF DSDR)
with earlier results [2] (DWFLs = 32), where
the finite temperature ensembles do not lie along
a line of constant physics.

130 140 150 160 170 180 190 200 210 220
T (MeV)

0

5

10

15

20

χM
S

l, 
di

sc
/T

2

DWF DSDR
Asqtad N

t
=8

Asqtad N
t
=12

HISQ N
t
=6

HISQ N
t
=8

HISQ N
t
=12

Figure 4: Comparison of the disconnected chi-
ral susceptibility with results from various stag-
gered actions [7]. All results have been con-
verted to theMS renormalization scheme.

for T . Tc is significantly greater for DWF than the various staggered actions. This may be due
to finite volume effects, as the DWF calculation has an an aspect raio Nσ/Nτ = 2, compared to
Nσ/Nτ = 4 for the staggered calculations.

In the chirally-restored phase, we can also derive relations between the scalar and pseudoscalar
susceptibilities. The chiral transformation mix the scalar and pseudoscalar channels, so that in the
high temperature phase, we have the relationsχπ = χσ and alsoχδ = χη . Thus, we expect that the
differences in these susceptibilities should vanish in thechiral limit at temperatures where chiral
symmetry is restored.

Using the definitions in eqns. 3.4 and 3.5,
we can also show that the difference in the
pseudoscalar and scalar disconnected sus-
ceptibilities,∆disc= χdisc

5 −χdisc
l should also

vanish in the chirally restored phase. Fig.
5 shows∆disc/T2 as well as the difference
(χπ − χσ )/T2. Even though we are not in
the chiral limit, both of these differences are
already consistent with zero forT ≈ 170−
180 MeV, suggesting that chiral symmetry is
already well restored at those temperatures.
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Figure 5: Plot of ∆disc/T2 = (χdisc
5 − χdisc

l )/T2

and(χπ − χσ )/T2 as a function of temperature.
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4. Conclusion

In this work, we have examined the restoration of chiral symmetry in finite temperature QCD
using domain wall fermions on lattices of spatial sizeNσ = 16 and temporal extentNτ = 8 in the
temperature rangeT ∈ [139,195] MeV. In order to control the residual chiral symmetry breaking,
we have employed the DSDR method, augmenting the gauge action with a weighting factor that
suppresses the localized dislocations that contribute most to mres. By controlling residual chiral
symmetry breaking, we were able to use a fixed, physical pion massmπ ≈ 200 MeV.

In order to find the chirally restored phase, we examined the light disconnected chiral sus-
ceptibility, which exhibits a peak at the crossover temperature Tc. A comparison with an earlier
domain wall calculation, which did not have a fixed pion mass,show the distortions introduced if
one does not do calculations along a line of constant physics. A comparison with recent results with
improved staggered fermions shows significant differencesin the chiral susceptibility, especially
for T ≤ Tc. Another signature of chiral symmetry restoration that we examined were the scalar
and pseudoscalar susceptibilities, both the flavor singletand non-singlet channels. By examining
the differences in these susceptibilities, we could see apparent chiral restoration forT ≈ 170−180
MeV.

In addition to the restoration of chiral symmetry, we have also examined the effective restora-
tion of U(1)A symmetry as well as the eigenvalue spectrum on these finite temperature lattices.
These results are presented in these proceedings in [8, 9], respectively. Future calculations are
underway to extend these results to larger spatial volume inorder to control finite-volume effects,
as well as to smaller quark masses, so that we can examine the quark mass dependence of these
quantities.
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