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1. Introduction

The phase diagram of QCD as a function of temperatuasd quark chemical potentigl is
governed by the interplay of the chiral symmetry and thearesymmetry [1]. These symmetries
are exact for zero and infinite quark masses, respectiveerefore, varying the quark masses
away from their physical values towards these limits presidseful insight into the behaviour of
QCD at the physical mass point.

Similarly, making the chemical potential complex proviggganced information on the be-
haviour of QCD at real chemical potential. Since the sigrbfmm which plagues simulations at
non-zerou [2] is absent whem is pure imaginary, the regime of imaginguyis actually the only
direction in the complexu plane where complete, reliable information on the behavwiguQCD
can be obtained. It turns out that a rich phase diagram aséidarof (T, u =iy ) and of the quark
massegm, = my, ms) emerges. The critical and tricritical features of this ghadisgram, with their
associated scaling laws, have consequences for the baha¥iQ CD at realu.

Here, we summarize what is known about this phase diagranskaeidh (Fig. 2) a plausible
scenario, consistent with current numerical simulatiomgnaented with reasonable assumptions
of continuity of the critical surfaces. We explore in pauter the implications for the behaviour
of QCD in the two-flavor chiral limitfm, = myg = 0,ms = ). In that limit, it is widely believed
that QCD undergoes a finite-temperature, second-@déy chiral transition apt = 0, which turns
first-order at a tricritical point for some regl[3]. However, other possibilities exist. At =0 in
particular, the finite-temperature transition might betfingler. The present numerical evidence is
inconclusive: using Wilson fermion§)(4) scaling is preferred [4], while with staggered fermions
O(4) scaling has been elusive, and first-order behaviour haskaen claimed [5]. Note that
behaviour consistent witB(4) has been seen with improved staggered fermions, Mran 2+ 1
setup where the strange quark mass is fixed at its physiaa y8]. Approaching the chiral limit
from the imaginaryu direction offers a novel, independent method to help s#tddssue.

2. Three-dimensional Columbia plot

The thermal behaviour of QCD at= 0, as a function of the quark massag= mq = m, 4 and
ms is summarized in the well-known Columbia plot Fig.l&f{). TheN; = 3 chiral symmetry and
the Z3 center symmetry are achieved in the lower left and uppet dghmers, respectively. This
gives rise to first-order transitions. For intermediatergumasses, numerical simulations indicate
a smooth crossover as a function of temperature. Hence rt@fder regions must be bounded
by second-order critical lines: the chiral critical linetire lower left corner, and the deconfinement
critical line in the upper right corner. In the absence oftfar symmetry, the universality class is
expected (and has been numerically verified) to be that o8dhising model. The chiral critical
line joins with them, 4 = 0 axis at a tricritical point, for a strange quark ma$¥ which is larger
than the physical strange quark mass on coarse lattices §rijaller when using improved actions
[6]. TheN; = 2 chiral limit is obtained in the upper left corner.

When the chemical potential is turned on, the two criticaé$ sweep critical surfaces as a
function of u. For both lines, it has been observed that the first-ordéomegihrinks, as represented
Fig. 1 (ight) [7, 8, 9]. Here, we want to show real and imaginaryn a single figure. Therefore,
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Figure 1: (Leff) “Columbia plot”: schematic phase transition behaviouNef= 2+ 1 QCD for different
choices of quark massésy, 4, ms) at = 0. Two critical lines separate the regions of first-ordensiions
(light or heavy quarks) from the crossover region in the rnaddhich includes the physical pointRigh?
Critical surfaces swept by the critical lines gsis turned on. For light quarks [7, 8, 10] as well as for
heavy quarks [9], numerical simulations indicate that trst-firder region shrinks as the chemical potential
is turned on.

we adopt(u/T)? for the z coordinate: real and imaginagy appear above and below tpe= 0
plane, respectively. Of particular interest is the Robahgéss pland u/T)? = —(11/3)2. We now
argue that the 3-dimensional phase diagramof 2+ 1 QCD is likely to be described by Fig. 2.

3. Phasediagram in the Roberge-Weiss plane

The two symmetries of the partition function

Z() = Z(—p), z<?) :z(#ﬁ%‘”) (3.1)

imply reflection symmetry in the imaginamy direction about the “Roberge-Weiss” valugs=
inT /3(2n+ 1) which separate different sectors of the center symmetrj [Iransitions between
neighbouring sectors are of first order for higland analytic crossovers for low[11, 12, 13], as
indicated Fig. 31eft). The corresponding first-order transition lines may enth\&isecond-order
critical point, or with a triple point, branching off into twfirst-order lines. Which of these two
possibilities occurs depends on the number of flavors andubek masses.

Recent numerical studies have shown that a triple pointusddor heavy and light quark
masses, while for intermediate masses one finds a secoad-®mndpoint. As a function of the
quark mass, the phase diagranuat =irn/3 is as sketched Fig. 3(ddlg. This happens for both
N¢ = 2 [14] andN; = 3 [15].

If one assumes that thidy = 2 andNs = 3 tricritical points are connected to each other in the
(my 4, ms) quark mass plane, the resulting phase diagram is depiaed Fight), with two tricriti-
cal lines separating regions of first-order and of secowi@raransitions. This phase diagram is the
equivalent of the Columbia plot, now at imaginary chemiaatieptial /T = ir1/3. Note that the
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Figure 2. 3d phase diagram. The vertical axis(ig/T)?, so that real and imaginary chemical potentials
are above and below the= 0 plane, respectively. The “bottom plane” corresponds ¢éoRbberge-Weiss
transition valueu/T = irr/3. The thicker red lines are tricritical. Tricritical poginarked “2” and “3” have

been identified for th&l; = 2 [14] andNs = 3 [15] theories, respectively. The object of the preserdysts
the blue line in the “backplanets = o (Ns = 2) joining two tricritical points.

assumption of continuity of the tricritical lines can be cked directly by numerical simulations,
since there is no sign problem for imaginary

Now, as(u/T)? is varied between zero and the Roberge-Weiss val(re/3)?, the Columbia
plot must change from Fig. 1eft) to Fig. 3 ¢ight). Assuming continuity of the critical surfaces
at imaginaryu, which again can be checked by numerical simulations, thdtieg 3-dimensional
phase diagram is that of Fig. 2. The two red surfaces (“Chimatl “deconfinement”) are critical.
They are bounded by lines, among which the following areitigal: (i) the two lines in the
(u/T)? = —(1/3)? Roberge-Weiss planeii) the line in them, 4 = O chiral plane. Note that the
Nt = 2 (i.e. mg = ) “backplane” contains two tricritical points on the chiraltical surface: one

in the Roberge-Weiss plane, the other onrthg = 0 vertical axis (see Fig. 2). The location of the
latter is related to the value of the tricritical strange rfuaass.

4. Tricritical scaling

In the vicinity of a tricritical point, scaling laws apply.HE phase diagram is similar to that of
a metamagnet, with two external fieldd; which respects the symmetry, ald which breaks it
(like a staggered and an ordinary magnetic field), depicigddRleft). The three surface®), S, ,S_
indicate first-order transitions. They meet at a line ofi¢ripointsL;, depicted by a solid line. They

are bounded by second-order transition lines, depictedobtedi lines. All four lines meet at the
tricritical point (T, Hy).
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Figure3: (Leff) Generic phase diagram as a function of imaginary chemataiyial and temperature. Solid
lines are first-order Roberge-Weiss transitions. The hiebaalong dotted lines depends on the number of
flavors and the quark massesdiddle) For Ny = 2 andN¢ = 3, the endpoint of the Roberge-Weiss line is
a triple point (where 3 first-order lines meet) for light orkg quark masses, and an Ising critical point for
intermediate quark masses. Thus, two tricritical massess. Righ?) The simplest assumption is that the
N; = 2 andNs = 3 tricritical points are joined by tricritical lines [15].hHis assumption can be checked with
Nf = 2+ 1 imaginary simulations.

In our case, the scaling exponents governing the behaviaurthe tricritical point are mean-
field, because QCD becomes 3-dimensional as the correlatigth diverges while the temperature
is fixed to that of the tricritical point, and = 3 is the upper critical dimension for tricriticality. Of
course, this implies the presence of potentially largetitigaic corrections to scaling.

Here, we are interested in the second-order liBgscorresponding to a departure from the
symmetry planeH™ = 0. Along these lines, the scaling law k" O [t|>2, where the reduced
temperature is measured along the tangentltp. ForN¢ = 2 QCD, tricritical scaling should be
satisfied near the tricritical points:

(i) (/T)? = —(m/3)% thenH™ ~ [(u/T)?+ (11/3)?], t ~ (Myg— Mic), SO that

[(1/T)2+ (11/3)2] O (Myg — Myic) >/ (4.1)

(it) myg = 0: thenHT ~ myq, t~ [(1/T)2— (1/T)?|uic], so that

Mua O [(1/T)% = (1) T)uic)

(4.2)

It is not clear how broad the scaling window is around eacthe$é two tricritical points. The
two scaling windows might overlap, leading to a very coristd system of equations, with 3
unknowns (the two constants of proportionality in eqs,@2) and(u/T)?|yic — Myic having
been determined already in [14]) and one constraint (coityirof the derivative at the intersection
of the two scaling curves), leading to a phase diagram agjirbHeft), which could be determined
from only two points measured by Monte Carlo. Reason for ypthtmism can be found in Fig. 4
(right), where the scaling window around the thiMgl = 2 tricritical point, corresponding to heavy
(u,d) quarks, is shown to extend far into the region of real chehpiotential [15, 16].
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Figure 4: (Left) Schematic phase diagram of a metamagnet. The extiefthH breaks the symme-
try, while H does not. (Right) For heavy quarks, tricritical scaling fe wicinity of the Roberge-Weiss
imaginaryu value extends far into the region of rga[15].

5. Preliminary N¢ = 2 results

Following the above discussion, we performed simulatiohslo= 2 QCD, with staggered
quarks of masseam, = 0.01 and 0005 onN; = 4 lattices, scanning iu/T)? to determine the
value of imaginaryu corresponding to a second-order transition. Our obsezvabthe Binder
cumulant of the quark condensate. Consistent results daagned from the finite-size scaling of
the plaquette distribution. The two critical points arewhd=ig. 5 ¢ight). Disappointingly, it
seems impossible to smoothly match two tricritical scalingves passing through these points.
Additional masses are needed to determine the criticalecuNevertheless, assuming convexity
of the critical curve already constrains thgy = O tricritical point to lie at(u/T)? > —0.3. The
figure illustrates the case where this point liegiat 0. It might also lie a1 /T)? > 0, so that the
u = 0 chiral transition would be first-order. Additional smaibss measurements are underway
and will settle this issue. Note that we are simulating tvevdlir QCD by taking the square root of
the staggered determinant, and approaching the chiraldinfixed, rather coarse lattice spacing.
This is the wrong order of limits, and is the most likely apgrb to expose a failure of rooting.

Finally, our phase diagram Fig. 2 makes it clear that, if taegition in the massleds; = 2
theory isO(4), turning on a real chemical potential (i.e. going up theigaltaxis in the back) will
not make it become first-order. Obtaining such behaviouuireg that the chiral critical surface
bend away from thdls = 3 chiral point, or that another, non-chiral critical sudaappear at large.
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Figure5: (Left) Strategy used: to determine the critical line, we fix therjuaass and measure the corre-
sponding critical imaginary chemical potential. The twigritical scaling lines may match smoothly if the
scaling windows overlapRigh)) Preliminary results: the scaling windows do not seem talapeconvexity
places then, 4 = 0 tricritical point at(u/T)? > —0.3. For illustration, it is placed at = 0 in the figure.
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