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1. Introduction

Studying the statistical fluctuations of a system is a powerful method to ¢besacthe ther-
modynamic properties of a system. As a matter of fact, the presence of & tphiasition is sig-
nalled by an enhancement of the fluctuations in the system. The obserapptegriate to extract
this kind of information are called susceptibilities. Properly, the susceptibilisgritees the re-
sponse of a system to an applied field. Given an operator we can usetaiynihe a corresponding
susceptibility that is the second derivative of the free energy densitifidipaper we are interested
in studying the quark number susceptibility (QNB)= g—';f: it is the response ofiy, the quark
number density, to an infinitesimal change in the quark chemical potential

The QNS has been studied so far at finite temperature and zero chentérglglosee Refs[][1,
B.[3]. This is largely because QNS is directly related to experimental measnts of fluctuations
observed in heavy ion collision§| [4]. At non-zero density and zerdo{@) temperature regime,
QNS is not commonly studied; an application to QCD of rainbow approximationeoDison-
Schwinger approach to study the QNS can be found in Ref. [5]. Osendar the lack of studies
in this regime is the well known sign problem: it is not possible, using standalsl to simulate
lattice QCD at non-zero density.

In this paper we study the QNS at non-zero density and at low temperattire aontext of
SU(2) gauge theoryi.e. where simulations are feasible.

2. Two color QCD

In two color QCD,j.e. SU(2) gauge theory, quarks and antiquarks live in equivalent represen-
tations of the group; the physical consequence isggabhesons andg, qq baryons are contained
in the same hadron multiplet. In the limit whem; < my, i.e. when the pion mass is very small
compared with the first non-Goldstone hadron, it is possible to study thensyssing the chi-
ral perturbation theoryxPT) limit [§]. The fundamental result is that only for > o = %mn
the quark number density; becomes different from zero and at the same onset yajusso a
condensatéqq) # 0 develops, signalling the spontaneous breakdown of the glbbBl baryon
number symmetry: a superfluid phase appears. In this phase there Hyeogimd scalar diquarks
but the hadrons are weakly interacting between them: therefore, just #imonset, the system is
very dilute and is described as a Bose Einstein Condensate (BEC).

Using xPT it is possible to determine the behaviour of different observablesriicylar, we
can write down the prediction fory and its susceptibility(, at zero temperaturé = 0 and in the
limit u — o (right-hand limit):

F2
n{PT ~ 32Nt F2 (U — o) XXPTz32NfF2—192\|fm7(u—uo) , (2.1)
T

whereF is the pion decay constant atNt the number of fermions. The diquark condensate,
calculated in the same limits, is given in terms of the chiral condensate at zsroaeth potential:

(qa) ~ 2(adpo, / % -1 (2.2)
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There are reasons to think that above a certain value of the chemicatiabter> L, a de-
generate system of weakly interacting quarks is more stble [7]. For alrgiale (Stefan Boltzmann
(SB) limit) of massless quarks and gluonsTat 0, we have:

nSB— NiNe 3 SB_ NiNe 5
q 37-[2 ’ nz ’
whereN; is the number of colours. In this case the superfluidity is explained by a Ba®easation
of Cooper pairs within a layer of thickneAsaround the Fermi surface; the diquark condensate is
therefore given by:

(2.3)

(o) O p2A . (2.4)
Comparing Eq.s[(2.1)[(2.2) with Eqfs (2.9), {2.4), we see clearly that th@ltases are charac-
terised by two quite different behaviours.

We consider also the order parameter related to the confinement propémg/tbeory: the
Polyakov loopL; as discussed in Ref][8] the theory becomes deconfined onlyaftepp. Sur-
prisingly, there is a regimgiq < p < Up, where the theory is confinete. (L) = 0, but the other
observables seem to suggest non interacting fermions: a confined&S8&. (his phase could be
the so called quarkyonic phase introduced in Réf. [9]; arguments aglaénextension of this idea
to the case o, = 2 can be found in Ref]10].

3. Calculation of the observables

The fermion action witiNs = 2 and with a diquark source terth necessary to study the
diquark condensate, is given by:

St = M (U) g + GeM (1) Yo — IJGn (Cys) T2 + IS (Cys) To (3.1)

whereM(u) is the standard Wilson fermion matrix at non-zero chemical potentialCaisdthe
charge conjugation operator. If we introduce the change of varigbles- Y& Ct,, ¢ = C 1, g,
Y = Yn, P = yn, itis possible to rewrite the action as:

_ e [ M(p) v v\ _g
St = (g )<_JV5 M(—u)) ((p):w///w. (3.2)

It is worth mentioning that dét#*.#) = [det(MTM +32)] ? therefore we can take the square
root analyticallyj.e. there is no square root problem. The partition function becomes:

7= / dUdPdwe S ¥4¥ (3.3)
Itis now easy to write down an expression fgrusing the matrix.
Todnz T — (oM T on
Ng= — == 5 (-Wo | =—) Wg)=_(Tr ///—1} . 3.4
q Vs du VSCZ,B< a(ﬁu )U’B B> Vs< { a[J > ( )

Moreover, from the definition of QNS we have:
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From this equation we can identify four different terms:

T1=—( :—@%w: V2= —(Tr [.///-1%} )2 (3.6)
T2 = 4( :—@%w: 2>disc: (Tr [%-1%} Tr V*%b (3.7)
Cl = +{ :—@%w: 2>c0nn: —(Tr [%1%%1%}> (3.8)
T3 = +( :—@%WP = (Tr [///1a;ﬁ]> : (3.9)

We see that from the second term of Hg.|(3.5) we get two terms, nai2eindC1, because
there are two ways to contract the spinors.

The calculation of the traces is done by unbiased estimators, introdMgirgmplex noise
vectorsn with the properties(ny) = 0 and(nyny) = dy. For example, the determination of the
following trace, used fol 1 andT2, is based on the relation:

104
ou

= . * % -1
Ny 2. Mt ( ou )Xai;yﬁj Mg 2y - (3.10)

Because foll 2 we need two independent source vectors we refer to this term asdsated term;
the other three terms need only one source vector and we call them teshterens.

Tr [//l‘

4. Some numerical issues

The source vector used to determine the traces can characterisedepgrdifioise distribu-
tions. The standard method is based on the introduction of gaussian comdexvector but it
is possible also to usez complex noise vector (see Ref.[[11] where the potential advantage are
discussed). In th&, case, the complex noise vectaystakes one of the four valugstl, +i},
chosen independently with equal probability.

In Table[1 we present an example where we used only three noise vexdtbrthe following
parametersB = 1.70,k = 0.178, j = 0.04, u = 0.25, & x 16. From this simple analysis, we can

T1 T2 T3 C1 X
Gaussian 2.25(8.30)E-06 5.00(5.74)E-05 0.4010(27)| -0.3681(107) 3.1(1.0)
Z 6.3(10.0)E-06 | 7.4(49.9)E-06 | 0.3994(32)| -0.3655(66) | 3.17(52)

Table 1: Gaussian v€2 noise vectors.

see that there is no any particular advantage in usifgreise, so in the following we continue to
use only gaussian noise distributions.

We also tried to see what happen when we increase the number of noisesyét Tabld P
we present an example with the same parameters used above. From thig ireswident how
increasing the number of noise vectors has a strong effect mainly omvables with a small
value; the effect is very limited if the observable is clearly different fraroz In Fig.[1 (Left) we
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noise vectors T1 T2 T3 C1 X
3 2.25(8.30)E-06| 5.00(5.74)E-05 0.4010(27)| -0.3681(107)| 3.1(1.0)
300 1.50(17)E-05 | 1.53(12)E-05 | 0.4013(14)| -0.3612(20) | 4.04(11)E-02

Table 2: The effect of different number of noise vectors.
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Figure 1: (Left) The four terms of the QNS are plotted against the cleahpotential. (Right) The ratio
between T1 and T2 is plotted against the chemical potential.

plot the four terms (note the sign ®fL) vs the chemical potential. The connected contribu@i@n
gives clearly an important contribution either at low and high values of tamadal potential; note
the changing of sign arourau ~ 0.66. The termsT'1 andT2 are equal in magnitude but with
opposite sign, therefore their contribution cancels everywhere[JFgight); in other words the
variance of the quantity in Eq[. (3]10) is equal to zero. We see very sflactgations, apparently
not compatible with one, faqu < Lo, then smoothed fluctuations comparable with one wgtiand
after this a stable ratio equal to one.

5. Numerical results

In this contribution we are going to show some results obtaineg@ fer1.9 andk = 0.168.
From previous works, see Ref] [8] and the references thereinnaw khat for these parameters
my; = 0.68(1), thereforeap ~ 0.34; moreover, there are signals of a BEC phasaforS 0.45.

We obtained interesting results comparing the QNS with the other observiabiesye want
to stress an interesting effect we have observed studying the systdfaratd temperatures. Note
that the results we are presenting should eventually be extrapolajed @00.

In Fig. @ (Left) we plot the ratig(/u?, for three different temperatures, versus the chemical
potential. For an ideal gas of quarks this ratio would be a constant, s¢@.f)y.and we see that a
plateau is actually present fau < 0.55; after this value we can see a sharp increase of the QNS.
Moreover, it is evident from this plot that the QNS is quite independemt fitte temperature.e.
we do not see any drastic deviations in the behaviour of the three cucressingu. This is in
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contrast with the Polyakov loop behaviour that shows deconfinemettiriee different values of
the chemical potential, correspondingly at the three different tempesatige[2 (Right).
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Figure 2: (Left) Ratio x /u? versusu. The horizontal dotted line marks the SB valye® and the vertical
dashed one marks the positioniaf. (Right) Polyakov loop versus.

It is instructive to compare our lattice numerical results with the equationssmonding to
Eq. (2.B) but taking in account the finite volume and the lattice discretisatiorRefn[j], see
Eqg. (26), the expression for the quark number demﬁﬁ# for free Wilson fermions on the lattice
is presented. It is then easy to obtgipPL.

In Fig. B we plot the ratio between the measured QNS)atttt for two values of the fermion
mass: in the determination qﬁBLwe have to fix a value for the mass of the free fermion; unfor-
tunately we do not know this value, therefore we consider massless feyifmote that this is the
same limit used in Eq[(2.3)) and a value of the ordemgf2. In this case we observe a different
behaviour forau < 0.45, reminiscent of the BEC phase, followed by a flat region compatible with
ratio onej.e. the system is behaving as free fermions, and then again we see anérfordaigher
values ofu. These plots again confirm the above scenario: we do not see amt abange for
QNS, for any of the values qf, where instead the Polyakov loop becomes different from zero.

Note that the QNS is often taken as an alternative signal for deconfinemiattiée studies
of the thermal QCD transitione. there is a strong connection betweeand Polyakov Loop, see
Refs. [IR[1B[ 1l4]. Our results shows that this relation is not replicatesvdaemperature and high
density.

6. Conclusion

In this work we have studied the quark number susceptibility at non-zersitgleand low
temperature in the case of two color QCD with two flavours. We have studiezbtitebution of
the different terms, connected and disconnected, which contribute td ftreally we have shown
its behavior at finite temperature. Surprisingly, we have seen that in trésttvaie is no relation
between the quark number susceptibility and the Polyakov Ibepjn this context it cannot be
used as a signal for deconfinement as it is usually done at finite temgeaatlizero quark number
density. This observation could suggest that the deconfinement trarisitian characterised by
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Figure 3: The ratio between the measured QNS and the ideal valdatfare free fermions for two values
of the fermion massm= 0.00 andm = 0.34. The vertical dashed lines mark the positionuef

a liberation of additional degrees of freedom; if this phenomenon is exeltsitwo color QCD

or related to the non small ratim,;/m, = 0.80(1) or, somehow, connected to the presence of
a quarkyonic phase, is under study. Clearly, there is much to learn deoahfinement from
studying a new physical environment.
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