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1. Introduction

It is by now well established that the high temperature QCEa®spectrum has a remarkable
feature, a transition from localized to delocalized moddq3]. It seems to be a generic feature
of non-Abelian gauge theories in four dimensions that at bignperature, where chiral symmetry
is restored, the lowest part of the Dirac spectrum consistscalized modes exhibiting Poisson
statistics. Higher up in the spectrum there is a cross-avdelocalized modes and random matrix
statistics persisting throughout the bulk of the spectriinis behavior, reminiscent of Anderson
localization, was first seen in the quenci#d(2) theory with the overlap Dirac operator [2] and
later with the staggered Dirac operator [3].

The detailed mechanism behind quark localization is stitl known. In particular, it is not
clear whether there are any easily identifiable gauge fieifigarations that are capable of binding
and localizing the lowest quark eigenmodes. In the pressrgpwhich is mostly based on Ref. [4],
we present some new findings concerning the nature of theggedeeld objects. The lattice data
we use in support of these results come from various sinamstincluding overlap and staggered
Dirac spectra in quenche®lJ(2) gauge backgrounds and stout smeared staggered speStUé3in
backgrounds with 2+1 flavors of dynamical quarks. The resaflthe dynamical simulations have
not been published yet, some preliminary results appednearptesentation by F. Pittler at this
Conference.

2. Correlation between overlap and staggered modes

If the low Dirac modes are localized on specific gauge objies in a given gauge field back-
ground one expects the localized modes to occur aroundasitadations irrespective of the par-
ticular discretization of the Dirac operator. To test this @@mpared the lowest twelve eigenmodes
of the staggered and the overlap Dirac operator [6] on thesanof gauge field backgrounds. For
quantifying the spatial overlap between two eigenmodesefi@ed the quantity

1=V S @) [ Yo (X) 2 (2.2)
X

that we callinterlocalization For non-overlapping moddscan be close to zero while for exactly
identical modes coincides with the inverse of the participation ratio. H#ve eigenmodes are
always assumed to be normalized. To have a meaningful casopawe first paired the lowest
overlap eigenmode with the staggered mode that had thestairgerlocalization with it. Then
the second lowest overlap mode was paired with the remaisiiaggered mode with maximal
interlocalization with it and so on. After this pairing wasrge configuration by configuration, we
computed the average interlocalization for the lowestweelverlap modes and the corresponding
staggered modes. In Figure 1 we plot this quantity as a fomaif the overlap eigenvalue both in
the Q = 0 and thgQ| = 1 topological sectors.

Indeed, in both topological sectors the lowest staggeredoarrlap eigenmodes have sub-
stantial overlaps that diminishes higher up in the spectiy@ note that putting Gaussian random
amplitudes for the two vectors yields an interlocalizatafrunity. We can thus conclude that there
are some objects in the gauge configurations that bind mzhitigenmodes of both the overlap
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Figure1: The average interlocalization (see Eq. (2.1)) of the lowestlap and staggered eigenmodes as
a function of the overlap eigenvalue in the topological geasector® = 0 and|Q| =1

and the staggered Dirac operators. We note here that stieabetween overlap and staggered
spectra had already been noted for the Schwinger model fFffarQCD [8], but in our case the
similarity also extends to the spatial structure of the migedes.

3. Scaling in the continuum limit

Since the lowest eigenmodes are localized to within a feticéaspacings one might be in-
clined to identify these gauge field objects with some sottlidlocations”, unusually large fluctu-
ations in the gauge fields on the scale of the lattice spadimgxplore this possibility we repeated
the simulations on three finer grids and, based on the gaation ratio, computed the linear size
of the localized eigenmodes [5]. All these simulations wdee at the same physical temperature
(T =2.6T¢) and in spatial boxes of the same physical size with the é#facing set by the crit-
ical temperature. The results are shown in Figure 2 whereloteh®e eigenvalue size in units of
the inverse temperature. A priori it is not clear how to extiate this quantity to the continuum
limit, but to guide the eye we included a linear extrapolati is obvious that using any sensible
extrapolation to the continuum limit yields a non-zero eqlin fact a number of order unity. This
clearly rules out dislocations as candidates for bindiregltitalized modes. Moreover, it seems
that the spatial size of the localized modes is set by the izexiis the temporal direction.

To obtain further information concerning the nature of taege objects binding the localized
modes we can also look at their density and in particular h@at $cales in the continuum limit.
Since there is no sharp boundary between the localized ardklbcalized modes in the spectrum,
it is not straightforward to count the number of localizeddes and to define their density. For in-
stance in terms of the level spacing distributiBys), the exponential distributiorR(s) = exp(—s),
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Figure 2. The average linear size of the localized low eigenmodes @fotrerlap Dirac operator as a
function of the lattice spacing. The eigenmode size is nrealsin units if inverse temperature.

characterizing localized modes continuously changestidNigner surmise as we go up in the
spectrum and reach the regime of delocalized modes. |If thils pf deformation is universal,
which seems to be the case here, one can arbitrarily choosaradard” distribution somewhere
between the exponential and the Wigner surmise. One canctilethose eigenmodes localized
that are below the point in the spectrum where the level sgadistribution reaches this standard
“in-between” distribution.

In Figure 3 we show the unfolded level spacing distributiomputed from eigenvalues be-
tween number 10 and 20 of the staggered Dirac operator ineghelgl backgrounds generated
with 2+1 flavors of dynamical fermions with physical massemg the action in Ref. [9]. The
three curves correspond to three different ensembles MWyith 4,6 and 8, at the same physical
temperature and with the same physical spatial box size.tWheurved lines indicate the expo-
nential and the unitary Wigner surmise distributions obserin the lowest part and the bulk of
the spectrum. The histograms are exactly on top of one aniingrating that the deformation
of the distribution occurs along the same universal pathrdigss of the lattice spacing. Since the
matching histograms correspond to the same slice of thdrepe¢between eigenvalues 10 and
20) in all three cases, we can conclude that according toefunition all these ensembles have the
same number of localized modes per configuration. This im iimplies that the physical density
of localized modes is also the same since the physical trokeenes of the ensembles were chosen
to be identical.

We already know that localized low Dirac modes are bound mesgauge objects that have
a fixed physical size and physical density in the continuumitlilt would be tempting to identify
these as finite temperature topological objects, caloratistheir constituent monopoles. Based
on the zero modes of the overlap Dirac operator on these daaigrounds we can estimate that
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Figure 3: The unfolded level spacing distribution computed from tigervalues between the #Gand
20", The histograms correspond to three ensembles with the physical parameters, differing only in
the lattice spacing. The two curved lines indicate the egptial and unitary Wigner surmise distributions
corresponding to the lowest part and the bulk of the spectrum

at this temperature there are on average about 0.01 topalagijects (calorons or anti-calorons)
per cubic fermi. This estimate also depends on the assumiitad since the gas of topological
objects is dilute, they are uncorrelated. On the other hdradensity of localized modes turns
out to be about 1 per cubic fermi. The two orders of magnituderdpancy between the density
of calorons and localized modes makes it impossible thatuéedijas of topological objects can
explain the localized Dirac modes.

4. Connection to Polyakov loops

To gain further intuition concerning the origin of these I@irac modes we note that the
“thinning out” of Dirac modes around zero at high tempemtureeded for chiral restoration, can
be qualitatively understood by considering the lowest Miadsa frequency. Indeed, due to the
anti-periodic temporal boundary condition the lowest fj@ark modes are shifted away from zero
by an amount] T. If the gauge field is “turned on” the effective temporal bdary condition for
the quarks is the combination of the anti-periodic boundamydition and the Polyakov loop. At
high temperature the latter has a positive real expectatiture, however, it can locally fluctuate.
Fluctuations of the Polyakov loop can in principle localbyvier the effective Matsubara frequency
and shift some Dirac eigenvalues towards zero. If this is#se one expects the lowest eigenmodes
to be localized at places where the Polyakov loop has largautions.

Whether that is the case can be tested by comparing the wdigiverage of the Polyakov
loop to the simple average. We choose the weight on eaclodieethe magnitude of a normalized
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Figure 4: The weighted average of the Polyakov loop versus the oveilggnmode the magnitude of
which was used for the weighting. The weighted average imabred by the simple average.

Dirac wave function on that site. In this way to each Diraceigode we can associate a weighted
Polyakov loop with the formula

P =3 PO) ()2 (4.

In Figure 4 we plot this quantity normalized by the simplerage Polyakov loop for the
pure SU(2) gauge theory for the first few overlap eigenvalues. It isrcteat for the low Dirac
modes the weighted average is significantly lower than theplsi average. This demonstrates
that the localized Dirac modes are indeed peaked at locatidrere the Polyakov loop has large
local fluctuations towards smaller and even negative valuassignificantly lower the effective
Matsubara frequency.

To test the validity of this picture in a more quantitativelaon we also explored an effective
random matrix model inspired by this picture. Splitting fhigac operator into a temporal and a
spatial part we choose a basis that diagonalizes the tehaotavith diagonal matrix elements

)\(x)a:sinL(p(X), (4.2)
N
where A (x) is the effective local lattice Matsubara frequency agid) corresponds to the local
phase of the Polyakov loop &t The extra phaser in this formula represents the anti-periodic
temporal boundary condition. We further assume that thisetldimensional array of local Mat-
subara modes interact through nearest neighbor intenadticall spatial directions. These random
spatial interactions are meant to capture the effect of@mgiuge couplings in the Dirac operator.
This sparse random matrix model has a dimensionally rediired-dimensional structure and is
analogous to the Anderson model based on the tight bindipgoajnation. The random on-site
terms are the local Matsubara frequencies and the neaighboe hopping terms are the effective
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interaction terms between neighboring Matsubara modess mbdel has only a few parameters
to be fixed. We experimented with some parameter sets imspireactual lattice data and found
that for a range of parameters this random matrix ensempledaces the qualitative features of
the lattice Dirac operator. The lowest part of the spectromsists of localized modes with expo-
nentially distributed nearest neighbor level spacingstaedulk of the spectrum has delocalized
modes with random matrix statistics. For details we referrttader to Ref. [4].

5. Conclusions

In the present paper we studied how the localization of theesd quark modes occurs in
QCD at high temperature. We showed that the location of thenenodes is robust with respect
to different discretizations of the Dirac operator. We desitated this by comparing staggered
and overlap eigenmodes on the same gauge backgrounds. silsinigations with four different
lattice spacings we found that the physical size of the inedlmodes has a non-zero continuum
limit which is of the order of the inverse temperature. Tiigplies that localized modes are not
bound to dislocations, rather they are connected to gaulgedigects the extension of which is
controlled by the temporal box size. We further demongatréitat the physical density of these
objects does not depend on the lattice spacing. Their getwsited out to be about two orders
of magnitude larger than the density of topological obje¢e found strong correlations between
the locations of low Dirac modes and those of large fluctuatiof the Polyakov loop. Based on
that we proposed a dimensionally reduced sparse randonxmaddel of localization. It would
be interesting to explicitly identify the gauge field obgotsponsible for localization. Monopoles
and dyons are good candidates for that, but some non-tagraglations between different objects
would be needed [10],[11].
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