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1. Introduction and motivation

In Yang-Mills theories at finite temperature T , the deconfinement transition is described in
terms of the spontaneous breakdown of an exact center symmetry: the associated order parameter
is the trace of the Polyakov loop L, which describes a static probe color charge in the thermal
medium. However, the free energy associated with the bare Polyakov loop is a divergent quantity
in the continuum limit, and hence requires renormalization [1]. In this contribution, we discuss
our ongoing study of renormalized Polyakov loops in SU(N) Yang-Mills theories with a different
number of colors N, and in different irreducible representations of the gauge group.

There are many reasons for studying non-Abelian gauge theories with a large number of colors.
The large-N limit at fixed ’t Hooft coupling λ = g2N and fixed number of flavors N f clarifies some
non-trivial features of QCD [2], and leads to a topological classification of Feynman diagrams.
These can be arranged in expansions in powers of 1/N, which has analogies with similar expansions
in closed string theory [3]. The aspects related to volume reduction at large N [4] have been
reviewed in the plenary talk by Ünsal [5]. For the phase diagram of QCD-like theories, the large-N
limit also has interesting implications for new phases at high density [6]. Finally, the large-N limit
also plays a technically crucial rôle in studies of the strongly interacting plasma [7] based on the
conjectured gauge/string correspondence [8].

The relevance of the large-N limit for the physical case of three colors is an issue which can
be tested in a first-principle approach, via lattice computations, and indeed this has been done
with success in previous studies—see ref. [9] for a review. In particular, as it concerns the finite-
temperature properties, there is now convincing lattice evidence for the relevance of the large-N
limit for the Yang-Mills equation of state, both in D = 3+ 1 and in D = 2+ 1 dimensions [10].
One may then wonder, whether this holds for other thermal quantities, too. From this point of
view, a particularly interesting observable is the renormalized Polyakov loop Lren: for this quan-
tity, perturbative expansions around the high-temperature limit predict a non-monotonic behavior
as a function of the temperature [11], while holographic arguments suggest positive ∂Lren/∂T , in-
stead [12]. Moreover, it has also been pointed out that existing lattice results for the logarithm of
Lren in SU(3) Yang-Mills theory reveal a characteristic T−2 dependence [13].

Looking at the Polyakov loop in different irreducible representations allows one to test the
Casimir scaling of the associated free energies [14], and to investigate the equivalence of different
irreducible representations in the large-N limit, and the possible implications for certain effective
models for the physics of the deconfined plasma close to the deconfinement temperature Tc [15].
Moreover, the finite-T properties of strongly coupled gauge theories with dynamical fermions in
different representations are also interesting for Extended Technicolor models [16].

2. Setup of the computation

We study SU(N) Yang-Mills theories with 2 ≤ N ≤ 8 colors on isotropic hypercubic lattices,
using both the standard Wilson gauge action [17]:

S = β ∑
x

∑
µ<ν

{
1− 1

N
Re trU1,1

µ,ν(x)
}

(2.1)

2



P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
1
)
2
1
1

Renormalization of Polyakov loops in different representations and the large-N limit Marco Panero

and the tree-level Symanzik-improved action [18]:

S = β ∑
x

∑
µ<ν

{
1− 1

N
Re tr

[
5
3

U1,1
µ,ν(x)−

1
12

U1,2
µ,ν(x)−

1
12

U1,2
ν ,µ(x)

]}
(2.2)

with β = 2N/g2
0, where U1,1

µ,ν(x) denotes the usual plaquette, while U1,2
µ,ν(x) denotes the ordered

product of links around the rectangle with corners on the sites of coordinates x, x+aµ̂ , x+aµ̂+2aν̂

and x+ 2aν̂ . Our simulations are performed with an algorithm based on standard heat-bath and
overrelaxation updates on SU(2) subgroups [19].

For the simulations with the Wilson action, highly accurate non-perturbative determinations
of the physical scale are available in the literature [20]. To set the scale for our simulations with the
improved action, we calculate the T = 0 static potential V (r) from expectation values of Wilson
loops 〈W (r,L)〉:

V (r) = a−1 lim
L→∞

ln
〈W (r,L−a)〉
〈W (r,L)〉

(2.3)

using five levels of smearing for the spacelike links. The values of V (r) thus obtained are then
fitted to the Cornell potential:

V (r) = σr+V0 +
γ

r
(2.4)

to extract σ , V0 and γ (in appropriate units of the lattice spacing a).
The computation of Polyakov loops in different irreducible representations can be done effi-

ciently using the representation composition laws encoded in Young calculus. In particular, this
leads to very simple relations for the SU(N) groups of lowest ranks: for SU(2), any irreducible
representation r can be labelled by a non-negative integer n (such that dim r = n+1, and the cor-
responding “spin” is j = n/2), and all characters are obtained from the fundamental one (tr1g) via
the recursive formula:

trn+1g = trng tr1g− trn−1g with: tr0g = 1. (2.5)

For SU(3), the computation of characters for higher representations is greatly simplified by the
following relation between the fundamental ( f ) and the two-index antisymmetric representation,
which is nothing but the anti-fundamental ( f̄ ):

1
2
[(tr f g)2− tr f (g2)] = tr f̄ g = (tr f g)?. (2.6)

For SU(N > 3), the traces in higher representations can be computed efficiently by combining
Young calculus relations with the Weyl formula [21]:

tr~λ g =
detF(~λ )

detF(~0)
, (2.7)

where the components of the~λ vector are the lengths of the rows of the Young diagram of the repre-
sentation, from top to bottom (with λN = 0), while Fkl(~λ ) = exp [i(N +λl− l)αk] and eiα1 , eiα2 , . . .
eiαN denote the eigenvalues of g in the fundamental representation. In our code, the Polyakov loops
in the twelve lowest non-trivial, independent irreducible representations for each gauge group are
computed (the largest representation for the SU(8) gauge group that we computed is the 336).
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Figure 1: Setting the scale for simulations of the SU(4) Yang-Mills theory with the tree-level improved
action: the left-hand-side and central plots show, respectively, the zero-temperature string tension in lattice
units σa2, the coefficient of the 1/r term in the potential (which is compared to the expectation from Bosonic
string theory: γ = −π/12 [23]), as a function of β . Finally, the right-hand-side plot shows the values
obtained for the renormalization factor for the fundamental representation Z according to eq. (2.9), as a
function of the square of the bare gauge coupling g2

0.

The relation between “bare” (L) and “physical” (Lren) Polyakov loops in a given representation
can be expressed by a multiplicative renormalization:

〈L〉= Z−Nt 〈Lren〉, (2.8)

where Nt = 1/(aT ) denotes the number of lattice sites in the compactified Euclidean time direction.
Note that 〈L〉 depends on both the bare coupling g0 and on the temperature, while 〈Lren〉 depends
only on T , and the renormalization factor Z depends only on g0. If Casimir scaling holds, the Z’s
for different representations are all related to the one for the fundamental representation.

In the literature, various methods to determine the renormalization factor Z(g2
0) have been pro-

posed [22]; we chose to determine it from the constant term in the zero-temperature QQ̄ potential:

Z = exp(aV0/2). (2.9)

3. Preliminary results

In this section we present some preliminary results from our simulations of the SU(4) gauge
theory with the tree-level improved action. Fig. 1 shows our results from Cornell fits of the T = 0
potential from smeared Wilson loops: the three panels show, respectively, the string tension in
lattice units, the coefficient of the 1/r term (which, in the range of β -values investigated, appears
to be approximately compatible with the prediction from the effective Bosonic string model: γ =

−π/12 [23]), and the renormalization factor for the fundamental representation Z(g2
0).

In the left-hand-side panel of fig. 2, we investigate the Casimir scaling in SU(4) gauge theory:
the figure shows the behavior of bare Polyakov loops in different representations, rescaling their
free energies according to the ratio of the corresponding eigenvalue of the quadratic Casimir over
the one in the fundamental representation: d = 〈C2(r)〉/〈C2( f )〉. As one can see, Casimir scaling
appears to hold for all representations (up to small deviations, due to finite-volume effects, which
affect the highest representations), down to temperatures very close to Tc.
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Figure 2: Left-hand-side panel: Temperature dependence of bare SU(4) Polyakov loops in different repre-
sentations, after rescaling their free energies by a factor proportional to the eigenvalue of the corresponding
quadratic Casimir 〈C2(r)〉. Right-hand-side panel: The renormalized Polyakov loop in the fundamental rep-
resentation of SU(4), as a function of the temperature. The results displayed are obtained from simulations
with the improved action, eq. (2.2).

Finally, the right-hand-side panel of the same figure shows our preliminary results for the
renormalized Polyakov loop in the fundamental representation, as a function of the temperature.
These data (obtained on a lattice with Nt = 5 sites in the Euclidean time direction and Ns = 20
sites in each of the spacelike directions) show that, similarly to what happens in the SU(3) Yang-
Mills theory [22], also in the theory with SU(4) gauge group the renormalized Polyakov loop
jumps to a value close to 1/2 at T = Tc, and then grows up, reaching values near one already at
temperatures around 2Tc. Although from this figure it appears that the renormalized Polyakov loop
never goes above the value 1, we emphasize that these preliminary results at finite lattice spacing,
finite volume, and in a limited temperature range do not allow us to draw any conclusion about this
issue, and are not in contradiction with the findings obtained in previous studies for N = 3 [22].

We are currently extending our calculations to larger and finer lattices, to higher temperatures,
and to larger values of N.
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