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1. Introductory remarks and computational setup

The European Twisted Mass Collaboration (ETMC) has recently performed simulations em-
ploying mass degenerate light (up/down) doublet quarks anda heavy mass non-degenerate pair
for strange and charm quarks entering in the era of precise and realisticNf = 2+ 1+ 1 dynam-
ical quark lattice computations [1]. In the ETMC setup gluoninteractions are described by the
Iwasaki action [2]. Fermions are regularised in the maximally twisted mass (Mtm) Wilson lattice
formulation [3, 4, 5]. This choice of the fermionic action has the benefit of achieving automatic
O(a)-improvement, generally leading to small O(a2) lattice artefacts. Up to now ETMC has pro-
ducedNf = 2+1+1 dynamical quark gauge configurations at three values of thelattice spacing
(namelya∼ 0.06,0.08 and 0.09 fm). Gauge ensembles have been produced at several values of the
quark masses with the lowest pseudoscalar mass being of about 270 MeV. Obviously the inclusion
of the dynamical strange and charm quarks offers the advantage of taking into account a rather
important source of systematic effects.

Computation of renormalisation constants (RCs) is a crucial step in order to extract physical
quantities from lattice data. It is worth noticing that the Mtm setup offers a rather convenient quark
mass renormalisation pattern. Indeed, for the renormalisation of the masses of degenerate and non-
degenerate quark pairs one only needs to know the non-singlet ZP andZS renormalisation constants
(and notZS0) [4]. RCs of operators with non-zero anomalous dimension need to be computed in
the chiral limit and for this reason dedicated lattice simulations employingNf = 4 light and (for
simplicity) degenerate dynamical quarks are required. Indeed we have producedNf = 4 gauge
configuration ensembles corresponding to several sea quarkmass values and we determined RCs
extrapolating their lattice estimators to the chiral limit. We employed the RI-MOM scheme [6] and
the techniques already used forNf = 2 RCs [7]. However, for the case ofNf = 4 simulations with
the action and at the lattice spacing values we are currentlyusing, the implementation of maximal
twist (i.e. tuning the PCAC quark mass to zero), which would guarantee O(a) improvement of RCs,
is not a trivial task. In fact in the region of small PCAC quarkmass values simulation instabilities
occur that lead for it to very large autocorrelation times. Hence we opted for an alternative way,
already proposed in Ref. [3], to achieve O(a) improvement though working out of maximal twist.
The method, being based on averaging results obtained at opposite values of the PCAC quark mass,
entails the need of doubling the reasonably low CPU time costfor producing gauge simulations
at non-zero standard and twisted quark mass. The present contribution is a report of a work in
progress. A first presentation and numerical test of our method appeared already in Ref. [8].

1.1 Computational setup

We consider the following fermionic lattice action (written in the so called physical basis)

Sph
F = a4∑

x

4

∑
f=1

q̄f

[
γ · ∇̃− iγ5r f e

iγ5r f θ0, f (−
a
2

∇∗∇+mcr)+M0, f

]
qf (x) , (1.1)

whereqf denotes a singlet quark flavour andr f takes values either -1 or +1. The chiral quark field
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rotationχ f → qf = exp[ i
2(

π
2 −θ0, f )γ5r f ]χ f brings the action into the so-called twisted basis1

Stm
F = a4∑

x

4

∑
f=1

χ̄ f

[
γ · ∇̃−

a
2

∇∗∇+m0, f + iγ5r f µ f

]
χ f (x) (1.2)

The bare mass parameters and the angleθ0 are given by

M0, f =
√

(m0, f −mcr)2+µ2
f , sinθ0, f =

m0, f −mcr

M0, f
, cosθ0, f =

µ f

M0, f
. (1.3)

In practice we make use ofmPCAC to estimate(m0, f −mcr). In this way we take as the renormalised

quantities the polar quark masŝM f = Z−1
P M f = Z−1

P

√
Z2

Am2
PCAC+µ2

f and the angleθ f , comple-

mentary to the twisted angleω f (θ f = π/2−ω f ), given by tanθ f = ZAmPCAC/µ f . As we use four
mass degenerate quark flavours and we adopt a partially quenched setup, the knowledge of the four
parametersMsea,θsea,Mval,θval is sufficient to describe our RC computation.

In the following we focus on the evaluation of the RCs of the (non-singlet) quark bilinear
operators2 OΓ = χ̄ f Γχ f ′ whereΓ = S,P,V,A,T, in the RI’ variant of the RI-MOM scheme. One
first determines the quark field RC,Zq, through

Z−1
q

−i
12N(p) ∑

ρ

′

[
Tr(γρ Sf (p)−1)

p̃ρ

]

p̃2=µ2

= 1, any f (1.4)

where p̃µ ≡ 1
a sinapµ , p̃2 = ∑µ p̃2

µ and Sf (p) = a4 ∑x e−ipx
〈
χ f (x)χ̄ f (0)

〉
is the Landau gauge

quark propagator in momentum space. The sum∑ρ
′ runs over the Lorentz indices for which ˜pρ is

different from zero andN(p) = ∑ρ
′1. Then one computes the RC,ZΓ, of the operatorOΓ via

Z−1
q Z( f f ′)

Γ Tr
[(

S−1
f (p̃)G( f f ′)

Γ (p̃, p̃)S−1
f ′ (p̃)

)
PΓ

]
p̃2=µ2

= 1, f 6= f ′ . (1.5)

where

G( f f ′)
Γ (p, p) = a8∑

x,y
e−ip(x−y) 〈χ f (x)(χ̄ f Γχ f ′)(0)χ̄ f ′(y)

〉
Γ = S,P,V,A,T . (1.6)

with r f ′ = −r f for the Wilson parameters of the (valence) quark flavoursf and f ′. We note that
RCs are blind to the choice ofsign(r f ) but lattice artefacts in their estimators in general are not.

In our computation we will exploit the fact that theO(a2k+1) artefacts occurring in the vac-
uum expectation values of (multi)local operatorsO vanish if we take theθ -average defined by
1
2

[
〈O〉|M̂,θ + 〈O〉|M̂,−θ

]
. The O(a) improvement obtained in this way is a consequence of the

symmetry3 P × (θ0 → −θ0)×Dd × (M0 → −M0) of the lattice action and occurs for operator
expectation values and form factors that are invariant under P × (θ0 →−θ0), see refs. [3, 9]. In
particular this holds for our RCs estimators at any value of quark mass,M f , and momentum, ˜p.

1For consistency with the standard Wilson fermion notation,the operator RCs are named according to the form the
operators take in this basis, where the Wilson term is untwisted.

2For the computation of the RCs of the four-fermion operatorsusing the same setup see Ref. [10].
3We denote byP the parity transformation of the fields and byDd the transformation defined fromDdqf (x) =

e3iπ/2qf (−x), Ddq̄f (x) = e3iπ/2q̄f (−x) andDdUµ =U†
µ (−x−aµ̂).
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2. Analysis and Results

We have producedNf = 4 dynamical quark gauge configurations at three values of theinverse
gauge coupling,β = 1.90, 1.95 and 2.10, and for eachβ at a number of values ofMseaand (nearly)
opposite values ofθsea(thep/m in the ensemble labels refers tosign(θsea)). An overview of these
ensembles and the valence mass parameters chosen for the Landau gauge correlation functions is
given in Table 1. Some quark propagator computations are still in progress, as indicated. Hence,
the corresponding ensembles can not be used in this analysis.

ensemble aµsea amsea
PCAC aMsea

0 θ sea aµval amval
PCAC

β = 1.90
4m 0.0080 -0.0390(01) 0.0285(01) -1.286(01) in progress ...
4p 0.0080 0.0398(01) 0.0290(01) +1.291(01) in progress ...
3m 0.0080 -0.0358(02) 0.0263(01) -1.262(02) in progress ...
3p 0.0080 +0.0356(02) 0.0262(01) +1.260(02) in progress ...
2m 0.0080 -0.0318(01) 0.0237(01) -1.226(02) in progress ...
2p 0.0080 +0.0310(02) 0.0231(01) +1.218(02) in progress ...
1m 0.0080 -0.0273(02) 0.0207(01) -1.174(03) in progress ...
1p 0.0080 +0.0275(04) 0.0209(01) +1.177(05) in progress ...

β = 1.95
1m 0.0085 -0.0413(02) 0.0329(01) -1.309(01) [0.0085, . . . ,0.0298] -0.0216(02)
1p 0.0085 +0.0425(02) 0.0338(01) +1.317(01) [0.0085, . . . ,0.0298] +0.0195(02)
7m 0.0085 -0.0353(01) 0.0285(01) -1.268(01) [0.0085, . . . ,0.0298] -0.0180(02)
7p 0.0085 +0.0361(01) 0.0285(01) +1.268(01) [0.0085, . . . ,0.0298] +0.0181(01)
8m 0.0020 -0.0363(01) 0.0280(01) -1.499(01) [0.0085, . . . ,0.0298] -0.0194(01)
8p 0.0020 +0.0363(01) 0.0274(01) +1.498(01) [0.0085, . . . ,0.0298] +0.0183(02)
3m 0.0180 -0.0160(02) 0.0218(01) -0.601(06) [0.0060, . . . ,0.0298] -0.0160(02)
3p 0.0180 +0.0163(02) 0.0219(01) +0.610(06) [0.0060, . . . ,0.0298] +0.0162(02)
2m 0.0085 -0.0209(02) 0.0182(01) -1.085(03) [0.0085, . . . ,0.0298] -0.0213(02)
2p 0.0085 +0.0191(02) 0.0170(02) +1.046(06) [0.0085, . . . ,0.0298] +0.0191(02)
4m 0.0085 -0.0146(02) 0.0141(01) -0.923(04) [0.0060, . . . ,0.0298] -0.0146(02)
4p 0.0085 +0.0151(02) 0.0144(01) +0.940(07) [0.0060, . . . ,0.0298] 0.0151(02)

β = 2.10
5m 0.0078 -0.00821(11) 0.0102(01) -0.700(07) [0.0048, . . . ,0.0293] -0.0082(01)
5p 0.0078 0.00823(08) 0.0102(01) +0.701(05) [0.0048, . . . ,0.0293] +0.0082(01)
4m 0.0064 -0.00682(13) 0.0084(01) -0.706(09) in progress ...
4p 0.0064 +0.00685(12) 0.0084(01) +0.708(09) in progress ...
3m 0.0046 -0.00585(08) 0.0066(01) -0.794(07) [0.0025, . . . ,0.0297] -0.0059(01)
3p 0.0046 +0.00559(14) 0.0064(01) +0.771(13) [0.0025, . . . ,0.0297] +0.0056(01)
2am 0.0030 -0.00403(14) 0.0044(01) -0.821(17) in progress ...
2ap 0.0030 +0.00421(13) 0.0045(01) +0.843(15) in progress ...

Table 1: Overview of produced ensembles atβ = 1.90, 1.95 and 2.10

The basic ingredient of the calculation, due to Eq.(1.5), isthe lattice RC estimator,

ZNp/m
Γ ≡ ZNp/m

Γ (Msea,Np/m
0 ,θsea,Np/m

0 ;{Mval,Np/m
j ,θval,Np/m

j }; p̃2;β ),

where j labels the valence quark polar mass and the momentap are such thata2 p̃2 ranges from 0.5
to 2.5 and thata2 p̃[4]/p̃2 ≤ 0.28, with p̃[4] = ∑ρ p̃4

ρ . Our analysis goes through the following steps.
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Figure 1: β = 1.95, ensemble1p/m: (a) Goldstone pole subtraction fit applied separately onp andm for
estimators ofZ−1

P at p̃2 ∼ 9.5GeV2; (b) extrapolation of theθ -averaged RC estimators to the chiral limit of
Zq, ZA, ZT andZV at p̃2 ∼ 11.5GeV2. The situation is similar for other ensembles.

(1) Subtract from the RC estimator the O(a2g2) cutoff effects at the chiral point, known from
Ref. [11] (2) Build the O(a) improved estimatorZN

Γ ≡ ZN
Γ(M

sea,N
0 ,θsea,N

0 ;{Mval,N
j ,θval,N

j }; p̃2;β ) =
1
2

[
ZNp

Γ +ZNm
Γ

]
.

(3) Extrapolate to the chiral limit value, first in the valence and then in the sea sector.
(4) Evaluate the RCs at a given renormalization scale after taking care of the residual lattice arte-
facts according to the methods “M1” and “M2” (see Ref. [7] anddiscussion below).

In step (2) chiral fit Ansätze are inspired to the mass parameter dependence expected from
continuum QCD and the Symanzik analysis of lattice artefacts. For the valence chiral extrapolation
we considered as fit functions linear combinations of constant, Mval

j , (Mval
j )2, Mval

j cos(θval
j ), and

(Mval
j cos(θval

j ))2. For the sea chiral limit linear combinations ofMsea
0 , (Msea

0 )2 andcos(θval
j )(Msea

0 )2

were considered. In the case ofZP, just before step (2) we remove the Goldstone pole contribution,
which, depending directly on the lattice pseudoscalar meson mass, happens to be somewhat dif-
ferent for estimators corresponding to oppositeθval,sea-values. As for step (4), in the first method
(“M1”), after bringing the RC-estimators to a common renormalization scale ( ˜p2

M1 = 1/a2), we
remove the remainingO(a2 p̃2) discretization errors by a linear fit in ˜p2. Here the fit range is
1.5 ≤ a2 p̃2 ≤ 2.2. The second method (“M2”) consists in simply taking the value of the RCs es-
timators at some high momentum point kept fixed in physical units at all β ’s. Here we choose
p̃2 = 12.0±0.5 GeV2. The two approaches yield RC values differing only by cutoffeffects.

In Fig. 1, for the example of the ensemble1p/m of β = 1.95, we show the Goldstone pole
removal and the residual valence quark mass dependence in the analysis ofZP (panel (a)) and the
extrapolation to the valence chiral limit forZq, ZA, ZT andZV (panel (b)). The fit Ansatz is a linear
function of the valence quark polar mass. We checked that results do not change significantly by
using more complicated fit functions (involving higher masspowers orθval). Fig. 2 shows, for
β = 1.95 the extrapolation to the sea chiral limit ofZP, ZS (panel (a)) andZA, ZV (panel (b)). The
fit Ansatz is a linear function of(Msea)2. More elaborated fit functions give compatible results.

For the typical (and important) cases ofZA and ZP we show forβ = 1.95 (in Fig. 3) and
β = 2.1 (in Fig. 4) the residual dependence ona2 p̃2 of RC-estimators (in the case ofZP brought
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Figure 2: β = 1.95: extrapolation to the sea chiral limit for (a)ZP andZS; (b) ZA andZV (at p̃2 ∼ 11.5GeV2).
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Figure 3: β = 1.95; dependence ofZA (left panel) andZP (right panel) on(a2p̃2). Uncorrected and one-loop
corrected (with two choices of the gauge coupling, bare and plaquette-boosted) RC estimators are shown.

to a common renormalization scale (1/a(β )) via three-loop evolution). The nice quality of the
linear fit leading to the “M1” RC-values is visible, while results of the “M2” type are obtained
from data ata2p̃2 in the range (1.8-2.0) and (1.10-1.23) forβ = 1.95 andβ = 2.1, respectively. In
each plot three different RC-estimators are considered, which differ from each other in the way the
(beneficial) subtraction of O(a2g2) lattice artefacts of step (1) is carried out.
In Table 2 we gather ourpreliminary results for the RCs at two values of the gauge coupling,
β = 1.95 andβ = 2.10. We present results obtained from the two methods described above, namely
“M1" and “M2". Perturbative contibutions O(a2g2) have been subtracted using the coupling con-
stant estimateg2

0 = 6/β . Results for the RCs whose anomalous dimension is non-zero are given at
the scale 1/a in the RI/MOM scheme. Following ref. [1], we takea−1|β=1.95(2.1) = 2.5(3.2) GeV.
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Figure 4: β = 2.10; dependence ofZA (left panel) andZP (right panel) on(a2p̃2). Uncorrected and one-loop
corrected (with two choices of the gauge coupling, bare and plaquette-boosted) RC estimators are shown.

Method ZA ZV ZP(1/a) ZS(1/a) ZP/ZS ZT(1/a) Zq(1/a)

β = 1.95
M1 0.746(05) 0.614(03) 0.426(06) 0.609(08) 0.700(08) 0.734(04) 0.752(05)
M2 0.738(01) 0.639(02) 0.483(02) 0.684(01) 0.706(03) 0.734(01) 0.769(01)

β = 2.10
M1 0.783(07) 0.683(13) 0.493(10) 0.669(08) 0.737(14) 0.775(11) 0.786(13)
M2 0.777(05) 0.680(05) 0.515(06) 0.696(08) 0.740(08) 0.771(05) 0.794(07)

Table 2: Ourpreliminaryresults for quark bilinear RCs atβ = 1.95 andβ = 2.10.
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