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We useNf = 2 non-perturbatively improved clover fermions and the standard Wilson gluonic

action to compute the masses of the light quarks. After results for much smaller quark masses have

become available we provide here an update on earlier published results [1]. The renormalization

constants have been determined non-perturbatively. Partially quenched chiral perturbation theory

is used to extra-/interpolate to the physical quark masses.
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Quark masses D. Pleiter

1. Introduction

Quarks are not asymptotic states of QCD and thus cannot be observed directly. Lattice calcu-
lations in principle allow us to calculate their masses from first principles. A precise determination
of these fundamental parameters of QCD is however limited by the control on systematic errors,
like discretization effects. To convert the results obtained on the lattice into continuum numbers it
is necessary to convert the bare quark masses to renormalized masses in some standard renormal-
ization scheme:

mS
q (µ) = ZS (µ)mbare

q , (1.1)

whereS andµ denote the renormalization scheme and scale, respectively.
The simulations have been done usingNf = 2 flavours of degenerate, non-perturbativelyO(a)

improved Wilson fermions plus the standard Wilson gluonic action. We have generated a large
number of ensembles with different lattice spacings in the range 0.060fm. a . 0.075fm. Our
smallest quark mass corresponds to a pseudo-scalar meson massmPS≃ 180MeV. For our smallest
quark masses we use lattices of sizeL ≃ 3fm while for heavier quark masses our lattices are
smaller. To scale our lattice results we employ the Sommer parameterr0 extrapolated to the chiral
limit [2].Since there is no precise experimental value forr0 available we use the nucleon mass to
determine the conversion factor needed to convert the lattice results to physical units. Within errors
this is consistent with a valuer0 = 0.5fm [3], which we will use throughout this paper.

We compute the bare quark mass using the axial Ward identity (AWI). On the lattice the
identity can be written as

∂µAµ = 2m̃qP +O(a2), (1.2)

whereA andP are the (unrenormalized) axial current and pseudo-scalar density. The (bare)
quark mass ˜mq can be obtained by computing the ratio

am̃q =
〈∂4A4(t)O(0)〉
2〈P(t)O(0)〉

. (1.3)

To eliminateO(a) discretization errors the operators need to be improved, i.e. we have to use
the improved axial currentAµ = (1+ bA am(S)

q )(Aµ + cAa∂µP) and pseudo-scalar densityP =

(1+bPam(S)
q )P. Herem(S)

q = 1
2

(

1
κ(S) −

1
κ(S)

c

)

refers to the vector Ward identity (VWI) quark mass.

Since we will consider partially quenched results where valence and sea quark masses differ we
introduced the superscript(S) for the sea quark masses. The improvement coefficientcA is known
non-perturbatively [4], while the coefficientsbA andbP are only known in one-loop perturbation
theory [5]. Since to leading order both of them are equal we can assume 1+(bA −bP)am(S)

q ≃ 1,
i.e. we can ignore them in Eq. (1.3). We have some freedom to select the operatorO. We use the
sink smeared pseudo-scalar densityPsmeared. The quantities we compute on the lattice are

am̃(0)
q (t) =

〈∂4A4(t)Psmeared(0)〉
2〈P(t)Psmeared(0)〉

, (1.4)

am̃(1)
q (t) = a

〈∂ 2
4 P(t)Psmeared(0)〉

2〈P(t)Psmeared(0)〉
. (1.5)

For timeslices sufficiently far from the source, i.e. 0≪ t ≪ T, we expect these ratios to be constant.
The improved AWI quark mass is given byam̃q = am̃(0)

q +cA am̃(1)
q .
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To renormalize the quark masses it is convenient to first compute the renormalization group
invariant quark masses. The renormalization constantZRGI

m (a) has been computed in [6] using the
Rome-Southampton method. In a second step the renormalization invariant quark mass is translated
into a different scheme. Conventionally light quark masses are defined in theMS scheme at a scale
µ = 2GeV. We use the 4- and 3-loop results for theβ - andγ-function usingr0ΛMS = 0.73 [7]. At
the relevant scale we observe a good convergence of the perturbative series.

2. Computational strategy

Since in our simulations we haveNf = 2 flavours of dynamical quark masses we have to
partially quench the strange quark. To extrapolate/interpolate the lattice results towards the point
where the quark masses take their physical values we fit our data to expressions obtained from
partially quenched chiral perturbation theory (χPT). ForNf ≥ 1 sea quarks in LO and NLO the
quark mass dependence of the pseudo-scalar meson mass1 can be written as [8]

(

m(A,B)
PS

4π f0

)2

= χ(A,B)
[

1+χ(S)Nf(2α6−α4)+χ(A,B)(2α8−α5) (2.1)

+
1
Nf

χ(A)(χ(S)−χ(A)) ln χ(A)−χ(B)(χ(S)−χ(B)) ln χ(B)

χ(B)−χ(A)

]

whereχ(A,B) = BS
0 (m(A)+m(B))S /Λ2

χ (A,B ∈ V1,V2,S) is related to the sea quark massm(S) or
the (possibly non-degenerate) valence quark massesm(V1) and m(V2). BS

0 is related to the chi-
ral condensate viaBS

0 = −〈qq〉/ f 2
0 . The low-energy constants (LECs)αi are evaluated at the

scaleΛχ = 4π f0, where f0 is the pion decay constant in the chiral limit. (We use the convention
where fπ = 92.4MeV.) We now perform a generic rescaling of the variablesχ(A,B) = cχy(A,B) and

m(A,B)
PS /Λχ = cmM(A,B)

PS . Eq. (2.1) can then be written in the following form:

y(A,B)

(M(A,B)
PS )2

= ca+

(

cb−cd(1+ lnca)

ca

)

y(S)+

(

cc+cd(1+2lnca)

ca

)

y(A,B)

−

(

cd

ca

)

y(A)(y(S)−y(A)) lny(A)−y(B)(y(S)−y(B)) lny(B)

y(B)−y(A)
, (2.2)

which in the case of degenerate valence quark masses reduces to

y(V)

(M(V)
PS )2

= ca+cb(M
(S)
PS)

2+cc(M
(V)
PS )2+cd

(

(M(S)
PS)

2−2(M(V)
PS )2

)

ln(M(V)
PS )2 . (2.3)

Note that the coefficientsci are scheme and scale dependent. We make this explicit after setting

y(V) = r0m̃RGI
q , M(S)

PS = r0m(S)
PS, M(V)

PS = r0m(V)
PS (2.4)

1We do not consider higher order results (see, e.g., [9]) here as our data is not sufficiently precise to fix the large
number of low-energy constants.
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in our final fit formula:

r0m̃RGI
q

(r0m(V)
PS )

2
= cRGI

a +cRGI
b (r0m(S)

PS)
2+cRGI

c (r0m(V)
PS )

2+

cRGI
d

(

(r0m(S)
PS)

2−2(r0m(V)
PS )

2
)

ln(r0mPS(V))2 . (2.5)

Once the coefficients have been determined one can obtain the strange quark mass from

r0m̃RGI
s = cRGI

a

[

(r0mK+)2+(r0mK0)2− (r0mπ+)2]

+ (cRGI
b −cRGI

d )
[

(r0mK+)2+(r0mK0)2](r0mπ+)2

+
1
2
(cRGI

c +cRGI
d )

[

(r0mK+)2+(r0mK0)2]2− (cRGI
b +cRGI

c )(r0mπ+)4

− cRGI
d

[

(r0mK+)2+(r0mK0)2][(r0mK+)2+(r0mK0)2− (r0mπ+)2]

× ln
(

(r0mK+)2+(r0mK0)2− (r0mπ+)2)

+ cRGI
d (r0mπ+)4 ln(r0mπ+)2 . (2.6)

Similarly, for the light quark masses one gets the following expression:

r0m̃RGI
ud = cRGI

a (r0mπ+)2+(cRGI
b +cRGI

c )(r0mπ+)4−cRGI
d (r0mπ+)4 ln(r0mπ+)2 . (2.7)

To compute the strange quark mass it is, however, better to use a modified fit function of the
form

r0m̃RGI
q

(r0mPS)2 = cRGI
a′ +cRGI

b [(r0m(S)
PS)

2−db]+cRGI
c [(r0m(V)

PS )
2−dc]+

cRGI
d

[(

(r0m(S)
PS)

2−2(r0m(V)
PS )

2
)

ln(r0mPS(V))2−dd

]

. (2.8)

This expression is obtained by eliminatingcRGI
a from Eq. (2.5) in terms of

cRGI
a′ ≡

r0mRGI
s

(r0mK+)2+(r0mK0)2− (r0mπ+)2 , (2.9)

i.e.cRGI
a′ is directly related to the strange quark mass.
The results obtained so far are valid for ‘pure’ QCD. To match these with experimental num-

bers electromagnetic effects have to be taken into account. This can be done using Dashen’s theo-
rem [10]:

m2
π+ = m2

π0 = (mEXP
π0 )2 (2.10)

m2
K+ = (mEXP

K+ )2− (mEXP
π+ )2+(mEXP

π0 )2

m2
K0 = (mEXP

K0 )2

3. Results

We fitted the results for the ratior0m̃RGI
q /(r0m(V)

PS )
2 to Eq. (2.5) restricting our fit range to

r0mPS≤ 1.8. This range has been chosen such that it includes a fictitious pseudo-scalar meson with
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Figure 1: Fits to Eq. (2.5) atβ = 5.29. The left plot shows the results forκ(V) = κ(S) while the other plots
show partially quenched results atκ(S) = 0.13590 (middle) and 0.13632 (right). Open symbols have not
been included in the fit. The vertical dashed lines indicate the mass of a pion and of a fictitious pseudo-
scalar meson with 2 strange quarks, respectively.

2 strange quarks, which would have a massr0mPS= 1.74. In Fig. 1 we compare some of the data
to the fit atβ = 5.29. Similar results have been obtained forβ = 5.25 and 5.40. We observe for
heavier quark masses that the data changes almost linearly as a function ofthe squared pseudo-
scalar meson mass. Only for the smaller sea quark mass do we find a bending down indicating
effects from the chiral logarithms.

In Fig. 2 we show the results forcRGI
a andmRGI

s obtained by fits to Eq. (2.5) and (2.8), respec-
tively, as a function of the squared lattice spacing. Since we find the data to be consistent within
statistical errors and do not observe a systematic dependence on the latticespacing we fitted the
results to a constant.

The coefficientsci (i = a,b,c,d) are directly related to the following combinations of LECs:

2α6−α4 =
1

N2
f

[

1+ lnNf −
cb

cd
+ ln

cd

ca

]

, (3.1)

2α8−α5 = −
1
Nf

[

1+2lnNf +
cc

cd
+ ln

cd

ca

]

.

In the following table we compare our results with those from [11]:2

Bijnens This work

2α6−α4 0.0(6) 0.2(4)
2α8−α5 0.29(48) -1(2)

Results from other lattice QCD calculations reviewed in [12] also favour a small positive value for
2α6−α4. Less clear is the situation for 2α8−α5 where both positive and negative results have
been found.

The coefficientca is related to the chiral condensate〈qq〉:

1
2r0cRGI

a
=−

1

f 2
0

〈qq〉RGI. (3.2)

2The results have been averaged by the Flavianet Lattice Averaging Group [12].
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Figure 2: Continuum extrapolation ofcRGI
a (left) andmRGI

s (right).

Using f0 = fπ we find 〈qq〉MS(2GeV) = −(284(2)MeV)3. The error is purely statistical. This
result is slightly large compared to results from other groups (see [12] for an overview).

Using the leading order in Eq. (2.7) we directly obtain the light quark mass from the continuum
result forcRGI

a : mMS
u/d(µ = 2GeV) = 3.5(1)MeV. The contributions from the higher orders are of

relative size
∣

∣(r0mπ+)2(cRGI
b +cRGI

c )/cRGI
a

∣

∣≈ 0.0005 and
∣

∣(r0mπ+)2 ln(r0mπ+)2cRGI
d /cRGI

a

∣

∣≈ 0.007
and therefore negligible. The situation is different for the strange quarkmass. Using the leading
order in Eq. (2.6) would lead to a very small strange quark massmMS

s (µ = 2GeV) = 88(2)MeV.
Taking NLO into account we find an about 30% larger result:mMS

s (µ = 2GeV) = 115(14)MeV.
There are further sources of systematic errors to be considered:

• If we allow the upper limit of our fit range to vary fromr0mPS= 1.8 (which we use for our
central values) to 2.5 we observe a change of our coefficientsci . 8% resulting in a reduction
of the strange quark mass.

• We estimate a 2% uncertainty for our method to set the scale. This systematic error affects
both the determination of the renormalization group invariant quark masses (by about 2%)
as well as the renormalization factor for converting the results toMS at a scaleµ = 2GeV.
The latter is a 0.5% effect.

• Finally, we have to consider that electro-magnetic effects have not been included in our
simulations. Attempts to calculate these effects on the lattice indicate that these are small
(see, e.g., [13]). The use of Dashen’s theorem, i.e. Eq. (2.10), has anegligible effect on
the strange quark mass. In case of the up/down quark masses it is, however, expected to
dominate the overall error budget.

4. Summary and conclusions

We have provided an update on ongoing work to determine the light quark masses on gauge
configurations withNf = 2 flavours of Clover fermions. With results at very small quark masses
becoming available we observe significantly clearer signatures of the effects from chiral logarithms.
Since we have results for different lattice spacings we are in the position to check for discretization
effects, which turn out to be negligible compared to statistical errors. The latter are still relatively
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large, but we are in the process of increasing our statistics (in particular for κ(S) 6= κ(V)). Our
preliminary results are

mMS
u/d(µ = 2GeV) = 3.5(1)(1)(1)MeV, (4.1)

mMS
s (µ = 2GeV) = 115(14)(9)(1)MeV. (4.2)

The first error is the statistical error while the other errors take into account the fit range dependence
and the uncertainties related to setting the scale.
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