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We consider whether the/l corrections tok-string tensions must begin at ordefN?, as in
the Sine Law, or whether odd powers o9fN, as in Casimir Scaling, are also acceptable. The
issue is important because different models of confinemiferdn their predictions for the
representation-dependencele$tring tensions, and corrections involving odd powers Afl 1
would seem to be ruled out by the larfeexpansion. We show, however, thastring tensions
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about in a concrete example, namely, strong coupling &agmuge theory with the heat-kernel
action, in whichk-string tensions follow the Casimir scaling rule.
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1. Introduction

The static potential of two heavy quarks in group represemta and N-ality k depends,
asymptotically, only on th&l-ality of the representation, i.¥.(R) = okR, and these asymptotic
string tensions are known ak-$tring tensions.” Different confinement mechanisms |eediffer-
ent predictions fooy, the two most common of which are

K(N—K)
(N-1)

Ok = OF X , (1.2)
sin( ) Sine Law

sin(F)

whereok is the string tension in the fundamental representatio® Sihe Law is found in certain
supersymmetric models [1], in MQCD [2], in some AdS/CFTpined models [3], and in certain
versions of largeN volume reduction where abelian dominance is assumed [4intrascaling,
as originally proposed, means tt@t= 0rC; /Cr, whereC, is the quadratic Casimir in represen-
tationr. This relation can be derived from the “dimensional reductiform of the Yang-Mills
vacuum wavefunctional [5], from the stochastic vacuumysi{6], from certain supersymmetric
dual models [7], and in the gauge-adjoint Higgs moddDia 3 dimensions [8]. In these pictures,
Casimir scaling should hold up to the distance where thekguare screened by gluons. Beyond
that scale, gluons screen the quark charge down to the espagion of the samM-ality with the
lowest dimensionality (smallest string tension), and tBeshould be replaced by the Casimir of
that lowest-dimension representation. This gives us tten@ascaling prediction shown in (1.1).

Of course, neither behavior has to be exact. There could teatimns. But which prediction
is closest to the truth, in ordinary, non-supersymmetrigggatheory? That might tell us something
about the nature of the confinement mechanism. Armoni arfch@hi in ref. [9] (see also Strassler
[10]), put forward a simple and powerful argument that Cassmaling cannot be correct, because
it conflicts with the largeN expansion. Consider a product lofectangulaiR x T Wilson loops,
with T > R, and letU (R, T) be a Wilson loop holonomy around the rectangular contour. On
general grounds

Casimir Scaling

RUTURT = 3 ae SO 1.2)

AtlargeR, and asT — o, the sum is dominated by the lowest eneEJ"(R) ~ okR, and therefore
1 ~
(MU RTINS — amine™ T (1.3)

On the other hand, according to the large-N expansion

k
%((Tr[U(R,T)])'S: <%Tr[U(R,T)]> +o<$> . (1.4)

Inserting (1.3) into (1.4), and taking the logarithm of bettles, we find from th& — oo limit that
ok = kor + powers of ¥N2. On the other hand

k— Mkl . Casimir Scaling
Ok = OF X . (1.5)
k— @% + ... Sine Law
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In Casimir scaling, the leading correction starts A Irather than IN2, and therefore Casimir
scaling appears to be ruled out by latgexpansion.

However, lattice simulations do not seem to support thiskmion. Very accurate simulations
by Bringoltz and Teper in 2+1 dimensions [11] strongly iradie I/N , rather than IN?, leading
corrections to thé&-string tensions. Thus we must ask if there is a loopholeermdtmoni-Shifman
argument. A more detailed exposition of our analysis bekwaointained in ref. [12], and some of
our conclusions were also anticipated in [13].

2. The Cosh Argument, and a Strong-Coupling Example

We begin with a seemingly trivial question: Does log dogthave an expansion in both even
and odd powers df, or only even powers? The answer, of course, is that the siguars only in
even powers, i.e.

R (2.1)
coshx) = 2.1
& (2n)!
1 1 1 17

However, suppose we considef > 1. Then costx) ~ 3, and therefore logcogk) ~ |x|. So
if we drop one of the exponentials, which we can dxjfs> 1, a power linear irx turns up.

To see the relevance to the Armoni-Shifman argument, rdtuey. (1.2), and suppose that
the E{! terms only differ by O(IN). Then to retain only the expE{""(R)T] term, as in (1.3), it is
necessary to kedp fixed (but as large as desired), and then takelthe « limit. However, we get
a different answer by keeping fixed (as large as desired) and then takinghe o limit. In that
case it is never admissible to truncate the sum in (1.2) toglesterm, and, as we will see, this has
important consequences for the lafdeexpansion. The point here is that the— co andN — o
limits do not commute, and to get the usual laNj@xpansionthe large-N limit must come first
That is the limit corresponding to the smakxpansion of lofcosh(x)], to which both exponentials
contribute.

The lattice strong-coupling expansion of the heat-kerweéba provides us with an explicit
example of a theory with both Casimir scaling of the stringstens, and a standard laryeexpan-
sion. The heat-kernel action is derived by starting withlgtce HamiltonianH = g2 5 EFER +
SpV[U(p)], and choosing/[U] by requiring that exp-Ha is the transfer matrix of some Eu-
clidean theory on a hypercubic lattice. The correspondinglifean theory turns out to be

eS=T] ;dRpefgz%/sz,,[u (p)], (2.3)
P Rp

wheredg is the dimension of the representation &lis the quadratic Casimir, witlyg[U] =
Trgr[U] the SU(N) group character. The product is over plaquefteand the sum is over group
representations. In this theory a planar Wilson loop, tdilggorder in the strong-coupling expan-
sion, is given by(x;[U(R,T)]) = d: expg—0o;RT|, whereo; satisfies the Casimir scaling formula
or = (C; /Cg)0og. The lattice strong coupling expansion is known to be coesisvith the largeN
expansion [14], so how can this formula be correct, i.e. isterst with (1.4)?
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4a 4s 4my 4m, 4m

Figure 1: Young tableau for th&k = 4 calculation. Representation pairg,4s, and 4m,4m, are RC-
conjugate (see below), whilen is RC self-conjugate.

Figure 2: An example of an RC-conjugate pair of Young tableaﬁ,)é).

What happens is an (apparently) miraculous cancellatiehuk considek = 4, for example,
and letU (C) be a Wilson loop holonomy around a planar l@@pounding a minimal areA. From
standard group theory, expanding a product into irredagipresentations,

(TrU(C))* = TraU (C) + TraaU (C) + 3(TramU (C) + TramU (C)) + 2TramU(C) ,  (2.4)

where the Young tableaux for the fully antisymmetria)4ully symmetric (%), and mixed (4y_3)
representations are displayed in Fig. 1. Introducing gtrémsions

_ 1 1 8 2N
o= E(G4a+ Oss) = 5(04””1 + O4my) = Oamg = <2N - N) ma (2.5)
= <4+ even powers o%) o, (2.6)
24N 8N
AGaS = Oys— Oyggq = ma N AO-]_Z = O-4m1 — G4ﬁ}2 = mo- s (27)
we find
1 4 a1 11 1 1/1 1 1
W((Tr[u O =e? {1—2 <1+ W) cosﬁéAaagA) ~5 (N + m) smh(EAaasA)

3 1 1 3/1 1)\ . 1 1 1

which is in perfect agreement with lardéexpectations, as there only even powers 0f bn the
right-hand side. What has happened is that odd powerghfhve contrived to perfectly cancel,
among the 4 4a,4m, 4m,, 4mg representations. A closer inspection shows that theretimy
pairwise cancellation between thg 4a pair of representations, and thend 4m, pair.

This cancellation is not a coincidence, peculiakte: 4; it can be proven that to occur for
anyk. We first introduce the notion of RC (row-column) conjugapresentations, whose Young
Tableaux are related by interchanging rows and columnsHige&). Then decompose the product



k-string tensions J. Greensite

representation into a sum of irreducible representatittrtsirns out that the multiplicities of RC-
conjugate representations are identical, so we may write

AT = (e T ¢ (U (©) + (TrU(C))) 29)

whereg}‘ is the multiplicity of representationl?}‘ andﬁ]‘ or, in the case of an RC self-conjugate
representatiorﬁ%ik = ﬁ}‘ it is half the multiplicity. Now in the heat kernel actionleading order, we
have already seen thﬁ&(Trr URT)]) = %’Rexp —C%ap RT]. Both d, andC; /Cg are functions
of N, and it can proven that i

As aresult (TrU) ) = 3[R (&) +F (—&)]. In other words, odd powers of N cancel pair-
wise, among RC-conjugate representations. This is hown@astaling is consistent with the/l
expansion.

We have not yet considered higher-order diagrams, such @seaof plaquettes surrounding
the loop, which are of essential importance in string-biregkolor-screening processes. These
can be shown, in various examples, not to alter the canicellaf odd powers of IN.

3. Beyond Strong-Coupling: A Theorem

It turns out that pairwise cancellations among RC-congigapresentations are general! Ex-
amples are helpful, but the cancellation phenomenon we digaeassed does not really depend on
the heat-kernel action, Casimir scaling, or the strongpling expansion.

Using only group representation theory, and the standagd-d expansion which tells us that
(TrlUP(C)]) = Nx (a power series in/N?), we are able to prove that§andSare RC-conjugate
representations witk boxes in their corresponding Young Tableaux, then

(TrsU(C)) +(TrsU(C))
Nk

is an even function of% , (3.1)

and therefore has a power series expansion in powergN#t.1The proof is non-trivial, and can
be found in Appendix A of [12]. It follows that pairwise catie¢ion of odd powers of AN in
(2.9) alwaysworks, whether or not the string tensions exactly obey Casgaling. It is this
theorem which allows Casimir scaling, or some other ruletfar string tensions which has a
leading correction of order/N, to be compatible with the largd-expansion.

4. Closed Strings

Let us now consider states created by Wilson lines windimguigh the periodic lattice in a
spatial direction. These closed-string states are sorasttalled “torelons.” Unlike states created
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by timelike Wilson loop operators, the closed string speuticannot be classified by the repre-
sentation of the quarks at the ends, but only byNhkality of the torelon creation operators. This
brings in some new features, and again emphasizes the mome@tivity of largeN and large
distance limits.

The spectrum can be computed from the eigenvalues of thepyiqe transfer matrix. Let us
consider the strong-coupling calculation in tielity k= 2 sector, and compute the transfer matrix
in the subspace of states spanned by torelon lines ingha@ 2 (symmetric and antisymmetric)
representations, which wind through the periodic latticextensiorr in thezdirection. Denote the
lower and higher energy eigenvalues, obtained by diaganglithe 2x 2 transfer matrix, a& (r)
andEy (r). The explicit form ofE,_(r) andEy (r) can be found in [12], and they are complicated
expressions in terms of torelon lengtand theN of SU(N), but the important point is that, at fixed
r and taking the largé¥ limit, these energies have a power series expansioriif.1

On the other hand, taking first the largdimit at fixed N, we get quite a different result,
namely,E, (r) ~ 02ar, andEy(r) ~ 02, Whereoz, 25 are the Casimir-scaling string tensions of
the 2a and 2 representations respectively, and these have leading tbytiecorrections. Once
again, it is matter of the order of limits. If we take the lafgdimit first, then the energies have
an expansion in terms of only even powers ¢N1 If, on the other hand, we take the langmit
first, then leading corrections of ordefN (or, strictly speaking, A|N|) are possible.

We may also ask if the torelon spectrum is degenerate in tge-M limit. A degeneracy is
usually associated with a symmetry, which is not obviousgspnt in this case. In fact we are able
to show, again via strong-coupling examples (c.f. [12]atitmere is no degeneracy in the torelon
spectrum in théN = o limit.

5. Conclusions

We have shown that the largé-expansion does not imply thétstring tensions necessarily
have an expansion in only even powers df1The fallacy in the argument to the contrary can be
traced to the fact that the largé-and large-distance limits do not commute. Casimir scalimg,
particular, can be compatible with the larjeexpansion. We also find that closed string sector has
a non-degenerate spectrum, eveNat o .

The question of whethd¢string tensions follow the Sine Law, or Casimir scalingsome-
thing else is a dynamical issue. It cannot be settled by {Brgeunting alone.
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