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1. Introduction

With increased precision of lattice calculations it becomes necessary to investigate and to remove
the approximations that are often made. One such approximation is the use of unphysically heavy
sea quark masses, another one is the omission of electromagnetic effects. From the mass differences
of charged and uncharged pions or between the nuclei one would expect these to be of the order of
one to a few MeV.

Recent lattice calculations [1, 2] of pseudoscalar Dy decay constants have reached an accuracy
of one percent, a regime where electromagnetic effects may become significant. The systematic er-
rors stated in these calculations include an estimate of QED effects that is based on electromagnetic
shifts of the D; meson mass [2].

The methods initially introduced in [3] make it possible to include QED effects on the lat-
tice explicitly and thereby enable us to differentiate between isospin breaking through charge and
different up and down quark masses. These techniques have been successfully applied in calcu-
lations of the light hadron spectrum [3, 4, 5] and used to estimate the u,d mass difference. We
deviate from these references, using a compact QED action, to investigate electromagnetic effects
on pseudoscalar decay constants.

2. Methods

Electromagnetic effects on the lattice are included by multiplying the QCD SU(3)-links with QED
U(1)-links, which are given by Upgp . (x) = exp (ie% physBu (x)), where e, ppys is the charge of the
corresponding quark. The calculation of fully unquenched SU(3)xU(1)—U(3) configurations is
practically unfeasible and unnecessary since sea quark charge effects are suppressed by an addi-
tional factor of apgp ~ 1/137. Instead, we use quenched QED configurations and multiply these
with Ny = 2 QCD configurations. This is correct up to & (0gep).

Instead of using a non-compact action as in previous lattice studies of electromagnetic effects
[3, 4, 5], we employ the compact Wilson gauge plaquette action, so we can deal with these de-
grees of freedom on the same footing as with the SU(3) gauge links. Starting from a cold (unit
link) lattice, we employ the heatbath algorithm to obtain the B, (x) phases by rescaling random
variables 0, that are distributed according to P(6,) ~ exp(w;cos 6,) where the weights w, depend
on the coupling and on the local staple. We follow the procedure described in [6]. The lattice is
divided into 4-cubes with side length 2 and our algorithm loops over single sites of every 4-cube
simultaneously. We find integrated autocorrelation times of the plaquette of &'(1). Nonetheless,
to be on the safe side, only every 200" QED configuration is used. The first 3000 configurations
are discarded such that the ensemble is sufficiently thermalized. The improvement coefficient of
the fermionic QCD Sheikholeslami-Wobhlert action ¢y, ocp has been determined nonperturbatively.
Since the QED interactions are quenched this coefficient will not be affected by them (and in the
un-quenched case it would receive an &'(opep) shift only). To be consistent to leading order in the
QED coupling we set ¢, orp = 1.

We treat the U(1)-links as a background and set their coupling to the physical value. Because
quark charges are multiples of one third of the positron charge ¢+, we rescale the coupling such that
the smallest (nonzero) charge is e = e"% This means that % ~ 3% /(4magep) ~ 98. This can then
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Figure 1: Coulomb potential: measured data and prediction of lattice pertubation theory.

easily be rescaled to e;e with e, = {—1,42} to calculate propagators of other charges. We use the
bare value 3 = 99 (that corresponds to the above renormalized coupling) for the generation of the
U(1)-links. The previously mentioned heatbath algorithm deals well with the resulting, very narrow
distribution P(6). Since we are using a compact formulation of the action there are unphysical 4-
point and higher order vertices, which renormalize the coupling. This is no problem since this
effect is purely multiplicative and does not introduce any running. This means that f% = Zf3,
with a renormalization factor Z = 1+ &/(1/B). We determine this factor non-perturbatively by
comparison between the static lattice QED potential and the analytic perturbative expectation that,
without Fermions, should be exact in non-compact QED. This is visualized in Fig. 1 for § = 6.
From the multiplicative constant that is fitted, we determine Z ~ 0.99 at our f3-value.

To suppress large finite-size effects for correlation functions of charged particles, that are not
gauge invariant with respect to U(1), zero modes of the electromagnetic field need to be subtracted
[7]. This is achieved by a global gauge transformation [8]. In addition, we fix the U(1)-links to
Landau gauge, to improve the signal.

Including electromagnetic effects additively renormalizes the mass of charged quarks in the
Wilson formulation. We choose to set the quark masses in such a way that their renormalized
values are (approximately) the same. The strange x is fixed by tuning the mass of the hypothetical
s§ pseudoscalar to the experimental value,

Mg + Mg —m% =~ (690 MeV)* = m?. 2.1

This is done for the charges egyange = {0,£1,£2}. The charm mass parameter (Kcharm) is only
determined for echarm = {0,£2}. It is fixed by tuning Dy = ¢5 to its physical mass for uncharged
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charm and strange quarks as well as for echarm = 2 and esyrange = —1. To check the tuning of the
charm xs we also calculated the mass combination M parm = % (3m 7w+ mm).

€charm Mcharm

exp. | 3.0678(3) GeV
0 3.002(2) GeV
+2 3.024(2) GeV

The difference between the 3.024 GeV and the experimental value may be attributed to the unphys-
ical sea quark content and finite size effects. However, the difference between our two calculations
shows that there is some inconsistency in the tuning of the charm quark mass between the two
procedures of about 10 MeV. This is no surprise since the total charges of the two mesons differ.
We regard tuning of the ¢c combination the cleaner procedure since this does not depend on the
strange quark mass and we will implement this in the future.

We also simulate 2 lighter quarks of all five charges to enable extrapolations to physical light
quark masses for pions and for the D%*. We tune the symmetric and therefore uncharged combi-
nations /[ for all charges ¢; = {0,4-1,42} to the same values m121 To reduce the noise we average
over =B [4] which is equivalent to averaging over m*. Our k-values are listed in the table below.

€q Ky, K7, Kistrange Kcharm

0 | 0.13629  0.136013 0.135676 0.123019
+1 | 0.136337 0.13606  0.135722
+2 | 0.136477 0.136199 0.135861 0.123086

We use spin-explicit, complex Z, random wall sources [9]. This enables us to average over
the spatial volume. We use 3 noise sources per configuration and analyze a total of 200 Ny = 2
nonperturbatively improved Sheikholeslami-Wohlert configurations [10] at f = 5.29, k¥ = 0.1355
on a 24348 volume. The sea pion mass reads myz s, >~ 750 MeV and we use a = 0.086 fm as
our lattice spacing. All 2-point functions are calculated for a local and a Wuppertal smeared sink.
Wuppertal smearing was done using the product of separately APE smeared QCD- and QED-
links. The decay constants are extracted from w7 and wA4 correlators and have been improved
and renormalized according to [11], neglecting opgp corrections since we consistently work at
O(agep). We are using the Chroma software system [12] which has been modified to support
QCD+QED calculations.

3. Analysis

The available data can also be used to extract the up/down quark masses and the pion mass splitting,
which is done to verify the correctness of the approach. To do this all pseudoscalar mass data must
be fitted to a modified chiral expression which takes QED into account. Instead of using the simple
formula [3]

m%S:AOQz‘F (BO ‘|‘BIQ2) (my+mg), 3.1
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lattice result  experimental
mg /my, 1.80(4) -
Amg | 4.4(8) MeV  4.5936(5) MeV

Table 1: Quark masses and the pion mass differences. The errors are only statistical.

where Q = e, + ¢g, to fit charged and uncharged data, we alternatively subtract the uncharged
mesons (with the parameters obtained by the k. fit) and fit this difference to

Amibg = AgQ> + B1Q (my +my). (3.2)

Once the fit parameters Ag, By and B; are determined the experimental values of myo+ and m,= can
be used to determine the masses of up, down and strange quarks. The physical & mass difference
is retrieved by reinserting all this information into eq. (3.1). The result is in good agreement with
experimental value (Tab. 1) despite a relatively large x2/dof= 4.5. We plan to address this in future
studies, for example by including higher order terms in the chiral fit.

The calculated decay constants differ by about 10 % from the experimental results, which
is not surprising since this is only a partially quenched study on an ensemble with a relatively
large sea quark mass, at one lattice spacing. By computing differences between differently charged
pseudoscalars at the same mass scale we are able to extract the QED contributions. However, the
decay constant will depend on the mass and this will depend on the charge of the particle. To
disentangle these two effects we perform the comparison, matching the uncharged squared mesons
masses m%s_lighz(Q = 0) of each of the two constituent quarks. As an example consider the posi-
tively charged Kaon, which consists of a light quark / with charge 2 and a strange antiquark with
charge 1: The corresponding scale would be mIZJSJighI(Q =0) = %(m[21_+ m2). This is equivalent
to using the average light quark mass, but more correlations between the data remain, because the
K.rir(€)-values do not have to be determined. Preserving these correlations is necessary if differ-
ences significantly smaller than the noise of the absolute signals are extracted. In the case of the
charm quark the Gell-Mann-Oakes-Renner relation does not apply anymore so that we cannot per-
form chiral fits and moreover, it would not be sensible to match squared pseudoscalar masses. The
charm quark matching has not been done as yet so that in this case we cannot compare the decay
of the physical Ds; meson to that of a D, with electrically neutral quarks. However, we can com-
pare the decay constants obtained for combinations of the ech,m = 2 charm quark with differently
charged light quarks.

In the case of light mesons we restrict ourselves to (approximately) equal valence quark masses
and compare the other decay constants with f0 = %( fui~+ f;7), where u and d quark masses are
approximately equal and have the appropriate (physical) charges. Neglecting disconnected loops
for ¥ is correct to & (O‘éED)- The effects of isospin breaking by different # and d quark masses
have not been investigated. Under these conditions we are able to extract the difference f0 —
fz= =0.09(3) MeV from a fit to correlated data. This estimate is already more precise than the
experimental value.

In the case of the D mesons we are limited to the difference between the D° and charged D™
fpo — fpr = 0.79(11) MeV. If the light mass is set to the strange mass, we can define the QED
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Figure 2: Differences of the decay constants between uncharged and charged mesons. All errors are only
statistical.

contribution as the difference between the charged D, and a hypothetical, uncharged DY meson,
where the anti-strange has charge es = —2: fp — fp, = 0.95(4) MeV. The order of magnitude and
the sign of our result agree with naive expectations.

4. Conclusion

We are able to resolve differences between decay constants of differently charged mesons of about
0.1 MeV. We determine the electromagnetic effect on D, D and 7 decay constants. The difference
between charge and uncharged 7 decay constants is more precise than experimental results. We
find fp, to decrease by about 1 MeV, due to electromagnetic effects.
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