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The zeros of the partition function in the compl@plane (Fisher’s zeros) play an important role
in our understanding of phase transitions and RG flows. Rigare argued that they act as gates
or separatrices for complex RG flows. Using histogram relteig to construct the density of
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of the conformal window are briefly discussed.
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1. Introduction

Given the successes of the local gauge invariance principle and eegerimental results, the
possibility that new gauge interactions are responsible for electro-weastry breaking looks
quite attractive. One particularly interesting situation from a phenomelogugat pf view [1, 2]
is when the Callan-Symanzf& function for the new gauge coupling approaches zero from below
and the running coupling constant encounters only small changes siggrificant range of scale.
We then say that the “running” coupling constant “walks”.

This nearly conformal situation can be reached by tuning a parameteraitypgice number
of light fermions) in such a way that the zeros of tigunction (and the corresponding fixed
points of the Renormalization Group (RG) transformation) disappear in thelea plane. Other
models where conformality can be lost and restored by tuning a paranegtieistince the quantum
mechanical 1r? potential) have been studied recently [3, 4].

This motivated us to study extensions of the RG flows in the complex coupling [8a8, 7].

A general feature that we observed is that the Fisher’s zeros - the akthe partition function in
the complexB plane - act as “gates” for the RG flows ending at the strongly coupled firint.
This can be seen as a complex extension of the general picture prdpo3edboulis [8, 9]: in
confining theories, the gate stays open as the volume increases and RGtHaing in a complex
neighborhood the UV fixed point where asymptotic freedom is working,reach the IR fixed
point where confinement and the existence of a mass gap are cleamdyprésirthermore, we
observed [7] that the discrete RG transformation approximately maps Bigleeos for a given
lattice size into the zeros of for the blocked lattice size, forming separatrinesgthe flows
ending at different IR fixed points. In short, the global properties@RI flows can be determined
by calculating Fisher’s zeros, bypassing explicit calculations of the R@&fiehich are technically
difficult and have lattice artifacts that are sometimes difficult to deciphesdtesults are reviewed
in section 2.

Recently, we have developed new methods to calculate the Fisher's zdaitice gauge
theory without fermions [5, 10, 11, 12, 13, 14]. The methods rely ondhstcuction of the density
of states [15] and its analytical continuation to the complex energy planeseTihethods have
been applied to the cased{1) andSU(2) and provide a clear picture of the large scale behavior
of these models. These results are summarized in section 3. As briefly explaisection 4,
we started to pursue this effort in the casesSbf(3) with various number of fermions and plan to
provide new criterions to delimit boundary of the conformal window.

2. Complex RG Flowsin Spin Models

Calculations of RG flows and discrefe functions in lattice gauge theory are notoriously
difficult. One of the main question asked is how many flavors does it take tagéike confining
properties of the theory. For gauge theories, the absence of logg-oader (no massless gluons) is
associated with confinement. The absence of long-range order atsaterees the 2-dimensional
O(N) sigma models wittN < 3. By using some approximations, it is possible to calculate complex
RG flows and Fisher’s zeros much more easily than for gauge theories.
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Figure 1: Complex flows for the hierarchical Ising model for= 2 (left) andD = 3 (right). See [7] for
details.

Recently [7], we were able to illustrate how RG fixed points can disappeaeicdmplex
inverse temperaturg8] plane using the two-lattice matching procedure [16, 17] for Dyson'’s hier
archical model [18, 19] with an Ising measure. In this model, the local patepproximation is
exact and RG flows can be calculated numerically with good accuracy [20]

The model has a free parameter that plays the role of the dimension and tared continu-
ously. ForD = 3, the model has a nontrivial Wilson-Fisher fixed point. As we loepntinuously
the fixed point on the real axis moves to the right and disappears at infaniy £ 2 in agreement
with a rigorous results [20].

The complex RG flows are shown in Fig. 1. On the left,Boe 2, the complex flow lines go
smoothly from infinity to zero, which indicates that the system has no phassitioa. ForD = 3,
the complex flow line start frorfi. and end to either zero or infinity. The darker region of the graph
signal competing solutions for the matching condition (see [7] for details).

An important feature that can be observed on this figure is that the RG fiproximately
follow the Fisher zeros along the separatrice between different basasaxtion. More specifi-
cally, in one discrete step, the RG flows approximately go from the the zeoreaiven number
of lattice sites to the zeros for a smaller number of sites as obtained after piockng the first
lattice. This approximate property is illustrated for Fisher’s zeros of highleimes in Fig. 2. This
property was found to be exact for the 1-dimensional Ising model at leonbgmperature [21] for
which decimation can be performed exactly. In the case of our calculatiemetiuction to one-
dimensional flows used for the matching is only approximate since a finite nushbéock spin
only partially eliminates the irrelevant directions.

This example shows that the global properties of the RG flows (difficult foulzde) can be
inferred from the location of the Fisher's zeros at successive volunuee( easy to calculate).
Similar observations were made for thB D(N) non-linear sigma models in the largedimit
[5, 6]. We constructed the Riemann sheet structure and singular poitite Ghite lattice size.
mappings between the mass gap and the 't Hooft coupling. We arguedelkaskier's zeros appear
on “strings" ending approximately at the singular points. We compared finitane complex
flows obtained from the rescaling of the ultraviolet cutoff in the gap equati@hfrom the two
lattice matching. In both cases, the flows are channelled through the sipguiés and end at the
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Figure2: D = 2 Fisher’s zeros for larger numbers of sites. See [7] forideta

strong coupling fixed points, however strong scheme dependencarappthe ultraviolet side.

3. Fisher’'sZerosin Lattice Gauge Theory

We used the density of statagS) to study the zeros of pur@U(2) and pureJ (1) 4D gauge
theories. The partition function can be written as

7(B) = /dSr(S)e’ﬁS. (3.1)

The corresponding entropy density functionfi) = Inn(.4px) /A5, where#, = 6 x L* is the
total number of plaquettes. As the volume increases, the complex partitiotiofuzeros will
in some cases pinch the real axis at the transition point. For a secondobia® transition, the
imaginary part of the lowest zero decreases with a power related to thaleexjponenv :

ImB(L) ~ LYV (3.2)

The formula also holds for a first order phase transition, provided teaeplaces by 1/D.

In the case case of a pudé1) gauge theory, we used the multi-canonical algorithm for lattices
with sizesL =4,6,8[11, 12] to construct the density of states. We calculated the lowestzéres
for these volumes (see Fig. 3). We were able to locate the lowest zeros pirigitigion of order
1075, The zeros cross #i. = 1.01132). The imaginary part of the zeros scales with>?7,
or v = 0.326, possibly consistent with a second order phase transition. Howe/eeros from
higher volumes show that the scaling is "rolling” ants decreasing with the volume. This will be
discussed in a forthcoming preprint [14].

For pure gaug&U(2) with a Wilson action, the lowest complex zeros for the volunfeart
6* are shown in Fig. 4. The upper points (red) are the locations of the partitimtién zeros, while
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Figure4: Fisher’s zeros in SU(2) with an adjoint term for differentwmes, and compared to roots .

the lower points are the complex rootsfdf x) mapped to th@-plane using’. The multiple points
at each location correspond to three different ranges of the Chelbpsinametrization of (x). The
error bars reflect the statistical uncertainty and were obtained by corgphe results based on
independent simulations.

When an adjoint term is added for SU(2), the action reads
1 1 )
SHZB(J-—ETFUD)‘FBA 1—§(‘TVUD)| -1 . (3.3)

The top right graph in Fig. 4 shows the complex zeros (solid squaresjuahe 4 with 35 = 0.0

to 1.0 with an increment @. The roots off”(x) (empty squares) with (x) calculated at a finite
volumeL* correspond to the zeros adif—+ o was taken. The actual zeros approach the roots of
f”(x) as the volume increases and coincide with them irLthe o limit. The right graph in Fig. 4
shows the zeros and the rootsféfin the volume 4 and & with 8, = 0.7,0.8 and 09. The rising

of the f”(x) roots with volume indicates the SU(2) zeros will stabilize at a distance awaytfre

real axis.
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4. Conclusions and per spectives

In conclusions, we have shown that the stabilization of Fisher's zerag fram the real axis
can be used as a signature for a confining theory. We plan to apply this metloodte the bound-
ary of the conformal window in multiflavor models. As a first step we studiectése ofSU(3)
with 3 light quarks at finite temperature and found a scaling for the imaginary part consistent
with a first order phase transition. The calculations were done with uniregrstaggered fermions
with m= 0.02. The zeros are shown in Fig. 5.
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Figure5: Curves for the zeros of the real and imaginary part of thatpartfunction in the complex plane
for SU(3) with three light flavors on a 4 128 lattice.
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