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By generalizing our previous work on the parity symmetry, the partition function of a Yang–Mills
theory is decomposed into a sum of path integrals each giving the contribution from multiplets of
states with fixed quantum numbers associated to parity, charge conjugation, translations, rotations
and central conjugations. Ratios of path integrals and correlation functions can then be computed
with a multi-level Monte Carlo integration scheme whose numerical cost, at a fixed statistical
precision and at asymptotically large times, increases power-like with the time extent of the lattice.
The strategy is implemented for the SU(3) Yang–Mills theory, and a full-fledged computation of
the mass and multiplicity of the lightest glueball with vacuum quantum numbers is carried out at
two values of the lattice spacing (0.17 and 0.12 fm).
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1. Introduction
Very often the signal-to-noise ratio of correlation functions computed by “standard” Monte

Carlo techniques decreases exponentially with the time separation of the sources [1, 2]. In spec-
trum computations one has thereby to find compromises between large statistical errors at large
time-distances and large systematic errors, due to contaminations of excited states, at short time-
separations. This is not entirely satisfactory from a theoretical point of view since a solid evidence
that a single state dominates, i.e. a long exponential decay over many orders of magnitude, is
usually missing.

The situation is particularly unfavorable in the case of the glueball spectrum, as the variance
of two-point functions at large time-distance is dominated by the vacuum [1, 2]. An intuitive way
to understand the problem starts from the observation that symmetries are usually not preserved
on a single gauge configuration. No matter what quantum numbers are specified at the source and
sink, all states are allowed to propagate in the time direction and the expected signal emerges in the
gauge average as a result of possibly large cancellations.

In a series of papers [3, 4, 5] (see also [6, 7]) we have proposed and tested a computational
strategy in which, for each configuration, only states with specified quantum numbers are allowed
to propagate in the time direction. In such a setup the signal-to-noise problem can be solved
by introducing a hierarchical integration scheme [8, 9]. We have implemented this “Symmetry
Constrained Monte Carlo” for computing the mass and the multiplicity of the lightest glueball
state in the SU(3) Yang–Mills theory. Here we briefly review the basic ingredients entering that
computation, the results at a rather coarse value of the lattice spacing (a=0.17 fm), and we present
new numerical data at an additional finer resolution (a=0.12 fm).

2. Lattice symmetries
We aim at computing the ratio of the partition function restricted to a sector, identified by a

complete set of conserved quantum numbers, over the standard one. To this end, and to fix the
notation, it is useful to list the symmetry groups of the SU(3) Yang-Mills theory on a finite periodic
lattice of volume V = T ×L3, where T is its time-extent and L its length in each spatial directions1.
We will denote by Γµ(Ri) the matrix associated to the i-th element of the group in the irreducible
representation µ .

• Parity. The group is of order 2, and the two irreducible representations of dimension 1 are
Γ(±)(R1) =±Γ(±)(R2) = 1.

• Charge Conjugation. Again this group is of order 2, and the two irreducible representations
of dimension 1 are Γ(±)(R1) =±Γ(±)(R2) = 1.

• Translations. The group of translations is a direct product of three Abelian groups, one
for each space direction. Its elements are labeled by a three dimensional vector of integers
m = (m1,m2,m3), with mi = 0, . . . ,L− 1, where each component identifies the elements of
the group in the corresponding direction. Since it is Abelian, each element forms its own
class and there are L3 non-equivalent irreducible representations of dimension 1

Γ
(p)(Rm) = eip·m , (2.1)

1Dimensionful quantities are always expressed in units of a unless explicitly specified.
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which are labeled by momentum vectors p =
2π

L
[n1,n2,n3], with ni = 0, . . . ,L−1.

• Rotations. The octahedral group is of order 24. Its elements are listed in Appendix B of [5],
where explicit expressions for the Γ matrices and the table of characters can be found for the
5 non-equivalent irreducible representations. Those are two singlets A1 and A2, one doublet
E and two triplets T1 and T2.

• Central Charge Conjugations. This symmetry is strictly related to the choice of periodic
boundary conditions, and it disappears in the infinite volume limit [10]. The group is a direct
product of three Z3, one for each spatial direction. It is of order 27, and its elements are
labeled by a three dimensional vector of integers ν = (ν1,ν2,ν3), with νi = 0,1,2, where each
component labels the elements of the Abelian group in the corresponding direction. Since
each element forms its own class, there are 27 non-equivalent irreducible representations of
dimension one

Γ
(e)(Rν) = eie·ν , (2.2)

which are labeled by the electric flux vectors e =
2π

3
[e1,e2,e3], with ei = 0,1,2.

3. Symmetry constrained Monte Carlo
For a discrete group of order g, the projector P̂µ onto states which transform as an irreducible

representation µ can be defined as (for unexplained notation see Ref. [5])

P̂µ =
nµ

g

g

∑
i=1

χ
(µ)∗(Ri)Γ̂(Ri) , (3.1)

where nµ is the dimension of the irreducible representation, χ(µ)(Ri) is the character of the ith
group element in that representation, and Γ̂(Ri) is the representation of the element in the Hilbert
space. The corresponding symmetry-constrained partition function can then be expressed as

Z(µ)(T ) = Tr
{

T̂T P̂µ
}

, (3.2)

where T̂ is the transfer matrix among gauge-invariant states. By inserting (3.1) in the equation
above and by choosing the “coordinate” basis to express the trace, it is clear that Z(µ)(T ) can be
written as a linear combination of partition functions of g different systems with twisted boundary
conditions in the time direction. The latter are chosen so that the state at time T is related to the
one at time 0 by a group transformation. As shown in detail in Ref. [4], the ratio Z(µ)(T )/Z(T ) can
be factorized as a product of similar ratios associated to thick time-slices of temporal extension d
and fixed boundary conditions. Explicitly, we numerically compute

Z(µ)(T )
Z(T )

=
1

Z(T )

∫
DU e−S[U ] P(µ)

m,d [T,0] , (3.3)

where P(µ)
m,d [T,0] is a product of m = T/d factors, and depends on the values of the spatial links on

the boundaries of the thick time-slices only. Its definition is given in Refs. [4, 5]. Finally, given the
locality of the gauge theory, such a factorized quantity can be very accurately estimated through
a generalization of the hierarchical integration scheme proposed in Refs. [8, 9], which in this case
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Lattice L T Nconf Nlev d

A1 8 4 50 2 4

A2 5 50 2 5

A3 6 100 2 3

A4 8 100 2 4

A5 12 50 3 {3,6}

B3 10 6 50 2 3

C1 14 10 100 2 5

Table 1: Simulation parameters: Nconf is the number of configurations, Nlev is the number of levels and d is
the thickness of the thick time-slice used for the various levels.

removes completely the exponential signal-to-noise problem [3, 4, 5]. Although we focus here on
partition functions, the same approach can be applied to the computation of correlation functions.
Matrix elements of operators among glueball states can again be obtained avoiding the exponential
signal degradation [5].

To determine the mass of the lightest glueball state with vacuum quantum numbers, we are
interested in computing the ratio Z(e=0,p,C =+)(T )/Z(T ), which we will shorten as Z(p,+)(T )/Z(T ).
The projection onto non-zero momentum is needed to get rid of the contribution from the vacuum,
which would otherwise dominate the variance and cause an exponential degradation of the signal
from the glueball. By applying blindly the analysis in this section, we would need to calculate
the thick time-slice ratios for each of the L3× 27× 2 boundary conditions. This would make the
approach extremely expensive from the computational point of view, and it would give unnecessary
information if one is interested in the low momentum states only. It is possible, however, to have
still an exact numerical algorithm by implementing the projectors on px and C exactly, while
treating those on (py, pz) = (0,0) and e = 0 stochastically by extracting n random transformations
out of the associated L2×27 ones and averaging over them, see Ref. [5]. As we fix singlet quantum
numbers for py, pz and e, a stochastic treatment seems a priori justified, fluctuations are proportional
to the exponentially suppressed higher momentum components, or to torelon contributions, which
are expected to have higher energies on these volumes. The results in the next section have been
obtained by using values of n between 9 and 64, a choice justified a posteriori by the moderate
statistical errors obtained.

4. Results
We have simulated the SU(3) gauge theory discretized on the lattice by the Wilson action at

β = 6/g2
0 = 5.7, and β = 5.85 which correspond to a spacing of 0.17 fm and 0.12 fm respec-

tively [11]. The spatial lengths are 1.4 and 1.7 fm, while time extends up to 2 fm. The simulation
parameters and the results are summarized in Tables 1 and 2.

The primary quantity that we have computed is the ratio Z(p,+)/Z with p2,3 = 0, p1 = (2π/L)n1

and n1 = 1,2. The results for the A series are shown in the left plot of Figure 1. We fit them by
assuming that a single state contributes, i.e. using an ansatz of the form ln(Z(p,+)(T )/Z(T )) =

4
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Lattice n1 Z(p,+)/Z Z(p,+)/Z(0,+) aE(p,+)
eff

A1 1 1.6(3) ·10−3 1.04(21) ·10−2 1.14(5)

A2 1 1.8(4) ·10−3 2.0(5) ·10−3 1.24(5)

A3 1 4.5(7) ·10−4 4.7(7) ·10−4 1.277(25)

A4 1 6.6(12) ·10−5 6.6(12) ·10−5 1.203(22)

A5 1 4.1(16) ·10−7 4.3(17) ·10−7 1.22(3)

B3 1 1.0(3) ·10−3 1.0(3) ·10−3 1.15(5)

2 0.94(25) ·10−4 0.92(25) ·10−4 1.55(5)

C1 1 1.5(3) ·10−4 1.5(4) ·10−4 0.883(24)

2 2.4(22) ·10−5 2.4(22) ·10−5 -

Table 2: Results for ratios of partition functions with momenta p = [2πn1/L,0,0]. The effective energy
E(p,+)

eff is defined as in Eq. (4.1).
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Figure 1: Left panel: ratio of partition functions Z(p,+)/Z(0,+) with momenta p = [2π/L,0,0] for the A
lattices. Right panel: the corresponding effective energy as defined in Eq. (4.1). The band is our best
estimate, i.e. the one extracted from the lattice with the longest time-extension.

A−BT , such that A yields the logarithm of the multiplicity of the state and B its effective, finite
momentum, energy E(p,+)

eff . At large time separations the lightest glueball with vacuum quantum
numbers and momentum p is expected to dominate. The four points at the largest values of T
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(T/a = 5,6,8,12) in Figure 1 are well described by our ansatz, and the fit results for the multiplicity
are well consistent with a value of 1 excluding 2 and 3 by three and four standard deviations
respectively. We therefore define

E(p,+)
eff =− 1

T
ln

[
Z(p,+)

Z(0,+)

]
, (4.1)

for which the results are summarized in Table 2 and shown on the right-hand plot of Figure 1.
The lattice B3 serves the purpose of assessing finite size effects. It has the same lattice spacing

of the A series but a linear extension of L = 10. The results for n1 = 1,2 are reported in Table 2,
and are plotted as a function of the momentum squared in the left plot of Figure 2. The dashed
line is a linear interpolation of the two black points (circles) of the lattice B3, while the red point
(square) is our best result for the A series. It is rather clear that, within our statistical precision,
finite volume effects are not visible in our data. It is also interesting to notice that, even if the values
of the momenta are rather large, the continuum dispersion relation is well reproduced within our
statistical errors. We extract the mass of the lightest glueball from the expression

M+ =
√

(E(p,+)
eff )2−p2 , (4.2)

which, using the T/a = 12 result and in units of the lattice spacing, gives

M+ = 0.935±0.042 , [β = 5.7] , (4.3)

in good agreement with the estimate in Ref. [12] obtained at the same lattice spacing with the same
discretization but within the standard approach. Finally, the lattice C1 is matched to B3 in volume
but with a larger time extension (corresponding to T/a = 7 at β = 5.7) and more importantly with
a finer lattice resolution, namely a = 0.12 fm. By making use again of Eq. (4.1) to extract E(p,+)

eff ,
we get from the continuum dispersion relation

M+ = 0.760±0.028 , [β = 5.85] , (4.4)

in units of the lattice spacing. The results, measured in units of the scale r0 [11], are collected in
Fig. 2, where they are plotted as a function of (a/r0)2 as the leading discretization effects should
be quadratic in the lattice spacing.

5. Conclusions
We have discussed how the relative contributions to the partition function, due to states carry-

ing a given set of quantum numbers associated with the exact symmetries of a field theory, can be
expressed by ratios of path integrals with different boundary conditions in the time direction. From
an algorithmic point of view, the composition properties of the projectors can be exploited to imple-
ment a hierarchical multi-level integration procedure which solves the problem of the exponential
(in time) degradation of the signal-to-noise ratio.

Within this approach we have performed a precise lattice computation of the mass of the
lightest glueball with vacuum quantum numbers in the SU(3) Yang-Mills theory at two values of
the lattice spacing corresponding to 0.17 and 0.12 fm. The algorithm works as expected, and we
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Figure 2: Left panel: the effective energy squared from the A5 (red square) and the B3 (black circles) lattices.
Right panel: results for r0M+ at a' 0.17 fm and a' 0.12 fm.

have been able to follow the exponential decay up to separations of 2 fm, while keeping the error
on the effective mass approximatively constant as a function of time.

Cutoff effects appear to be rather large and tend to significantly decrease the estimate of the
glueball mass at finite lattice spacing, as expected and also observed in previous lattice computa-
tions [13, 14]. We are now in the process of repeating the calculation presented at a finer lattice
resolution of 0.1 fm, which should eventually allow us to properly assess the magnitude of dis-
cretization effects.

The simulations were performed at CILEA, at the Swiss National Supercomputing Centre
(CSCS) and at the Jülich Supercomputing Centre (JSC). We thankfully acknowledge the computer
resources and technical support provided by all these institutions and their technical staff.
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