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1. Introduction

The nucleon-nucleon (NN) potential is one of the fundamental quantity to study various prop-
erties of atomic nuclei. In the past few decades, based on various models[1, 2, 3] or the chiral
effective field theory[4], several realistic NN potentials have been constructed to reproduce the
NN scattering phases of more than 4000 data points with χ2/Ndof ∼ 1. On the other hand, quite
recently, a new method to extract NN potential in QCD has been proposed[5]. For the moment,
the method has been successfully applied to the potentials in the parity even sector at the leading
order of the derivative expansion, i.e., the central force ( V (+)

0 , V (+)
σ ) and the tensor force (V (+)

T )
are obtained for various cases including NN, YN, and YY systems[6, 7, 8] (where Y represents a
hyperon) and meson-baryon system[9]. In addition, the method is recently extended to investigate
3N forces[10]. In contrast, the method has not yet applied to the forces in the parity odd sector as
well as the spin-orbital force. They are needed for the complete determination of NN potentials
at next-to-leading order (NLO). In particular, the spin-orbit force, even though it appears at NLO
of a derivative expansion, is important, as is indicated by an analysis of phase shift[11, 12]. It
is also important in explaining the ls-splitting of the (hyper) nuclear spectra and the magic num-
bers in nuclei, i.e., it induces the one-body spin-orbit term in the average single-particle nuclear
potential[11, 13, 14].

The purpose of this paper is to extract potentials in the parity odd sector including the spin-
orbit force for the NN system. For this purpose, we construct NBS wave functions which include
higher angular momenta, in order to determine the central force, the tensor force and the spin-orbit
force in the parity odd sector (V (−)

0 , V (−)
σ , V (−)

T , V (−)
LS ). Our calculation has been made by using

N f = 2 CP-PACS configurations on a T × L3 = 163 × 32 lattice at β = 1.95 (a ≅ 0.16 fm) and
κ = 0.1375 (mπ ≅ 1100 MeV).

2. Extraction of potentials

2.1 Definition of potentials

In the method, the NN potential is constructed form Nambu-Bethe-Salpeter (NBS) wave func-
tion in the center of mass (CM) frame, defined by

φα,β (r;E) ≡ 〈0|pα(x)nβ (y)|p(+k)n(−k)〉, (r ≡ x−y) (2.1)

where pα and nβ denote local composite nucleon operators with spinor indices α , β , and E is

kinetic energy related to the relative momentum k = |k| as E = 2
√

k2 +m2
N −2mN(∼ k2/mN) with

mN being the nucleon mass. We define NN potentials from the NBS wave function below the
inelastic threshold through the following Schrödinger type equation [15, 16](

E +
∇2

mN

)
φ (⃗r;E) =

[
P+V (+)(r)+P−V (−)(r)

]
φ (⃗r;E), (2.2)

where P+ (P−) denotes a projection operator for parity even (odd) with the corresponding potential
V (+), (V (−)), which is decomposed as

V (±)(r) =
[
V (±)

0 (r)+V (±)
σ (r)σ⃗1 · σ⃗2 +V (±)

T (r)S12 +V (±)
LS (r)⃗L · S⃗ +(NNLO)

]
(2.3)
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with the central and spin-dependent central forces V (±)
0 and V (±)

σ , the tensor force V±
T , and the spin-

orbit force V (±)
LS . While V (±)

0 , V (±)
σ and V (±)

T are of leading order(LO) in the derivative expansion
of non-local potentials, V±

LS appears at next-to-leading order(NLO). Once the above NBS wave
functions are calculated in lattice QCD simulations, potentials can be extracted by solving eq.(2.2).

2.2 Spin-singlet potentials

For the spin-singlet and parity odd sector, the Schrödinger type equation eq.(2.2) is reduces to(
E +

∇2

mN

)
φ (−)

S=0(⃗r;E) = V c(−)
S=0(r)φ

(−)
S=0(⃗r;E), (2.4)

where φ (−)
S=0(⃗r;E) = P(−)PS=0φ (⃗r;E) with the spin-projection operator PS and V c(−)

S=0(r) = V−
0 (r)−

3V−
σ (r) denotes the central potential in the spin-singlet channel. From this equation, we then obtain

V c(−)
S=0(r) = E +

1
mN

∇2φ(r;E)
φ(r;E)

. (2.5)

2.3 Spin-triplet potentials including spin-orbit force

For the spin-triplet and parity odd sector, the Schrödinger type equation eq.(2.2) reads(
E +

∇2

mN

)
φ (−)

S=1(⃗r) =
[
V c(−)

S=1(r)+V (−)
T (r) S12 +V (−)

LS (r) L⃗ · S⃗
]

φ (−)
S=1(⃗r), . (2.6)

Where φ (−)
S=1(r) = P(−)PS=1φ(r;E) and V c(−)

S=1(r) = V−
0 (r)+V−

σ (r). Note that the isospin of these
V−

0 and V−
σ is different from that of the spin singlet sector.

In order to determine the spin-orbit potential for parity odd sector, we consider three linear
independent set of NBS wave functions, φ Xi with i = 1,2,3, constructed by

φ Xi (⃗r) = PXiPS=1P(−)φ (⃗r;E). (2.7)

where PXi denotes a projection operator to state Xi, labeled by the orbital angular momentum L and
the total spin J. Eq. (2.6 is then decomposed into three independent equations as(

E +
∇2

mN

)
φ Xi (⃗r) = PXi

[
V (−)

C (r)+V (−)
T (r) S12 +V (−)

LS (r) L⃗ · S⃗
]

φ (⃗r). (2.8)

By solving these equations, potentials V (−)
C , V (−)

T and V (−)
LS can be obtained asV (−)

C (r)−E
V (−)

T (r)
V (−)

LS (r)

 = M(⃗r)−1

 ∇2/mN φ X1 (⃗r)
∇2/mN φ X2 (⃗r)
∇2/mN φ X3 (⃗r)

 , (2.9)

where M(⃗r) denotes 3×3 matrix defined by

M(⃗r) =

 φ X1 (⃗r) PX1S12φ (⃗r) PX1⃗L · S⃗φ (⃗r)
φ X2 (⃗r) PX2S12φ (⃗r) PX2⃗L · S⃗φ (⃗r)
φ X3 (⃗r) PX3S12φ (⃗r) PX3⃗L · S⃗φ (⃗r)

 . (2.10)
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3. Construction of NBS wave functions in lattice QCD

The NBS wave function is obtained from a 4-point nucleon correlation function on the lattice
as

Gα,β (⃗x− y⃗, t − t0;J ) ≡ 1
L3 ∑

r
〈0|T

[
pα (⃗x+ r⃗, t)nβ (⃗y+ r⃗, t)J J=J̃,S=S̃(t0)

]
|0〉 (3.1)

≅ φ J=J̃,S=S̃
α,β (⃗x− y⃗;E0)〈p(+k0)n(−k0)|J J=J̃,S=S̃(0)|0〉e−E0(t−t0), t − t0 ≫ 1, (3.2)

where the summation over r is performed to select the two nucleon system with vanishing total
spatial momentum. For p(x) and n(y), we employ the following local composite operators

p(x) ≡ εabc(ut
a(x)γ5db(x))uc(x), n(x) ≡ εabc(ut

a(x)Cγ5db(x))dc(x), (3.3)

where a, b and c denote color indices, while J J=J̃,S=S̃ denotes a two-nucleon source operator with
a definite total spin S = S̃(S̃ = 0,1) and a definite total "angular momentum" J = J̃, which is indeed
an irreducible representation of the cubic group as J̃ = A1,A2,E,T1,T2.

For such two-nucleon sources, we take two-nucleon momentum wall sources defined by

Jαβ ( f ) ≡ P̄α( f )N̄β ( f ∗), (3.4)

where

P̄α( f ) ≡ ∑
x1,x2,x3

εabc
(
ūa(x1)Cγ5d̄b(x2)

)
ūc,α(x3) f (x3) (3.5)

N̄β ( f ) ≡ ∑
x1,x2,x3

εabc
(
ūa(x1)Cγ5d̄b(x2)

)
d̄c,β (x3) f (x3)

with f being one of the following source functions, each of which corresponds to a plain wave
parallel to one of spatial coordinate axes as

f (0)(r) ≡ exp(−2πix/L), f (1)(r) ≡ exp(−2πiy/L), f (2)(r) ≡ exp(−2πiz/L),

f (3)(r) ≡ exp(+2πix/L), f (4)(r) ≡ exp(+2πiy/L), f (5)(r) ≡ exp(+2πiz/L). (3.6)

Note that an element g in the cubic group O with 24 elements acts on these plane waves as

f (i) 7→ ∑
j

Ui j(g) f ( j), (3.7)

where the 6×6 representation matrix U(g) are generated by representation matrices for cy and cz,
which are the rotations by 90 degree around y and z axes, respectively, and are explicitly given by

U(cy) ≡



0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 0 1 0
1 0 0 0 0 0


, U(cz) ≡



0 0 0 0 1 0
1 0 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1


. (3.8)
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Note also that the spatial reflection for these source functions is represented by the complex conju-
gation. By a cubic group analysis, the orbital part of this momentum wall source is decomposed into
A+

1 ⊕E+⊕T−
1 . Therefore, for the parity odd sector, JP we can access is (L = T−

1 )⊗(S = A1) = T−
1

for the spin-singlet sector and (L = T−
1 )⊗(S = T1) = A−

1 ⊕E−⊕T−
1 ⊕T−

2 for the spin-triplet sector.
The wall source with the definite total angular momentum is now constructed as

J J=J̃
αβ ( f (i)) ≡ d(J̃)

24 ∑
g∈O

χ(J̃)(g−1)Ui j(g)Jα ′β ′( f ( j))S−1
α ′α(g−1)S−1

β ′β (g−1) (3.9)

where d(J̃) and χ(J̃)(g) denote the dimension and the character for the irreducible representation
J̃, respectively. Hereafter the Dirac indices α,β are restricted to upper components (in the Dirac
representation). The total spin S is projected by the spin projection operator P(S) as

J J=J̃,S=S̃
αβ ( f (i)) ≡ P(S̃)

αβ ,γδ J J=J̃
γδ ( f (i)), (3.10)

P(S=0) ≡ (1−σ1 ·σ2)/4 and P(S=1) ≡ (3+σ1 ·σ2)/4. Finally, the parity projection is defined by

P(±) ·Jαβ ( f (i)) =
1
2

(
Jαβ ( f (i))±Jαβ ( f (i)∗)

)
. (3.11)

Although the orbital part for our two-nucleon source operators in the parity odd system consists
of L = T1 only, other orbital components of the NBS wave function at the sink are induced through
the effect of the tensor force in the case of the spin-triplet sector. In this paper, for simplicity, we
consider only an L = T1 component of the NBS wave function as

φ J=J̃,S=S̃
L=T1

(r;E0) ≡ ∑
g∈O

χ(T1)(g)∗φ J=J̃,S=S̃(R(g)r;E0). (3.12)

where R(g) denotes the rotation matrix for a cubic group element g, which rotates only the orbital
components of the NBS wave functions as x 7→ x′ ≡ R(g)x.

4. Lattice setup

Our calculation is performed on a set of N f = 2 dynamical QCD configurations generated by
the CP-PACS Collaboration on a 163 × 32 lattice[17], who employs the O(a)-improved Wilson
quark action with CSW = 1.53 at κud = 0.1375 and the RG improved gauge action (Iwasaki action)
at β = 1.95. This set of parameters corresponds to the lattice spacing a = 0.1555 fm and pion
mass mπ = 1136 MeV( nucleon mass mN = 2165 MeV). The 4-point nucleon correlation function
eq. (3.1) is calculated with the periodic and the Dirichlet boundary conditions along the spatial
and the temporal directions, respectively. The spatial momentum of each nucleon is discretized as
ki ≅ 2πni/L(ni ∈ Z) in the periodic BC. Since k = 0 state is forbidden in the parity odd system, the
ground state energy with parity odd system is not E = 0 but E ≅ (2π/L)2/mN . In our analysis, we
thus employ a free value E = (2π/L)2/mN = 115 MeV for an energy E in eq. (2.9).
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Figure 1: (Left) The central potential in the spin-singlet and parity odd sector, calculated from 1P1 NBS wave
function. Data at t − t0 = 7,8,9,10 are simultaneously plotted. (Right)The central potentials in the spin-
triplet and parity odd sector, calculated from 3P0, 3P1 and 3P2 NBS wave functions. Data at t − t0 = 4,6,8
are simultaneously plotted.

5. Numerical results

For the spin singlet sector, we calculate the JP = T−
1 NBS wave function with L = T1, φ J=T1,S=0

L=T1
,

whose dominant component corresponds to the 1P1 NBS wave function. Using eq.(2.5), we obtain
the central potential in this channel. Preliminary results at t − t0 = 7− 10 are plotted in Fig. 1
(Left). We observe that the central potential has a strong repulsion at short distance (r ≤ 0.5 fm)
without attraction at longer distance.

For the spin triplet sectors, we calculate three NBS wave functions φ J=J̃,S=1
L=T̃1

with J̃ = A1,T1

and E, whose dominant components correspond to 3P0, 3P1 and 3P2, respectively. Using these
NBS wave functions, we extract spin-triplet potentials in parity odd sector. The central potential
V c(−)

S=1(r) is shown in Fig. 1 (Right). Moreover the tensor potential V−
T (r) and the spin-orbit force

V (−)
LS (r) are given in the left and right panels of Fig. 2, respectively. Large fluctuations at r ≅ 1.2

fm are caused by spatial boundaries at L/2 = 8, which breaks the rotational symmetry, while large
statistical errors of the tensor force in the parity odd sector may be mainly caused by the fact that its
magnitude is significantly smaller (few MeV) than other potentials (few-hundred MeV). Although
systematic and statistical uncertainties are still large in our preliminary results, we observe the fol-
lowing qualitative features. (1) VC is repulsive at all distance with a repulsive core at short distance.
(2) VT is positive and quite small. (3) VLS is large and negative. These features qualitatively agree
with those of phenomenological potentials[2].

6. Conclusions

In this paper, we have made a first attempt at determining NN potentials in the parity odd
sector including the spin-orbit force. Using N f = 2 CP-PACS gauge configurations on a 163 ×32
lattice at a ≅ 0.16 fm and mπ ≅ 1100 MeV, we have reported our preliminary results on central
forces, the tensor force and the spin-orbit force in the parity odd sector. Although statistical errors
are still rather large, we have observed that the qualitative behaviors of these potentials roughly
agree with those of phenomenological potentials.
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Figure 2: Potentials with spin-triplet state in parity odd sector, calculated from 3P0, 3P1 and 3P2 NBS wave
functions. Data at t − t0 = 4,6,8 are simultaneously plotted. (Left) The tensor potential. (Right) The spin-
orbit potential.

Numerical calculations are performed on University of Tsukuba Supercomputer system (T2K).
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