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From Classical to Quantum Gravity: Introduction to Loop Quantum Gravity

1. Introduction

Loop quantum gravity aims to formulate a quantum theory for Einstein’s classical theory of
general relativity. As in the case of quantum mechanics one takes a given classical theory, in our
case general relativity, as the starting point and then tries to develop the corresponding quantum
theory. However, when we aim to quantize general relativity, we face two aspects that are partic-
ular to general relativity. At first, in contrast to the gauge theories that have been quantized in the
context of the standard model of particle physics, in general relativity the metric itself becomes a
dynamical object. For this reason we are no longer in the situation that we can consider matter
put on a fixed background geometry and then describe how matter evolves and interacts with each
other on a given fixed spacetime. In general relativity matter and geometry interact, and this highly
non-linear interaction is described by Einstein’s equations. Secondly, in general relativity, due to
the requirement of general covariance, spatial and temporal coordinates do not posses any physical
significance. This is also reflected in the fact that general relativity can be understood as a gauge
theory with spacetime diffeomorphisms as the gauge group. Thus, observables in general relativity,
as these are gauge invariant quantities, are usually more difficult to construct than in other gauge
theories due to the complexity of the gauge group of spacetime diffeomorphisms. In the context of
loop quantum gravity (LQG) these two points are taking as a guiding principle for formulating the
quantum theory. The first point mentioned above explains why a non-perturbative and thus back-
ground independent quantization is chosen. A more detailed discussion about this motivation can
be also found in the article of Ashtekar in these proceedings. Although techniques from ordinary
lattice gauge theory are adopted for LQG, the representation we end up with is rather different
from the Fock representation used in ordinary quantum field theories and again the role of diffeo-
morphisms enters crucially here. This representation allows to formulate a quantum analogue of
Einstein’s equation, also called Wheeler-deWitt equations, and we will discuss those quantum Ein-
stein equations and their derivation in this review. The construction of observables and therefore
the description of the physically relevant sector of loop quantum gravity can be performed in differ-
ent ways. One possibility is to extract the gauge invariant sector of the theory at classical level and
then quantize. Another is to follow Dirac’s idea and derive the gauge invariant part of the theory at
the quantum level. Also, we can combine those ideas and only partially reduce the system at the
classical level. In these lectures we will briefly discuss how one proceeds in those cases and what
are the properties of the resulting quantum theories. One particular aspecty of our introduction is
the inclusion of new proposals for coupling matter to gravity that can be used to deparametrize the
theory, thus making its dynamics more tractable. We discuss the classical and quantum aspects
of these new proposals alongside the standard quantization of vacuum general relativity in loop
quantyum gravity. We hope that this parallel treatment makes them more acessible and allows a
clear comparison to the standard approach.

Of course we will not be able to present a complete introduction to loop quantum gravity but
the idea of the article is to provide a rather brief introduction to the techniques used in LQG. For
instance we will only focus on the canonical part of the theory in this article. A path integral
approach to LQG in the context of spin foams will be explained in an article by Rovelli in these
proceedings. We will only briefly discuss the connection this has to the canonical approach re-
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From Classical to Quantum Gravity: Introduction to Loop Quantum Gravity

viewed here in section 4 on quantum dynamics. Introductions to LQG that contain a much more
detailed description can be found in Rovelli’s [1] and Thiemann’s book [2]. A book on LQG that
is particularly addressed to undergraduate students has been published by Gambini and Pullin [3].
Furthermore, Bojowald’s book [4] presents an introduction to LQG with a focus on applications of
the theory. Other already existing lecture notes on loop quantum gravity can for instance be found
in [5, 6, 7, 8, 9].

We have structured this article into four main parts. The first part in section 2 introduces the clas-
sical framework, that is needed for general relativity in oder to take it as a starting point for loop
quantum gravity. In section 3 we discuss the quantization of general relativity and explain how
the kinematics of loop quantum gravity can be formulated. Afterwards we discuss the quantum
dynamics in section 4 and finally summarize and conclude in section 5.

2. Classical theory

This section deals with the classical setup for loop quantum gravity. We will start with a deriva-
tion of the Ashtekar variables for general relativity, that are the elementary phase space variables
used in the classical theory in section 2.1. Afterwards in section 2.2 we present a discussion on the
dynamics of general relativity with a foucs on those properties of the classical dynamics that are
relevant for the quantization later on. Finally, we present the classical formulation of two models
that have been recently introduced for the dynamics of loop quantum gravity in section 2.2.1 and
2.2.2.

2.1 Canonical connection variables

In these lectures we describe a canonical quantization of gravity. Therefore we need to start
with a canonical description of the classical theory, that is, a description in terms of a phase space,
canonical variables, and a Hamiltonian. The canonical variables are just coordinates in the phase
space, so strictly speaking they are irrelevant in the classical description. Their change is just a
canonical transformation, and hence does not change the physics. But in our context, we have
to pay close attention to the choice of canonical variables, as it affects the quantum description.
Canonical transformations rarely correspond to unitary maps in the quantum theory:

Canonical formulation 1 −−−−→ Quantum theory 1ycanon. trafo

y�
Canonical formulation 2 −−−−→ Quantum theory 2

(2.1)

So the canonical variables have to be chosen with care. How to do this? While any choice will
ultimately have to be justified by the results, one can be guided by other factors. In our case, this is
the following fact [10, 11, 12]:

There is a formulation of general relativity in which the phase space is is precisely that
of SU(2) Yang-Mills theory.

3
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Before we describe this formulation, let us consider the canonical formulation of Maxwell theory
as a warm-up. The action is

S[A] =−1
4

∫
M

FµνFµν d4x, (2.2)

with A the 4-potential and F its curvature. Now we chose an equal-time surface Σt relative to some
inertial observer time t. The canonical coordinates are the 4-potential Aµ and and the conjugate
momenta Pµ = δS/δ Ȧµ . We find that the spatial momenta are given by the electrical field, Pa =
−Ea. Moreover, P0 = 0 which implies that A0 is non-dynamical in our description. We can then
rewrite the action as

S =
∫

dt
∫

d3x −EaȦa−
1
2
(E2 +B2)+A0∇ ·E. (2.3)

From this form, one can conclude the following:

1. Aa,Eb are the canonical coordinates.

2. (E2 +B2)/2 is the Hamiltonian of the system.

3. A0 is a Lagrange multiplier. It enforces the constraint ∇ ·E = 0, which is just Gauss’ law in
the absence of charges.

Now we will go through the exact same steps for general relativity. To be able to do this, one needs
to start from a formulation in terms of a connection and a (co-) frame. What is a frame? It is simply
a basis eI ≡ eµ

I ∂µ of the tangent space at each point of space-time. Equivalently, it can be viewed
as a point-dependent map R4→ TpM. If there is an internal metric, that is, a metric η on R4, the
frame defines a space-time metric g, by declaring the components of the frame to be orthogonal:

gµν := eµ

I eν
J η

IJ. (2.4)

Vice versa, a space-time metric g defines an orthonormal frame, but only up to SO(3,1) rotations
in the internal space R4. A co-frame is the same as a frame, but with respect to the co-tangent
bundle, eI ≡ eI

µdxµ . A frame defines a co-frame, and vice versa, by simply pulling indices with the
corresponding internal and external metric, or, equivalently, inverting the matrix of components.

With that said, we can write the action of general relativity in terms of a co-frame eI and an
so(3,1) connection ω:

S[ω,e] = SP[ω,e]+SH[ω,e], (2.5)

with [13]

SP[ω,e] =
1

2κ

∫
d4x εIJKLeI ∧ eJ ∧F(ω)KL (2.6)

SH[ω,e] =− 1
κβ

∫
d4x eI ∧ eJ ∧F(ω)IJ (2.7)

Here κ = 16πG is the coupling constant of gravity, and β is an additional parameter, the Barbero-
Immirzi parameter to be discussed below. The Palatini action SP was long known as a viable action
for general relativity. The Holst action SH[ω,e] does not change that: The equations δS/δω are
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equivalent to D(ω)e = 0 [13], which can be solved for ω ≡ ω(e). Re-inserting ω(e) into the action
gives

SH[ω(e),e] = 0, SP[ω(e),e] = SEH[g(e)], (2.8)

where SEH is the Einstein-Hilbert action. Thus the above action principle leads to the equations
of motion of general relativity, irrespective of the value of β .1 The values β = ±i are, however,
special in the sense that the resulting canonical formulation has special properties [10], as we will
see shortly.

To go over to the Hamiltonian formulation, we first have to chose a time function t on the
space-time manifold, whose level surfaces Σt give a foliation of the space time into spatial slices.
Additionally we pick a time co-vector field tα with tα∂αt = 1, and decompose it into tangential and
normal components with respect to Σt ,

tα = Nnα +Nα , (2.9)

where nα is the unit normal, and the shift vector Nα is tangential. Next, we partially fix the gauge
freedom in the co-frame by linking it with the normal one-form nα ,

e0
µ

!= nµ . (2.10)

This gauge is called time gauge. Since nµ is time-like, only SO(3) remains as gauge group. The
covariant fields can now be decomposed accordingly, and adapted coordinates be chosen. The
co-frame assumes the structure

(eI
µ) =


N Ni

0
0 ei

a

0

 (2.11)

where we let I run horizontally, and µ vertically. The index i now runs from one to three, and a
is a tangent space index for Σt . Analogously, ω can be decomposed into SO(3) connections Γi

a :=
ε i0

KLωKL
a , Ki

a := ω i0
a and the rest, i.e., the components of ω0. The action can now be expressed

in terms of the decomposed fields, and it organizes precisely as in the case of the electromagnetic
fields [5]:

S =
2

κβ

∫
dt
∫

Σt

Ea
i Ȧi

a−
(
ω

i
0Gi +NaC′a +NC′

)︸ ︷︷ ︸
=:hcan

(2.12)

with

Ai
a = Γ

i
a +βKi

a, Ea
i =

√
detqea

i , qab = ei
ae j

bδi j. (2.13)

q denotes the metric on Σt and the dot is the time derivative tα∂α . We see that A and E are conjugate
canonical variables, {

Ai
a(x),E

b
j (y)

}
=

κ

2
βδ

b
a δ

i
jδ (x,y). (2.14)

1β does acquire physical significance in the case that spinor matter is coupled to gravity, see [14] for details.
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where κ := 16πG with G being Newton’s constant. The Hamiltonian density hcan is a sum of
constraints, and the constraints

Gi = D(A)
a Ea

i , C′a = Eb
i F i

ab +(. . .)i
aGi,

C′ =
β

2

Ea
i Eb

j

detE

[
ε

i j
kFk

ab−2(1+β
2)Ki

[aK j
b]

]
+(. . .)i

aGi.
(2.15)

By subtracting multiples of Gi from G′a and C′, we obtain a set of independent constraints Gi,Ga,C.
The constraint equations Gi = Ga = C = 0, together with the evolution equations

{A(x),hcan}= Ȧ(x), {E(x),hcan}= Ė(x) (2.16)

are completely equivalent to Einsteins equations. But as it is the case for all reparametrization
invariant systems, time evolution is a kind of gauge transformation. Concretely,

{Aa,G(Λ)}=−D(A)
a Λ =

d
dε

∣∣∣∣
ε=0

gεAg−1
ε +gεdg−1

ε ,

{Ea,G(Λ)}= [Λ,Ea] =
d

dε

∣∣∣∣
ε=0

gεEag−1
ε

with gε = exp(εΛ) and G(Λ) =
∫

GiΛ
i, so G generates gauge transformations. Moreover,

{A,~C(~N)}= L~NA, {E,~C(~N)}= L~NE, (2.17)

so ~C generates spatial diffeomorphisms. Lastly C is related to LNnα , i.e., to the diffeomorphisms
in a direction normal to Σ. The constraints form an algebra, the Dirac algebra,

{G(Λ),G(Λ′)}= G([Λ′,Λ]) {G(Λ),~C(~N)}=−G(L~NΛ) {~C(~N),~C(~N′)}= ~C([~N,~N′]).
(2.18)

The Hamiltonian constraint C is gauge invariant and transforms under diffeomorphisms in the
expected way,

{C(N),G(λ )}= 0, {C(N),~C(~N)}= C(L~NN). (2.19)

Up to here, the structure is that of an infinite dimensional Lie algebra. But the bracket of two
Hamiltonian constraints is more complicated,

{C(N),C(M)}=−κ2β 2

4
~C(~S), Sa =

EaEb

detq
(N∂bM−M∂bN). (2.20)

It contains a function of the phase space point on the right hand side, hence the structure is not that
of a Lie algebra anymore.

Before we finish this section, some remarks are in order:

1. We have just described a canonical formulation of Einstein gravity in D+1 = 4 dimensions in
terms of a phase spaces that is identical to that of SO(D) Yang-Mills theory. This formalism
relies on a coincidence that only happens for D = 3: An SO(D) connection has D(D−1)/2
components, whereas a spatial frame has D. If they are to be canonically conjugate variables,
they have to have the same number of components, which restricts to D = 3. But this does
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not mean that there are no other ways to formulate canonical GR in gauge theory variables.
For example, it has long been known that GR in D+1=3 has such a formulation in terms of
SO(2,1) connections and their conjugate momenta, see for example [15] for an introduction.
More recently it has been shown that gravity in D+1 dimensions can indeed be formulated
in terms of SO(D + 1) Yang-Mills theory variables [16], but there are additional constraints
that have to be implemented in order to bring the number of degrees of freedom in line with
that of GR.

2. In the following, we will go over from a formulation in terms of SO(3) to one in terms of its
covering group SU(2). This must be done in order to couple fermions to gravity, but it does
not change classical or quantum theory much. The biggest change is that also representations
with half-integer spin will be allowed in the quantum theory.

3. As remarked before, in the presence of fermions, physical predictions do become dependent
on the value of β [14]. Solving δS/δω = 0 and re-inserting into the action gives an effective
4-fermion interaction with β -dependent strength. The effect is however suppressed by the
gravitational coupling constant, and is thus extremely small.

4. We have seen that the constraints commute on the constraint surface G = ~C = C = 0. This
means that they form a first class system, and thus the constraints can be imposed in the
quantum theory as operator equations. This is the result of imposing the time gauge. Without
it, the situation is more complicated, but also very interesting [17, 18, 19, 20, 21, 22, 23, 24,
25].

2.2 Dynamics in the classical theory

We saw in the last section that we need to choose the classical variables in which we would like
to formulate our classical theory with care. Whatever classical choice we make will also have an
influence on the quantum theory that we obtain. In this section we will briefly discuss some aspects
of the classical dynamics of general relativity and see that also here one needs to think carefully
how to formulate the classical dynamics because each choice will enter crucially in the properties
of the quantum dynamics that we obtain later on and discuss in section 3.

The dynamics of classical general relativity is encoded in the canonical Hamiltonian introduced
in the last section. As we saw the Hamiltonian consists of a linear combination of constraints only
and the smeared version of the constraints satisfy the Dirac algebra shown in equations (2.18),
(2.19) and (2.20). The constraint ~C generates spatial diffeomorphisms within the spatial hypersur-
face, the Gauss constraint generates SU(2) gauge transformations and the Hamiltonian constraint
generates diffeomorphisms orthogonal to the hypersurfaces. Note that the latter is only true on
shell, that is when the equation of motion are satisfied. From the explicit form of the constraints as
well as from the Dirac algebra we see that the most complicated among them is the Hamiltonian
constraint. In particular it is only the algebra of the Hamiltonian constraints that involves structure
functions instead of structure constants and thus their algebra is no true Lie algebra anymore. As a
consequence the corresponding quantum operators need to satisfy a complicated quantum algebra
in order to be implemented without anomalies. A further complication is that in the representation
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used in LQG the infinitesimal operators for the spatial diffeomorphisms cannot be implemented as
operators for the reason that their finite counterparts are not weakly continuous (see also section
3.3.3 for more details). Hence, strictly speaking one is not even able to check whether the algebra
of the quantum Hamiltonian constraints is correctly implemented. However, in [26] an anomaly-
free quantization of the Hamiltonian constraint has been introduced and its anomaly freeness has
been achieved by quantizing the operator in such a way that the commutator annihilates spatially
diffeomorphism invariant states. This is what we would expect from an operator version of ~C if
it exists. In order to obtain the physical sector of the quantum theory later on using the Dirac
quantization procedure we look for solutions of the constraints in the quantum theory. Also here
the complicated algebra of the Hamiltonian constraint operators makes our life more difficult and
although general solutions to the Gauss and diffeomorphism constraint can be constructed one has
not been successful in the case of the Hamiltonian constraint. However, this is not too surprising
since otherwise we would be able to write down the general solution of quantum gravity and this
is not even possible for classical general relativity. During the last years a couple of new proposals
have been introduced for describing the (canonical) dynamics of LQG. Their aim is to reformulate
the dynamics in a technically different but physically equivalent way in order to extract the physi-
cal sector out of LQG. One of the first proposals in this direction is the so called master constraint
program [27]. The idea of the master constraint is to reformulate the dynamics of the Hamiltonian
constraints in such a way that the algebra simplifies. For this purpose one introduces at the classical
level a master constraint involving the squares of the Hamiltonian constraints

M =
∫
Σ

d3x
[C(x)]2√

detq
(2.21)

Classically due to the square of the Hamiltonian M = 0 is equivalent to C(x) = 0 for all x ∈ Σ. The
1/
√

q has been introduced because then M is spatially diffeomorphism invariant and thus Poisson
commutes with ~C and also because then M has density weight one which will be useful for the
quantization of the master constraint. The master constraint satisfies the trivial algebra {M,M}= 0
and this carries also over to quantum theory where the corresponding operator is required to satisfy
this trivial algebra as well. Therefore as far as the algebra is concerned the Master constraint
simplifies the situation. However, classically as well as in the quantum theory at the end we are
not only interested in solutions to the constraints but we also would like to have so called weak
Dirac observables. These are quantities that are gauge invariant, meaning that they commute with
all constraints of the theory on the constraint surface. However, on the constraint surface for the
master constraints we have { f ,M} = 0 for all phase space functions f . Therefore it seems that
using the master constraint we loose the ability to detect weak Dirac observables with respect to
the Hamiltonian constraint. However, this is not the case because instead of using the condition
that weak Dirac observables need to commute weakly with the constraint we can also require for a
weak observable O

{O,{O,M}}M=0 = 0 (2.22)

This condition is no longer linear in O as before and hence we get a system of non linear partial
differential equations for the observables. Formally, it seems that the price we have to pay for a
simpler constraint algebra is a more complicated equation for weak Dirac observables. However,
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whether the condition in (2.22) is indeed harder to satisfy needs to be checked in applications of
the master constraint program. As far as the quantum theory is concerned the master constraint
program has advantages with respect to using the Hamiltonian constraint as discussed in [27].
The master constraint program has been tested in a variety models in a series of papers [28]. As
introduced in [27] we can also define a so called extended master constraints that involves also the
diffeomorphism and Gauss constraint

M =
∫
Σ

d3x
[C(x)]2 +qabCaCb +δ jkG jGk√

detq
(2.23)

In this case the constraint algebra trivializes completely and condition (2.22) selects weak Dirac
observables for all constraints at once. The extended master constraint has for instance been used in
[29] where the semiclassical properties of the quantum dynamics have been analyzed in the context
of Algebraic Quantum Gravity (AQG).

Apart from solutions to the constraints and observables at the end of the day we also would like to
describe the evolution of those observables in order to be able to describe dynamics in the physical
sector of the theory. Certainly, their evolution cannot be described by the canonical Hamiltonian
for the reason that observables, by definition, need to Poisson commute with all constraints. That
evolution for observables is frozen when one considers the canonical Hamiltonian as the generator
of their dynamics is known as the problem of time in general relativity. Therefore the question
arises whether we can reformulate the classical dynamics of general relativity in a way that we can
improve our situation twofold:

• we would like to get a less complicated algebra for the constraints and

• we would like to work in a formalism where the evolution of Dirac observables is naturally
implemented

The second point can be addressed in the context of the relational formalism introduced in [30] and
mathematically improved in [31]. The idea of this framework is to introduce reference fields that
are used to construct Dirac observables and with respect to which the dynamics of the remaining
degrees of freedom can be described. In the case of GR this means to introduce reference fields that
label points in space and time when we want to construct observables with respect to the Hamilto-
nian and diffeomorphism constraint. It turns out that by a suitable choice of reference fields we can
also make progress regarding the first point and simplify the constraint algebra. In the following
of this section we will discuss the classical theory of two particular models where this philosophy
has been used and the quantization has been performed using LQG techniques. The quantization
of these models will be discussed in section 4.2 and 4.3 respectively.

Before going into the details of those models we will briefly comment on two different strate-
gies to quantize systems with constraints. Given a classical system with constraints we have the
option to solve the constraints classically and work with the so called reduced (or physical) phase
space or we can follow a procedure introduced by Dirac and quantize the kinematical phase space
and then implement the classical constraints as operators. Following the latter we obtain as an
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intermediate step a kinematical Hilbert space Hkin and require for physical states that they are
annihilated by all constraint operators, which are the quantum Einstein equations in the case of
general relativity. Solutions to the quantum Einstein Equations live in the physical Hilbert space
Hphys. In the case of reduced phase space quantization one needs to quantize not the kinematical
algebra but the algebra of observables and obtains directly the physical Hilbert space Hphys. The
dynamics, as we will see in the following two sections, is described by a so called physical Hamil-
tonian at the classical level, whose explicit form depends on the chosen model. The Hamiltonian is
called physical here for the reason that in contrast to the canonical Hamiltonian it is not vanishing
on the constraint surface. In the reduced case the quantum dynamics is encoded in the operator
corresponding to the physical Hamiltonian and the quantum Einstein equations are given by the
quantum evolution of the quantized observables generated by the physical Hamiltonian operator.
More details and concrete applications will follow in section 4.2 and section 4.3. Whether one
chooses reduced phase space or Dirac quantization is rather model dependent. In general relativity
the constraints are complicated and general solutions to the constraints are difficult to construct.
That is why often Dirac quantization is favored. Furthermore, in general the algebra of observables
has a more complicated structure than the kinematical one and hence to find representations of it
can become a challenging task. On the other hand finding solutions that are annihilated by all con-
straints operators and construct the inner product for the physical Hilbert space can be very difficult
as well and without the physical Hilbert space the physical relevance of the results is rather hard to
evaluate. The models discussed in the next sections have both the properties that the algebra of the
observables is isomorphic to the corresponding kinematical algebra and thus representations can
be easily found. They also share the property that not all constraints are reduced at the classical
level but part of them are solved in the quantum theory. Therefore in both models a combination
of Dirac and reduced phase space quantization is used which is also a choice one can make for
quantizing systems with constraints.

2.2.1 Brown-Kuchar model

The idea of the Brown-Kuchar Model [32] is to introduce additional matter dust fields that can
serve as a reference system for general relativity. In the language of the relational formalism we
need one reference field for each constraint that we would like to reduce at the classical level. The
action introduced in [32] has the following form

Sdust =−1
2

∫
M

d4X
√
|det(g)|ρ(gµνUµUν +1) (2.24)

Here M denotes the spacetime manifold, g the spacetime metric, ρ is the dust energy density and
Uµ =−T,µ +WjS

j
,µ denotes the dust four velocity, that is itself expressed in terms of 7 scalar fields

T,S j,Wj where j runs from 1 to 3. The action is understood as a functional of the metric g and the
eight scalar field ρ,T,S j,Wj that are considered in addition to the gravitational and possible other
standard model matter degrees of freedom. Here we will restrict our discussion to gravity and dust
only, but the generalisation to additional standard model matter is straightforward. That the action
in (2.24) is associated with dust is justified by looking at its physical interpretation. The energy
momentum tensor Tµν is that of pressureless dust. The Euler-Lagrange equations for the scalar
fields yield that U µ = gµνUν is a geodesic congruence and the fields Wj,S j are constant along
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those geodesics. Furthermore T defines proper time along each geodesic. The canonical analysis
of the action above shows that the system including the dust involves second class constraints. In-
troducing the associated Dirac bracket and solving those second class constraints strongly yields
that neither ρ nor Wj are independent variables but can be expressed in terms of the remaining
phase space variables. Moreover, as long as only functions of T,S j,A and their conjugate momenta
P,Pj,E are considered, the Dirac bracket reduces to the Poisson bracket, and it is those functions
that we are interested in the following. For the reason that the fields S j are constant and the field
T defines proper time along each geodesics they are a natural choice as the reference fields for
space and time respectively. The field T will be used to construct observables with respect to the
Hamiltonian constraint C and the three fields S j will serve as reference fields for the spatial diffeo-
morphism constraints Ca. The choice of reference fields in the relational formalism is completely
arbitrary and those fields do not even need to be additional matter fields. For instance one could
also choose gravitational degrees of freedom. However, what will be influenced by that choice is
the form of the algebra of the constructed observables as well as the form of the physical Hamil-
tonian. Since we are interested in quantizing the reduced theory later on we would like to choose
those reference fields that lead to a simple observable algebra as well as to a physical Hamiltonian,
which can be implemented as an operator later on. As we will discuss now the dust fields T,S j sat-
isfy both requirements and can be interpreted as a free falling observer that is dynamically coupled
to the system. The particular choice of T and S j should not be understood as the only convenient
clock and rods for general relativity but a possible choice that has been made in this model and
that allows, as we will see in section 4.2, to complete the quantization program. Likewise to the
situation when one chooses a particular gauge fixing it might be necessary to consider more than
one choice of reference fields in order to consider dynamics in a large region of spacetime. By
considering the phase space whose coordinates are given by T,S j,A and their conjugate momenta
we work in an extended phase space picture where time and space are themselves configuration
variables. The (first class) constraints of the system gravity plus dust have the following form:

Ctot = C +Cdust, with Cdust =−
√

P2 +qab(PT,a +PjS
j
,a)(PT,b +PjS

j
,b)

Ctot
a = Ca +Cdust

a with Cdust
a = PT,a +PjS j

,a (2.25)

where C,Ca denote the gravitational parts of the Hamiltonian and diffeomorphism constraints
shown in (2.15) and the Gauss constraint is unaltered the one in (2.15). What Brown and Kuchar
observed in their seminal article was that (i) the fields P,T enter into Ctot only in the combination
that also occurs in Cdust

a , and using Ctot
a = 0 those terms can be replaced by −Ca and (ii) the con-

straint Ctot can be solved for the dust momentum P and Ctot
a for Pj. As a consequence one can write

down an equivalent set of constraints given by

C̃tot = P+h with h(A,E) :=
√

C2−qabCaCb

C̃tot
j = Pj +h j with h j(T,S j,A,E) = Sa

j(Ca−hT,a) (2.26)

where qab is understood as a function of E and we had to assume that the inverse of S j
,a denoted by

Sa
j exists. In regions of the phase space where det(S j

,a) = 0 those fields would not provide a good
choice of spatial reference fields. In the case of the Hamiltonian constraint one obtains a quadratic
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From Classical to Quantum Gravity: Introduction to Loop Quantum Gravity

equation in P and chooses that solution of the possible two that yields a positive physical Hamilto-
nian, which has the correct flat spacetime limit. Note that the function h in contrast to h j in (2.26)
does not depend on the dust degrees of freedom anymore. If this happens one calls a constraint
deparametrized, and given this, the construction of observables technically simplifies as well as de-
parametrization for the Hamiltonian constraint ensures that the final physical Hamiltonian will be
time independent. The constraints in (2.26) mutually commute up to SU(2) invariant combinations
of Gauss constraints

{C̃tot(x),C̃tot(y)}G j=0 = {C̃tot
j (x),C̃tot

k (y)}G j=0 = {C̃tot(x),C̃tot
j (y)}G j=0 = 0 (2.27)

which can be seen by direct computation or by the abstract argument that those constraints are
linear in the dust momenta. Since their first class property has not changed by writing them in
equivalent form, the Poisson bracket of any two constraints can only be a linear combination of
those. But since they are linear in the momenta and the derivative in the Poisson brackets cancels
the momentum, the only possible coefficients that are allowed on the righthand side are zero for
C̃tot and C̃tot

j and non-zero coefficients for SU(2) invariant combinations of Gauss constraints2. In
contrast the constraints in (2.25) satisfy the Dirac algebra and thus by solving for the dust momenta
we obtain a simplification of the constraint algebra. The construction of observables is performed
in two steps now: First we reduce with respect to the spatial diffeomorphism constraint by using
the fields S j as rods and obtain for the remaining degrees of freedom the following expressions
[33]:

ÃJ
j(σ

k, t) :=
∫

Σ

d3x
∣∣det(S j

,a)
∣∣δ (Sk(x),σ k)AJ

aSa
j(x)

Ẽ j
J (σ

k, t) :=
∫

Σ

d3x
∣∣det(S j

,a)
∣∣δ (Sk(x),σ k)Ea

J S j
a(x)

T̃ (σ k, t) :=
∫

Σ

d3x
∣∣det(S j

,a)
∣∣δ (Sk(x),σ k)T (x) (2.28)

where we introduced a capital J for the su(2) index in order to distinguish between the Lie algebra
index and the j− index associated with the dust fields. The interpretation of the observables in
(2.28) is that they give the value of the fields A,E,T when the dust fields S j take the values σ j.
The abstract points x in the spatial manifold Σ over which the integration is performed above have
therefore been labeled by the dust fields S j. Analogous observables for the ADM variables where
constructed in [32], however the observabels with respect to C̃tot where not constructed in [32]
but a formal Dirac quantization was used. This quantization is formal in the sense that similar to
the Wheeler-DeWitt equation no representation for general relativity formulated in terms of ADM
variables has been found so far in which the constraints can be promoted to well defined operators.
For the construction of observables with respect to the Hamiltonian and diffeomorphism constraint
we take the expression for ÃJ

j(σ
k, t) and Ẽ j

J (σ
k, t) above and insert them into the standard formula

for observables, that is a power series in powers of the clock field, in our case T and multiple
Poisson brackets between the Hamiltonian constraint and ÃJ

j(σ
k, t) and Ẽ j

J (σ
k, t) respectively. Note

that only the function h in C̃tot will contribute in those Poisson brackets, because P commutes with

2When working with ADM instead of Ashtekar variables the Gauss constraint is absent and in this case the con-
straints in (2.26) mutually commute strongly.
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From Classical to Quantum Gravity: Introduction to Loop Quantum Gravity

ÃJ
j(σ

k, t) and Ẽ j
J (σ

k, t). Explicitly we obtain [34]

AJ
j(σ

k,τ) = exp(χhτ
) =

∞

∑
n=0

1
n!
{h̃(τ), ÃJ

j(σ
k)}(n)

E j
J(σ

k,τ) = exp(χhτ
) =

∞

∑
n=0

1
n!
{h̃(τ), Ẽ j

J (σ
k)}(n) (2.29)

with
h̃(τ) :=

∫
S

d3
σ(τ− T̃ (σ))h̃(σ) (2.30)

here χhτ
denotes the Hamiltonian vector field of hτ , S denotes the range of σ and is also

called the dust space and the iterative Poisson bracket is defined as { f ,g}(0) = g , { f ,g}(n) :=
{ f ,{ f ,g}(n−1)}}. The interpretation of the quantities in (2.29) is that they give the values of A and
E respectively when the clock field T takes the values τ and the rod fields S j take the values σ j.
τ and σ k can be understood as the physical time and space parameter. One can check by explicit
computation that AJ

j(σ
k,τ) and E j

J(σ
k,τ) indeed Poisson commute with C̃tot and C̃tot

j and are thus
Dirac observables with respect to the Hamiltonian and spatial diffeomorphism constraint.

The remaining Gauss constraint will be solved in the quantum theory via Dirac quantization.
Once the observables in (2.29) are constructed we are interested in the generator of their dynamics.
By construction they Poisson commute with C̃tot and C̃tot

j and thus the canonical Hamiltonian den-
sity hcan in (2.12), that generates only gauge transformations, cannot be the generator as otherwise
the dynamics of the observables would be frozen. It turns out that the Hamiltonian density of the
generator of the physical dynamics is given by the observables associated with the function h in
(2.26). The observable of a function of A,E can be easily constructed due to an automorphism
property that the observable maps satisfy and hence we obtain

h(σ) =
√

C2(σ ,τ)−q jkC jCk(σ ,τ) (2.31)

where C(σ ,τ) and C j(σ ,τ) are the observables associated with the gravitational part of the Hamil-
tonian and spatial diffeomorphism constraint that can be obtained by replacing A,E by their corre-
sponding observables A,E. Note that although Ck(σ ,τ) and C(σ ,τ) depend on τ the final expres-
sion for h does not because on the Gauss constraint surface we have

{h(σ),h(σ ′)}= 0 (2.32)

This follows from the fact that C̃tot(x) Poisson commutes with itself and since h does not include
any dust degrees of freedom it immediately follows that {h(x),h(y)}G j=0 = 0. The physical Hamil-
tonian is then given by

Hphys =
∫
S

d3
σh(σ) =

∫
S

d3
σ

√
C2−q jkC jCk(σ) (2.33)

where as before qi j is understood as a function of E. The equation of motion for the observables
have the following form

dAJ
j

dτ
= {AJ

j ,Hphys},
dE j

J
dτ

= {E j
J,Hphys} (2.34)
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From Classical to Quantum Gravity: Introduction to Loop Quantum Gravity

and can be understood as a, with respect to the Hamiltonian and spatial diffeomorphism constraint,
gauge invariant version of Einstein’s equations for the reason that all terms in (2.34) are manifestly
gauge invariant. In contrast to Hcan in the ordinary Einstein equations Hphys is nonvanishing on
the constraint surface because only the total constraints including the dust degrees of freedom are
vanishing there. Furthermore Hphys, being itself an observable, has the following symmetries on
the Gauss constraint surface

{Hphys,Cj(σ ,τ)}G j=0 = 0 and {Hphys,h(σ)}Gj=0 = 0 (2.35)

Those symmetries of Hphys will become important when the quantization of the Brown-Kuchar
model in section 4.2 is discussed.

2.2.2 Scalar field model

In the last section we discussed the classical Brown-Kuchar model and saw that the four dust
fields can be used as reference fields to construct observables with respect to the Hamiltonian and
diffeomorphism constraint. The scalar field model, originally introduced by Rovelli and Smolin
[35] and studied further by Kuchar and Romano [36], considers gravity coupled to a massless
scalar field whose action is of the form

Sϕ =−1
2

∫
M

d4X
√

ggµν
φ,µφ,ν (2.36)

The reason that one considers a massless scalar field is that otherwise the resulting Hamiltonian
constraint would not be deparametrizable having the consequence that we end up with a time
dependent physical Hamiltonian. Here we introduce only one additional matter field coupled to
gravity3 and thus we are only able to reduce one of the constraints at the classical level. That will
be the Hamiltonian constraint. The remaining diffeomorphism and Gauss constraints will be solved
in the quantum theory in this model. One of the motivations for this model is that in recent models
in loop quantum cosmology (LQC) also a scalar field is chosen [37] as a clock, so this model
here could be understood as the generalization of the APS model in [37] to full LQG. Further
motivations will become clear in section 4.2 and 4.3 when the quantization of the scalar field and
the Brown-Kuchar model is discussed. A 3+1-split of the action above yields the following total
first class constraints

Ctot = C +Cφ , with Cφ =
1
2

(
π2√
det(q)

+
√

det(q)qab
φ,aφ,b

)
Ctot

a = Ca +Cφ
a with Cdust

a = πφ,a (2.37)

where as before C,Ca denotes the gravitational parts of the Hamiltonian and diffeomorphism con-
straints shown in (2.15) and π denotes the momentum conjugate to φ . As before, the Gauss con-
straints is not affected by the scalar field and thus it is still the one shown in (2.15). The Brown-
Kuchar mechanism, that is replacing the terms that involve derivatives of φ by Cφ

a and this then

3Note that also in the scalar field model the generalization to gravity plus arbitrary standard model matter is straight-
forward.
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From Classical to Quantum Gravity: Introduction to Loop Quantum Gravity

again by −Ca and then solving the Hamiltonian constraint for the scalar field momentum π can
be applied. One obtains a fourth order polynomial in π and out of the four solutions only two are
non trivial in the cosmological sector. The remaining ± sign ambiguity defines different regions in
phase space and we choose π = +h for the reason that only this solution includes homogenous and
isotropic models. Using this choice one obtains an equivalent Hamiltonian constraint of the form

C̃tot = π−h with h(A,E) :=
√
−√qC +

√
q
√

C2−qabCaCb (2.38)

Now we are in an analogous situation to the Brown-Kuchar model in section 2.2.1: We realized
that also the system of gravity coupled to a massless scalar field deparametrizes and we could
proceed as before. This would mean to use the scalar field φ to construct Dirac observables with
respect to the Hamiltonian constraint. What we would obtain are quantities A j

a(τ,x) and Ea
j (τ,x)

that commute with C̃tot in (2.38) but not necessarily with the diffeomorphism or Gauss constraint.
The latter two will be solved in the quantum theory via Dirac quantization. The algebra of A j

a(τ,x)
and Ea

j (τ,x) is isomorphic to the one of kinematical quantities and their dynamics, that is evolution
with respect to the physical time parameter τ , is generated by a physical Hamiltonian of the form

Hphys =
∫
Σ

d3xh(A,E)(x) (2.39)

with h(A,E) given in equation (2.38). Alternatively, we cannot construct those observables with
respect to the Hamiltonian constraint at the classical level but in the quantum theory and work
with so called quantum Dirac observables, whose classical limit corresponds to those observables
mentioned above. This will be explained more in detail in section 4.3. In this case all constraints
will be solved by Dirac quantization in the quantum theory. Likewise to the Brown-Kuchar model,
also here the Hamiltonian densities strongly commute and Hphys is invariant under spatial diffeo-
morphisms, that is

{Hphys,h(x)}G j=0 = 0 and {Hphys,Ca(τ,x)}G j=0 = 0 (2.40)

In contrast to the Brown-Kuchar model a quantization of this partially reduced system will not
yield the physical Hilbert space. The quantum theory of this model will be discussed in detail
in section 4.3. Finally, let us mention that there exist another model introduced in [38] where
only one instead of four dust fields are considered. This model seems to be a special case of the
Brown-Kuchar model, where the momentum density of the dust has chosen to be equal to zero.

3. Quantum kinematics

This section includes a introductory discussion on the quantum kinematics of loop quantum
gravity corresponding to the sector of the theory where the constraints have not been solved yet. For
the reason that the kinematical representation is rather different from the usual Fock representation
we introduce it in section 3.1 and discuss its properties. Afterwards in section 3.2 we discuss
geometric operators in the framework of loop quantum gravity. These are operators that correspond
to classical geometrical objects like length, area and volume. Section 3.3 deals with the question
how the classical Gauss and diffeomorphism constraints can be quantized and how solutions to
the constraint operators can be constructed. Finally, in section 3.4 we present more details on the
kinematical representation and explain how it can be generalized.
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From Classical to Quantum Gravity: Introduction to Loop Quantum Gravity

3.1 Ashtekar-Lewandowski representation

We will now quantize gravity according to the algorithm for the quantization of constrained
systems devised by Dirac (for the original account, see his Lectures on Quantum Mechanics, for a
modern treatment, see [2]). This means we proceed in two steps.

1. Quantization of the canonical variables ("kinematic quantization")

2. Impose the constraints as operator equations on states, and solve these equations to obtain
physical states.

The first step is what we will discuss in the present section. What we want is a representation of
the canonical commutation relations[

Ai
a(x),E

b
j (y)

]
=

κ

2
h̄βδ

b
a δ

i
jδ (x,y) (3.1)

on a Hilbert space. Note that κ h̄ = `2
P, the Planck area. Fields evaluated at points are usually too

singular to give good operators in the quantum theory. Thus one has to form suitably integrated
("smeared") quantities that correspond to well defined operators in the quantum theory. Poisson
brackets then suggest commutation relations for these quantities, and one obtains an abstract al-
gebra of operators. We will soon see that details can matter in this context. Different choices of
smearing can lead to different algebras and hence to different quantum theories. In fact, in LQG we
make a different choice of algebra than is customary in Yang-Mills theory [39, 40, 41, 42, 43, 44].
In the latter case, both the algebra and its representations used in the quantum theory make use
of the metric as a classical background field in their construction. In general relativity, the metric
is dynamic and hence can not be used as a background field. Moreover, a splitting of metric into
background and dynamical part, while very useful in practical applications, is not very natural from
a fundamental perspective. Hence, the algebra and its representation used in LQG does not make
use of any background metric. This makes LQG a very unusual quantum field theory. To illus-
trate this, we first consider the case of electromagnetism. The usual quantum theory is obtained by
declaring [∫

f aAa
√

detq d3x,
∫

f ′bEb d3x
]

= ih̄
∫

f a f ′a
√

detq d3x id, (3.2)

and by defining the ground state by
a( f )Ω = 0. (3.3)

Here f , f ′ are arbitrary smearing functions, and the definition of the annihilation operators a makes
use of the metric q in various ways. But one could also define

E(S) :=
∫

S
Ea

εabc dxb∧dxc (3.4)

where S is an oriented surface and εabc is the tensor density that is equal to the totally anti-symetric
symbol in any coordinate system. We note that Ea has density weight +1 whereas εabc has weight
−1, so the integrand is a two-form and the integral, using the orientation of S, is hence coordinate
independent. Similarly, defining

A(e) =
∫

e
Aa dxa, (3.5)
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From Classical to Quantum Gravity: Introduction to Loop Quantum Gravity

where e is a curve, one finds (by a limiting procedure from the Poisson brackets of the point fields),

[A(e),E(S)] = ih̄I(e,S) id, (3.6)

where I(e,S) is the signed intersection number for S and e. The metric has thus dropped out of all
definitions and relations.

A similar thing can be done for gravity. For a surface S and a Lie algebra valued smearing
field n on S we define

En(S) :=
∫

S
niEa

i εabc dxb∧dxc. (3.7)

For A we use the quantity analogous to exp(iA(e)). We chose a local trivialization and define the
holonomy

he :=P exp
∫

e
A (3.8)

= I+
∫ 1

0
A(e(t))ėa(t)dt +

∫ 1

0
dt1
∫ 1

t1
dt2 Aa(t1)ėa(t1)Aa(t2)ėa(t2)+ . . . (3.9)

which is an element of SU(2), and gives the parallel transport map from the fiber over the beginning
point b(e) of the edge to the fiber over of its final f (e), for the chosen trivialization. Under gauge
transformations, i.e., changes of trivialization, g : M→ SU(2)

he 7→ g(b(e))heg( f (e))−1. (3.10)

One finds

[En(S),he] =

{
β`2

P
2 he1τ jn j(p)he2 for a single transversal intersection S∩ e = {p}

0 if S∩ e = /0
, (3.11)

where {τ j} is a basis of su(2), and `2
P = h̄κ is (a multiple of) the Plank length. It is convenient

to slightly generalize these variables. Given a graph of paths γ = {e1,e2, . . .en} and a function
f :SU(2)n→ C, one obtains the functional

fγ [A] := f (he1 [A],he2 [A], . . .hen [A]) (3.12)

A functional f is called cylindrical with respect to γ (written f ∈ Cylγ ) if it is of the above form,
and simply cylindrical if it is of the above form for some graph γ . We note:

• A given cylindrical functional is cylindrical on many graphs. Consider the example of a
function fγ [A] = f (he[A]), which is cylindrical w.r.t. the graph γ = {e}. Now consider a
second graph γ ′ = e1,e2,e3, with e1 ◦ e2 = e, and e3 independent of e. Then fγ is also
cylindrical w.r.t. γ ′, as it can be written purely in terms of holonomies along edges in γ ′,
fγ [A] = f (he1 [A]he2 [A]).

• For two cylindrical functions which are cylindrical on graphs with smooth edges, one can
not always find a finite graph such that they are both cylindrical w.r.t. to that graph, because
they can intersect infinitely many times. But for more regular edges, for example analytic or
semi-analytic (roughly speaking: piecewise real analytic [45]) ones this can not happen, and
so one can always find such a graph. As a consequence, such cylindrical functions are closed
under addition and multiplication and thus form an algebra, denoted Cyl. In the following,
we will always assume edges (and also surfaces) to be semi-analytic.
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From Classical to Quantum Gravity: Introduction to Loop Quantum Gravity

We can use these observations to write the commutator between the canonical variables in a rela-
tively concise form. For this, we assume without loss of generality that a surface S and a graph γ

intersect only in vertices of γ . The commutator then reads:

[ fγ ,En(S)]≡ Xn(S)( fγ) =
β`2

P
4 ∑

v∈V (γ)
ni(v)

[
∑

e at v
κ(S,e,v)Ĵ(v,e)

i f
]
(he1 ,he2 , . . .)) (3.13)

where V (γ) denotes the set of all vertices of γ

κ(S,e,v) =


0 if e intersects S tangentially in v or does not intersect S at all

1 if e intersects S transversally and is above S

−1 if e intersects S transversally and is below S

(3.14)

and

Ĵ(v,e)
k = id⊗ id⊗ . . .⊗

{
Le

k
Re

k

}
⊗ id⊗ . . . , when

{
e ingoing at v
e outgoing at v

}
. (3.15)

R, L denote the right/left invariant vector field on SU(2) associated with a basis τk of su(2). The
additional factor of 1/2 in (3.13) as compared to (3.11) is due to our assumption that edges must end
on the surface. An edge that continues on both sides of the surface as in (3.11) will thus count as
two separate edges in (3.13). For general surfaces, the commutator above may not be a cylindrical
function, again because edges and surfaces can interact each other infinitely often. Thus we also
restrict the surfaces to be in a suitable regularity class. Then the operation Xn(S) defined above is
a derivation on the space Cyl of cylindrical functions. We note that the commutator has the Jacobi
property, so

[ f , [En(S),En′(S′)]] = [Xn(S),Xn′(S′)]( f ) (3.16)

and the commutator on the right hand side is non-vanishing in general. Thus we find that the
operators corresponding to the spatial geometry do not commute.

The objects En(S), together with the cylindrical functions Cyl subject to the above commutator
relations form the kinematic algebra A. Since it does not make reference to classical geometry on
Σ, diffeomorphisms φ act in a simple way:

αφ ( f )[A] := f (φ∗A), αφ (En(S)) = Eφ∗n(φ(S)) (3.17)

are automorphisms of A. A similar statement holds for gauge transformations.
To implement the constraints we need a representation of A, i.e., a mapping of A into the

operators of a Hilbert space. There are many representations of A, but one of them is special and
therefore most important for LQG, the Ashtekar-Lewandowski representation of A [41, 42, 43, 46].
To see how it works, note first that an inner product on Cyl can be defined by

〈 fγ | f ′γ〉 :=
∫

SU(2)n
dµ(g1) . . .dµ(gn) f (g1,g2, . . .gn) f ′(g1,g2, . . .gn). (3.18)

The measure dµ used above is the Haar measure on SU(2), and we have assumed without loss
of generality that the two functions are cylindric w.r.t. the same graph, as discussed below (3.12).
Closure with respect to the corresponding norm gives a Hilbert space H . It can be shown that this
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space has a very suggestive structure, H = L2(A ,dµAL), the square integrable functions over a
space of distributional connections, with respect to a certain measure.

The action of the basic operators in this representation is analogous to that found in the
Schrödinger representation of quantum mechanics:

π( f )Ψ[A] = f [A]Ψ[A], π(En(S))Ψ[A] = (Xn(S)Ψ)[A], (3.19)

where we have assumed that Ψ is smooth enough for Xn(S) to act. For example, Ψ could be a
cylindrical function based on a differentiable function on some power of SU(2). But the properties
of this representation are very different from those of the Schrödinger representation of quantum
mechanics, and of the representations encountered in standard QFT. For example, eigenstates of the
fluxes, i.e., the momentum variables, are normalizable, as we will see in a moment. Also, there is
a precise analogue of this representation in the case of a scalar field, and it is unitarily inequivalent
to the standard representation for a scalar in flat or curved background [48].

The representation has several useful properties. It is irreducible and faithful. No background
geometry was used in the definitions, so it carries a unitary representation of spatial diffeomor-
phisms and gauge transformations. It has an invariant and cyclic4 vector Ω.

The Hilbert space H has a very useful orthonormal basis. To explain, let us first consider a
general compact Lie group G. Then there are two natural representations of G on HG = L2(G,dµ),
the left- and right-regular representations

(ρL(g) f )(g′) = f (g′g−1), (ρR(g) f )(g′) = f (gg′). (3.20)

They both decompose into irreducibles, and since the two representations commute, there is a
common basis of eigenvectors of the Casimir operators. Let π be an irreducible representation of
G, then

V (π,m) := span{πmn(·)|n = 1,2, . . .dimπ} is left invariant by ρL, (3.21)

V (π,n) := span{πmn(·)|m = 1,2, . . .dimπ} is left invariant by ρR. (3.22)

The representation V (π,m) induced by ρL is π itself. The one induced by ρR on V (π,n) is its
dual, π , i.e. π(g) = π(g−1)T . The Peter-Weyl theorem now asserts that each irrep arises in the
decomposition of the regular representations, and even more, that their matrix elements give a
basis of HG. Pick, for each equivalence class of irreps of G a representative π , then the set of all√

dimππmn for all equivalence classes form an orthonormal basis of HG.
Now back to the LQG setting. Let Hγ = Cylγ

‖·‖. On the one hand, Hγ is a subspace of H ,
on the other hand it is isomorphic to L2(SU(2)n). Thus, an orthonormal basis for Hγ is given by

√
(2 j1 +1) . . .(2 jn +1)

j1
πk1l1(he1 [A]) ·

j2
πk2l2(he2 [A]) · . . .

jn
πknln(hen [A]). (3.23)

where the j1, j2, . . . jn label irreducible representations of SU(2). We note, however, that in general
Hγ 6⊥Hγ ′ . Given γ , there are functions in Hγ that do not depend on the holonomy along some
edge of γ , or that only depend on the product of two holonomies along adjacent edges in γ . Such

4Cyclic means that {aΩ|a ∈ A} is dense in H .
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functions are also elements of Hγ ′ for some γ ′ that has less edges and vertices. This makes lin-
ear dependencies among the elements of different graph Hilbert spaces rather generic. Take for
example γ = {e}, γ ′ = {e1,e2} with e = e1 ◦ e2. Then

πmn(he[A]) = ∑
m′

πmm′(he1 [A])πm′n(he2 [A]). (3.24)

Therefore we will introduce a family of slightly modified Hilbert spaces H ′
γ , which give a decom-

position of H into orthogonal subspaces. But first we need to discuss the transformation properties
of vectors under gauge transformations.

We start by considering just a single edge e. With respect to gauge transformations g, the
vectors π

j
mn(he) transform under the tensor product j⊗ j, and can be visualized as the edge with

representation j sitting at its endpoint and representation j at its starting point. When several edges
meet at a vertex v, contractions of the matrix indices of the representation matrices at that vertex
can be done and correspond to vectors in the tensor product

Hv =

( ⊗
e incoming atv

je

) ⊗ ( ⊗
e outgoing atv

je

)
(3.25)

To give an orthogonal basis of this space, one can simply decompose it into irreps,

Hv =
⊕

l

cl l, (3.26)

where cl counts the multiplicity of the spin l-representation. When we apply this to the situation in
LQG we obtain the following decomposition. Given a graph γ ,

Hγ =
⊕
~j

H
γ,~j =

⊕
~j,~l

H
γ,~j,~l. (3.27)

Here we have first decomposed into spaces in which the assignment of irreps to edges (labeled
by ~j) is fixed, giving essentially the tensor products of the spaces (3.25). Then we have further
decomposed according to (3.26), labeling the irreducible subspace chosen at the vertices with~l.

Now we can go back and remedy the problem that the decomposition into Hγ was not an
orthogonal one (following [5]). Given again a graph γ , we can call a labeling ~j of edges and~l of
vertices with irreps admissible if no two-valent vertex has been assigned the trivial representation
l = 0, and none of the irreps assigned to the edges is trivial. Then we set

H ′
γ =

⊕
~j,~l admissible

H
γ,~j,~l, (3.28)

and obtain the desired orthogonal decomposition

H =
⊕

γ

H ′
γ . (3.29)
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3.2 Geometric operators

One of the special properties of the representation in LQG introduced in the last section is
that one can define operators corresponding to geometrical objects such as volume area and length.
Among those the most simple operator is the area operator from the point of view of the construc-
tion of the operator as well as with regards to the spectrum of the operators. The area operator
was first introduced by Smolin [49] and then further analyzed by Rovelli and Smolin in the loop
representation [50]. Ashtekar and Lewandowski discussed the spectrum of the area operator in the
connection representation in [46]. In this section we want to discuss the implementation of the area
operator as well as its spectrum in detail. At the end of the section we will briefly comment on the
volume and length operator.

The classical area functional associated to a surface S is given by the following expression

Ar(S) =
∫
U

d2u
√

det(X∗q)(u) (3.30)

The ADM 3 metric is denoted by q, X : U → S is an embedding of the surface, where U ⊂ R2

and X∗ denotes the pull back of X . The coordinates on the embedded surface S are given by the
embedding functions Xa with a = 1,2,3 and let us denote the two coordinates by which the surface
is parametrized by u1 and u2. Given the embedding we can construct two tangent fields on S

Xa
,u1

:=
∂Xa

∂u1
, Xa

,u2
:=

∂Xa

∂u2
(3.31)

and also a co-normal vector field na that is determined from the condition

naXa
u,i = 0 for i = 1,2 (3.32)

The determinant in the area functional can be expressed as

det(X∗q) = qu1u1qu2u2−qu1u2qu2u1 =
(

Xa
,u1

Xb
,u1

Xc
u2

Xd
,u2
−Xa

,u1
Xb

,u2
Xc

,u2
Xd

,u1

)
qabqcd (3.33)

In order to quantize the area functional we need to express it in terms of Ashtekar variables. For this
purpose we consider the expression det(q)nanbqab and use that we can express the inverse metric
as

qab =
1
2

1
det(q)

ε
acd

ε
be f qceqd f (3.34)

Furthermore we see from (3.32) that na = εabcXc
,u1

Xd
,u2

yielding

det(q)nanbqab = det(q)nanb
1
2

1
det(q)

ε
acd

ε
be f qceqd f

= εak`Xk
,u1

X `
,u2

εbmnXm
,u1

Xn
,u2

1
2

ε
acd

ε
be f qceqd f

= qu1u1qu2u2−qu1u2qu2u1 (3.35)

The inverse metric has a simple form in Ashtekar variables given by qab = Ea
j Eb

k δ jk/det(E) and
depends only on the densitized triad. From Ea

j =
√

qea
j we get det(E) = det(q) yielding

det(q)qab = Ea
j Eb

k δ
jk (3.36)
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from which we can conclude using (3.35) that√
det(X∗q) =

√
nanbEa

j Eb
k δ jk (3.37)

Note that often one choses the basis τ j := −iσ j/2 in su(2) with σ j being the Pauli matrices for
which the Cartan-Killing metric on su(2) η jk becomes η jk := Tr(ad(τ j)ad(τk)) =−2δ jk and then
one uses the Killing metric in the expression above and adjusts the pre-factors accordingly. The
area functional is completely expressed in terms of Ashtekar variables now. In order to quantize
the area functional we need to choose a regularization of the classical expression. We choose a

partition of U into closed set such that U =
n⋃

i=1
Ui. Then we can express the area functional as a

sum of integrals over the individual sets Ui. Furthermore, we assume that the area of each Ui is ε2

and we will denote a point centered in Ui by v.

Ar(S) =
n

∑
i=1

∫
Ui

d2u
√

Ea
j Eb

k δ jknanb(X(u))

≈
n

∑
i=1

ε
2
√

Ea
j Eb

k δ jknanb(v)

=
n

∑
i=1

√
(ε2Ea

j na)(ε2Eb
k nb)δ jk(v)

=
n

∑
i=1

√
E j(SUi)Ek(SUi)δ jk(v) (3.38)

In the limit n→∞ the Riemann sum above yields exactly the area functional. As can be seen in the
last line we managed to express Ar(S) as a function of the classical fluxes E j(SUi) ≡ Eτ j(SUi) for
which well defined operators exists. For this reason we obtain the quantum area operator simply by
replacing the classical fluxes by their corresponding operators. Recall that the flux operators can
be written in terms of right and left invariant vector fields R j

e and L j
e associated to the edges of a

given spin network function.

Ê j(S)T
γ,~j,~I =

β`2
p

4 ∑
v∈V (γ)

eatv

κ(S,e,v)Ĵ(e,v)
j T

γ,~j,~I (3.39)

The term κ(S,e,v) is as before +1 and −1 respectively for edges that intersect S transversally and
are above S and below S respectively at v and zero in all other cases. For the area operator we
obtain

Âr(S)T
γ,~j,~I =

β`2
p

4

n

∑
i=1

√√√√( ∑
v∈V (γ)

eatv

κ(SUi ,e,v)Ĵ(e,v)
)2T

γ,~j,~I (3.40)

If the partition is chosen fine enough so that only one intersection point exists in SUi instead of
summing over all sets Ui in the partition we can sum over all intersections points of an edge of type
up or down. Note that in each intersection point more than one edge could meet. In this way we
will loose all surfaces SUi , which do not contain an intersection point of an edge of type up or down.
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However, these would anyway not contribute since for them κ(e,SU) = 0. Thus we can reexpress
the area operator as

Âr(S)T
γ,~j,~I =

β`2
p

4 ∑
v∈P(S)

√(
∑
eatv

κ(SU(v),e,v)Ĵ(v,e)
)2T

γ,~j,~I (3.41)

where the set P(S) of intersection points of edges up and down is given by

P(S) = {v ∈ e∩S|κ(S,e,v) 6= 0, e ∈ E(γ)} (3.42)

Let us now discuss the spectrum of the area operator. At each intersection point x we have edges of
type up, edges of type down and edges of type in that will not contribute to the spectrum. In order
to write the expression under the square root in (3.41) in compact form we introduce the following
operators:

Ĵv,u
j := ∑

e∈E(v,u)
Ĵ(v,e)

j Ĵv,d
j := ∑

e∈E(v,d)
Ĵ(v,e)

j (3.43)

Here E(v,u),E(v,d) denotes all edges of type up and down respectively that intersect each other in
the point v. Then we have for each intersection point v ∑

e∈E(γ)
e∩v 6= /0

κ(S,e,v)Ĵ(v,e)
j


2

=
(

Ĵv,u− Ĵv,d
)2

= (Ĵv,u)2 +(Ĵv,d)2−2Ĵv,uĴv,d

= 2(Ĵv,u)2 +2(Ĵv,d)2− (Ĵv,u + Ĵv,d)2 (3.44)

We used in the second line that [Ĵv,u
j , Ĵv,d

k ] = 0. Furthermore the operators (Ĵv,u)2, (Ĵv,d)2 and
(Ĵv,u + Ĵv,d)2 mutually commute. Moreover, we choose an explicit basis τ j = −iσ j/2 for which
the operators Ĵ(e,v) satisfy the usual angular momentum algebra given by [Ĵ(e,v)

i , Ĵ(e,v)
j ] = εi jkĴ(e,v)

k .

Then we have that the operators (Ĵ(e,v))2 ≡ δ jkĴ(e,v)
j Ĵ(e,v)

k locally act as

−δ
i jRiR j =−〈R |R〉 ≡ −∆SU(2), or −δ

i jLiL j =−〈L |L〉 ≡ −∆SU(2) (3.45)

where−∆SU(2) is the positive definite SU(2) Laplacian with spectrum j( j+1), due to our choice of
basis for su(2). Hence the same holds for the operators (Ĵv,u)2, (Ĵv,d)2, and (Ĵv,u + Ĵv,d)2, they act as
Laplacians in the respective direct sum of representations. Therefore the spectrum of the operators
involved in (3.44) can be easily computed and we obtain

Spec(Âr(S)) =
β`2

p

4 ∑
v∈P(S)

√
2 ju,v( ju,v +1)+2 ju,v( ju,v +1)− ju+d,v( ju+d,v +1) (3.46)

Here ju,v, jd,v denote the total angular momentum of the edges of type up (down respectively) at the
intersection point v and ju+d,v total coupled angular momentum of the up and down edges whose
values range between | ju,v − jd,v| ≤ ju+d,v ≤ ju,v + jd,v. Let us consider the eigenvalue at one
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intersection point v. The smallest possible eigenvalue that we can get occurs when either ju,v = 0
and jd,v = 1

2 or vice versa. The eigenvalue denoted by λ0 is non vanishing and given by

λ0 = `2
pβ

√
3

8
(3.47)

and is known as the area gap in LQG. The area gap plays an important role in the description of
black hole physics within LQG and black hole entropy calculations can be used the fix the value of
the Immirzi parameter β .
Finally let us say a few words about the other two geometrical operators, the volume and length
operator in LQG. The volume operator enters crucially into the construction of the dynamics of
LQG for the reason that the classical co-triad is expressed as the Poisson bracket between the
connection and the classical volume functional using the Thiemann trick (see section 4.1). The
volume operator can be quantized in a similar manner than the area operator because the classical
three dimensional volume of a given region R is the integral over R of

√
det(q) whose expression in

Ashtekar variables is just
√
|det(Ea

j )|. Thus it is again a function of the electric fields only and can
be after a suitable regularization again be expressed in terms of flux operators. In the literature exist
two different volume operators one introduced by Rovelli and Smolin (RS) [50] and one introduced
by Ashtekar and Lewandowski (AL) [51], which come out of a priori equally justified but different
regularization techniques. Both volume operators act non-trivially only on vertices where at least
three edges intersect. At a given vertex the operators have the following form

V̂v,RS = CRS ∑
eI∩eJ∩eK=v

√∣∣Q̂IJK
∣∣

V̂v,AL = CAL

√∣∣∣ ∑
eI∩eJ∩eK=v

ε(eI,eJ,eK)Q̂IJK
∣∣ (3.48)

Here Q̂IJK := εi jkĴi
eI

Ĵ j
eJ Ĵk

eK
is an operator involving only flux operators and thus right and left invari-

ant vector fields and CRS,CAL are regularization constants. The sum runs over all ordered triples
of edges intersecting at the vertex v. The main differences between these two operators is that
the RS-operator is not sensitive to the orientation of the triples of edges and therefore also planar
triples of edges will contribute. The AL-operator has likewise to the κ(S,e,v) in the area operator
a similar sign factor ε(eI,eJ,eK) that vanishes whenever the triple of edges ei,e j,ek intersecting
at a vertex v are linearly dependent. Furthermore the sum over triples of edges involved in both
operators, occurs outside the square root in case of the RS and inside the square root in case of the
AL-operator.
The spectral analysis of the volume operator is more complicated than for the area operator and
can in general not be computed analytically. A general formula for the computation of matrix el-
ements of the AL-volume operator has been derived in [52]. Those techniques have been used to
analyze the spectrum of the volume operator numerically up to a vertex valence of 7 in a series
of papers [53]. Their work showed that the spectral properties of the volume operator depend on
the embedding of the vertex that enters via the sign factors ε(ei,e j,ek) into the construction of the
AL-operator. Particularly the presence of a volume gap, that is a smallest non vanishing eigenvalue,
depends on the geometry of the vertex. For a more detailed discussion about the spectrum of the
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volume operator we refer the reader to the article of Brunnemann in these proceedings. A consis-
tency check for both volume operators has been discussed in [54] where the Thiemann trick has
been used to define an alternative flux operator. Those alternative flux operator is then compared to
the usual flux operator and consistency of both operators could for instance fix the undetermined
regularization constant CAL = `3

p/
√

48 in the volume operator. Furthermore, the RS-operator did
not pass this consistency check and the reason that it worked for the AL-operator is exactly the
presence of those sign factors ε(eI,eJ,eK) in the AL-operator.

A length operator for LQG was introduced in [55]. The length operator is in some sense the
most complicated one among the kinematical geometrical operators. Let us recall the the length of
a curve c : [0,1]→ Σ classically is given by

`(c) =
1∫

0

√
qab(c(t))ċa(t)ċb(t)dt =

1∫
0

√
ei

a(c(t))e
j
b(c(t))ċa(t)ċb(t)δi jdt (3.49)

here ċa denotes the components of the tangent vector associated to the curve. When we express the
metric qab in terms of Ashtekar variables we obtain

qab =
1
4

εacdεbe f εi jkε
imn Ec

j E
d
k Em

e En
f

det(E)
(3.50)

which is a non-polynomial function in terms of the electric fields and therefore a regularization
in terms of flux operators similar to the area and volume operator does not exist. Furthermore
the denominator being the square of the volume density cannot be defined on a dense set in Hkin

because it has a huge kernel. One possibility to quantize the length used in [55] is to use for the
co-triads that occur in (3.49) the Thiemann trick and replace them by a Poisson bracket between
the connection and the volume functional. This yields a length operator that involves a square root
of two commutators between holonomy operators along the curve c and the volume operator. In
this way the inverse volume density can be avoided and the volume occurs only linearly in the
commutator. Also, the length operator does not change the graph or the spin labels of the edges
likewise to the area and volume operator. However, since the length operator becomes even a
function of the volume operator its spectral analysis becomes even more complicated than for the
volume operator itself and very little about the spectrum of the length operator is known except for
low valence vertices.
Another length operator was introduced in [56] where the Thiemann trick was not used for the
quantization. The regularization adapted in [56] is motivated from the dual picture of quantum
geometry and uses that the curve can be expressed as an intersection of two surfaces. This allows
to express the tangent vector of the curve in terms of the normals of the surfaces. The inverse
volume issue discussed above is circumvented by using a Tikhonov regularization for the inverse
RS-volume-operator. For this length operator the spectral properties have only be analyzed for a
vertex of valence 4, which is monochromatic, that is all spins are identical. Recently an alternative
length operator for LQG has been discussed in [57] where a different regularization has been chosen
such that the final length operator can be expressed in terms of other geometrical objects the area,
volume and flux operators. In this work the AL-operator is used and the inverse volume operator is
also defined using a Tikhonov regularization similar to the one in [56].
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3.3 Solving Gauss and diffeomorphism constraints

In accordance with Dirac’s program for constraint quantization an implementation of the clas-
sical constraints as operators on the kinematical Hilbert space is needed. In section 3.3.1 we will
discuss this quantization for the Gauss constraint and explain how solutions to the constraint can be
constructed. The quantization and the construction of solutions to the spatial diffeomorphism con-
straint requires a framework called refined algebraic quantization that will be introduced in section
3.3.2 and applied to the diffeomorphism constraint in section 3.3.3.

3.3.1 Quantization and solution of the Gauss constraint

The classical expression for the smeared version of the Gauss constraint is given by

G(Λ) =
∫
Σ

d3xΛ
j(DaEa

j ) =−
∫
Σ

d3x(DaΛ
j)Ea

j (3.51)

This expression involves the densitized triad integrated over a 3-dimensional integral with smear-
ing function (DaΛ j). When the holonomy flux algebra is computed by means of a regularisation of
holonomies hε

e(A) and fluxes Eε ′(S) both the holonomies and fluxes are regularized by expression
that involve three dimensional integrals and ε and ε ′ denote regulators. For this reason one can fol-
low the same regularization strategy for the computation of {he(A),G(Λ)} with the difference that
we do not need a regulator for G(Λ) since it involves already a 3 dimensional integral. Computing
{hε

e(A),G(Λ)} and removing the regulator afterwards yields

{he(A),G(Λ)}=−βκ

2

1∫
0

dt(DaΛ
j)(e(t))ėa(t)he(0, t)(A)τ jhe(t,1)(A) (3.52)

In the following we will choose an explicit basis for su(2) given by τ j := −iσ j/2 with σ j being
the Pauli matrices. In this case the structure functions f jk` are given by the Levi-Cevita symbol
f jk` = ε jk`. The expression he(0, t) satisfies the differential equation

dhe(0, t)
dt

=−he(0, t)A(e(t)) with A(e(t)) := A j
a(e(t))ė

a(t)τ j (3.53)

The holonomy is defined as the unique solution he(A) := he(0,1) with he(0,0) = 1SU(2). The
covariant derivative in equation (3.52) is phase space dependent since it involves the Ashtekar
connection A j

a. However, as we will show the expression under the integral can be expressed as a
total time derivative of holonomies and Λ := Λ jτ j. As a first step we consider

(DaΛ)ėa(t) =
dΛ

dt
+ ε

j
k`A

k
aΛ

`
τ jėa(t)

=
dΛ

dt
+Ak

aΛ
`[τk,τ`]ėa(t)

=
dΛ

dt
+[A,Λ] (3.54)
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Furthermore we can use the product rule for the term d
dt (he(0, t)Λhe(t,1)) and for the individual

terms using the differential equation in (3.53)

d
dt

he(0, t) = he(0, t)A(e(t))

d
dt

he(t,1) = −A(e(t))he(t,1) (3.55)

to obtain
d
dt

(he(0, t)Λhe(t,1)) = he(0, t)
(

dΛ

dt
+[A,Λ]

)
he(t,1) (3.56)

Consequently, we obtain for the Poisson bracket the following expression

{he(A),G(Λ)}=
βκ

2
(Λ(e(0))he(A)−he(A)Λ(e(1))) (3.57)

Knowing how G(Λ) acts on holonomies we can generalize the action from holonomies to cylindri-
cal functions and express it again in terms of right and left invariant vector fields.

{ fγ(A),G(Λ)} =
βκ

2 ∑
e∈E(γ)

(
Λ

j(b(e))Re
j−Λ

j( f (e))Le
j
)

fγ(A)

=
βκ

2 ∑
v∈V (γ)

Λ
j(v)
(

∑
e∈E(γ)

κ(S,e,v)Ĵ(v,e)
j fγ

)
(A) (3.58)

where we rearranged the sum over edges as a sum over vertices and sums of the edges starting or
ending at each vertex yielding κ(S,e,v) = +1 and κ(S,e,v) = +1 respectively. We realize that
action of G(Λ), likewise to the action of the flux, can be expressed as a vector field on C∞(A).
The quantization of G(Λ) can then be obtained as an extension of G(Λ) to cylindrical functions
∈C∞( ¯A ) where ¯A is the quantum configuration space of generalized or also called distributional
connections.

Ĝ(Λ) = ih̄[ fγ(A),G(Λ)] =
iβ`2

p

2 ∑
v∈V (γ)

Λ
j(v)
(

∑
e∈E(γ)

κ(S,e,v)Ĵ(v,e)
j fγ

)
(A)

=
iβ`2

p

2 ∑
v∈V (γ)

Λ
j(v)

 ∑
e∈E(γ)
v=b(e)

Re
j− ∑

e∈E(γ)
v= f (e)

Le
j

 fγ(A) (3.59)

where we used in the last line the explicit expression for Ĵ(v,e)
j and κ(S,e,v). Solutions to the Gauss

constraint Ĝ(Λ) fγ(A) = 0 are those cylindrical functions for which the ingoing and outdoing edges
at each vertex couple to the same resulting angular momentum Jin = Jout so that the total angular
momentum J = Jin⊗ Jout = 0. In terms of the decomposition of the kinematical Hilbert space in
terms of interwiners the gauge invariant Hilbert space is just the subspace where one associates
to each each vertex an intertwiner that projects on the trivial representation. That this constructs
gauge invariant spin networks functions follows from the fact that the holonomy transforms under
a finite gauge transformation as he(Ag) = g(b(e))he(A)g−1( f (e)), where g ∈ SU(2) and b(e) and
f (e) denote the beginning and final point of the edge, and hence the gauge transformations act
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at the vertices of the spin network function only. Furthermore, at the vertices the spin network
functions transform in the resulting representation that the individual edges couple to, thus

H G
kin =

⊕
γ,~j,

H
γ,~j,~l=0 (3.60)

3.3.2 Refined algebraic quantization

In this section we briefly review refined algebraic quantization that provides a framework to
solve first class constraints in the quantum theory. The application of refined algebraic quantization
in the context of Dirac quantization has been analyzed by Giulini and Marolf in [58, 59]. A review
article about refined algebraic quantization and group averaging can be found in [60].
In order to formulate the final quantum theory we are looking for solutions to the constraints in the
quantum theory, hence we want to find states that are annihilated by the constraint operators, that
is ’Ĉψphys = 0’. In general the constraint operators Ĉ are complicated functions of holonomies and
fluxes and we are looking for the value zero in their spectra. In the simplest case the operators that
we need to consider are bounded and their spectra is discrete. Then the operators are defined on
the whole Hilbert space Hkin and the eigenvectors of the operators are elements of Hkin. As we
will see later on this is the case for the Gauß constraint operator. However, often the physically
interesting operators are unbounded and in this case they are only defined on a dense subspace
of Hkin. Furthermore, in general, the spectrum of the operators will have a continuous part and
the associated (generalized) eigenvectors will no longer belong to Hkin. In our case this situation
occurs whenever zero will not lie in the discrete part of the spectrum of the constraint operators.
A similar situation occurs already in standard quantum mechanics for the momentum and position
operators both being unbounded. The spectrum of the momentum operator p̂ = −ih̄ d

dx is the real
line and the (generalized) eigenfunctions are plane waves ψk(x) = eikx that are not square integrable
on (R,dx) and thus no element of HQM = L2(R,dx). Likewise, the generalized eigenfunctions of
the position operator are delta functions and therefore also no elements of HQM. In those cases one
has to look for solutions in a larger space than HQM and, in the case of LQG, Hkin respectively.
The mathematical framework that can be used here are so called rigged Hilbert spaces (also called
Gelfand triples). They consists of a sequence of spaces

D ⊂H ⊂D× (3.61)

where D is a dense subspace of H endowed with its own intrinsic topology, that is assumed to be
stronger than the one induced from H and D× is the dual space of D containing all continuous
anti-linear functionals on D . The dense subspace is usually chosen by the requirement that it is
the largest dense subspace of H such that it is an invariant domain for arbitrary powers of the
elementary operators. For instance in the case of quantum mechanics the dense subspace is the
S (R), the Schwartz space of smooth rapidly decreasing functions on R. Associated with a given
Gelfand triple there always exist a second rigged Hilbert space

D ⊂H ⊂D ′ (3.62)

which consists of D ,H and the dual space D ′ of all linear and continuous functionals on D and it
is the second rigged Hilbert space that we will discuss for LQG. In the case of quantum mechanics
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when the spectrum has a continuous part the associated (generalized) eigenvectors expressed as
Dirac ket vectors live in D×, whereas the home of the corresponding Dirac bra vectors is the space
D ′. For LQG we restrict our discussion to the latter Gelfand’ triplet in (3.62). Let us denote with
Dkin the dense subspace of Hkin and as we saw before elements of Dkin are cylindrical functions.
Apart from the dense subspace Dkin itself the rigged Hilbert space framework requires that Dkin is
endowed with an intrinsic topology stronger than the one induced from Hkin and as far as physics
is concerned it does not yield a particular choice of a topology here. In order to avoid such a choice
at this stage in LQG we do not consider the topological dual space D ′kin but the algebraic dual
instead denoted by D∗kin. Then we look for solutions in the algebraic dual D∗kin that is the space of
all linear but not necessarily continuous functionals ` on Dkin. D∗kin is naturally equipped with the
weak *-topology of pointwise convergence of nets5. As before we have the following topological
inclusion

Dkin ⊂Hkin ⊂D∗kin (3.63)

since any functional that converges strongly in the norm of Hkin will also converge pointwise. In
order to formulate a requirement for solutions to the constraints in D∗kin we need to extend the
action of the operators from Hkin onto D∗kin. On those linear functionals ` that lie in Hkin we want
the action of the dual operator to agree with the usual one on Hkin. Let us denote the extension of
an operator Ô by Ô′ then we define [

Ô′`
]
( f ) := `(Ô† f ) (3.64)

where † denotes the adjoint in Hkin. Now suppose we have an ` ∈Hkin ⊂ D∗kin then using Riesz
representation theorem we find a unique f` ∈Hkin such that ` can be expressed as ` = 〈 f`, .〉Hkin

where 〈., .〉Hkin denotes the inner product on Hkin. Then we obtain[
Ô′`
]
( f ) = `(Ô† f ) = 〈 f`, Ô† f 〉Hkin = 〈Ô f`, f 〉Hkin , (3.65)

which explains the use of the adjoint in equation (3.64). Looking for solutions in D∗kin corresponds
to finding linear functionals that satisfy the following requirement[

Ĉ′`
]
( f ) = `(Ĉ† f ) != 0 for all Ĉ, f ∈Dkin (3.66)

Let us denote the space of solutions to the constraints by D∗phys. In general physical operators, those
that commute with all constraint operators, will be unbounded and therefore only be defined on a
dense subspace of the physical Hilbert space Hphys denoted by Dphys, which is an invariant domain
for the algebra of physical operators. The set D∗phys is then the algebraic dual of Dphys and as before
again one has also at the physical level a topological inclusion

Dphys ⊂Hphys ⊂D∗phys (3.67)

Given the situation that we have found D∗phys there exists a systematic way to construct an inner
product by means of a so called rigging map η

η : Dkin→D∗phys, f 7→ η( f ) (3.68)

5A net, that is a generalization of a sequence, (`α ) converges in D∗kin if (`α ( f )) converges to `( f ) for any f in Dkin.
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that maps elements in Dkin into D∗phys. η( f ) being an element of D∗phys is a linear functional on Dkin

that additionally satisfies the condition in equation (3.65), hence [η( f )]( f̃ ) is a complex number
and if in addition

(i) [η( f )]( f̃ ) = [η( f̃ )]( f ) (3.69)

(ii) [η( f )]( f )≥ 0 for all f , [η( f )]( f ) = 0⇒ f = 0 (3.70)

(iii) [η( f )](αg+βh) = α[η( f )](g)+β [η( f )](h) (3.71)

are satisfied we can use [η( f )]( f̃ ) do define a physical inner product on the image of η given
by η(Dkin) ∈ D∗phys. The bar in (i) denotes complex conjugation. Condition (iii) is trivially sat-
isfied since [η( f )] is a linear functional. Whether (i, ii) are satisfied and thus [η(.)](.) defines a
positive semi definite sesquilinear form needs to be checked once the explicit form of η has been
constructed. Apart from the minimal requirements (i-iii) we want the inner product to satisfy the
property that adjoints with respect to the physical inner product 〈., .〉phys represent the adjoints in
the corresponding kinematical case. That means that we can either first extend the operators to
D∗phys and then construct the adjoint or take the adjoint first in Dkin and then extend the adjoint
operator to D∗phys and we will obtain the same result. This yields the following condition for the
physical inner product

(iv) 〈(Ô′)†
ψ, ψ̃〉phys = 〈(Ô†)′ψ, ψ̃〉phys (3.72)

Here we denoted the adjoint with respect to the physical inner product with the same symbol † we
used in the kinematical case. Furthermore, the rigging map needs to be constructed in such a way
that the physical operators Ô defined on Dphys respectively preserve the space of solutions D∗phys,
that means

(v) Ô′η( f ) = η(Ô f ) for all f ∈Dkin (3.73)

A physical inner product on the image of η , that is η(Dkin)⊂D∗kin can then be defined as

〈ψ, ψ̃〉phys = 〈η( f ),η( f̃ )〉phys := [η( f̃ )]( f ) (3.74)

The physical Hilbert space Hphys is then defined as the completion of η with respect to 〈., .〉phys

With that definition of an inner product the condition (iv) in (3.72) is automatically satisfied

〈(Ô′)†
ψ, ψ̃〉phys = 〈ψ, Ô′ψ̃〉phys

= 〈η( f ),η(Ô f̃ )〉phys

= [η(Ô f̃ )]( f ) = [Ô′η( f̃ )]( f ) = [η( f̃ )](Ô† f )

= 〈η(Ô† f ),η( f̃ )〉phys

= 〈(Ô†)′ψ, ψ̃〉phys (3.75)

An example how a rigging map can be explicitly constructed is the so called group averaging
procedure. Consider a set of constraint operators ĈI where I labels the individual constraints that
are self-adjoint and their first class algebra is a Lie algebra, then we can define unitary operators by
using the exponential map

Û(g) = exp

(
i∑

I
θ

IĈI

)
(3.76)
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with parameters θ I ∈ T ⊂ R yielding a unitary representation of the Lie group. The condition
that a function f is annihilated by the infinitesimal generators of the constraints carries over to the
requirement that a linear functional is a solution of the constraints if it is invariant under the action
of those unitary operators, that is for f ∈Dkin

[(Û(g))′]( f ) = `((Û(g))† f ) = `( f ) for all g ∈ G (3.77)

Using the unitary operators we can define a projector on physical states given by

P̂ =
∫
G

dµH(g)Û(g) (3.78)

where µH denotes Haar measure on G. The property of the Haar measure that it is invariant under
right and left translations are important for showing that the projector defined above indeed projects
on physical states as can be seen below

Û(g)P̂ f = Û(g)
∫
G

dµH(h)Û(h) f

=
∫
G

dµH(h)Û(g)Û(h) f

=
∫
G

dµH(h)Û(gh) f

=
∫
G

dµH(g−1g̃)Û(g̃) f

= P̂ f (3.79)

In the third line we used that G is a group, in the fourth line we introduced the new integration
variable g̃ := gh and in the one before the last line we used that µh is invariant under translations.
The rigging map η can now be expressed in terms of the projector defined in (3.78)

η : Dkin→Hphys ⊂D∗phys f 7→ η( f ) :=
∫
G

dµ(g)H〈Û(g) f , .〉kin (3.80)

and the physical inner product can then be defined as

〈η( f ),η( f̃ )〉phys := [η( f̃ )]( f ) (3.81)

Likewise to the case of quantum mechanics where the Dirac bra and ket vectors in the spaces D×

and D ′ are distributions on D also here the linear functional η( f ) defined above is a distribution on
Dkin. In this sense the rigged Hilbert space framework combines Hilbert spaces with distribution
theory and allows us to understand the case of unbounded operators with continuous spectra along
the lines of the standard language used in quantum theory.
Before we will apply RAQ to LQG in order to solve the diffeomorphism constraint, we will dis-
cuss a simple example from quantum mechanics, where one basically could guess the physical
Hilbert space immediately so that the individual steps of the RAQ program can be understood in
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a simple situation. We consider a two dimensional quantum mechanical system with kinematical
Hilbert space Hkin = L2(R2,dx2) with one constraint given by Ĉ = p̂1. In the first step of RAQ
we need to choose a dense subspace Dkin of Hkin on which the elementary operators x̂1, x̂2, p̂1, p̂2

and arbitrary powers of them can be defined. As usual we choose S (R2), the Schwartz space of
rapidly decreasing functions on R2 for Dkin. Now we are looking for solutions to the constraint
Ĉ = p̂1 =−ih̄∂/∂x1. These are functions that do not depend on the variable x1 and since the inner
product of Hkin involves an integral over R of dx1 those functions are not normalizable and thus
no elements of Hkin. However, they can be mathematically defined as elements of D∗kin and hence
linear functionals ` on Dkin defined as

` : Dkin→ C f 7→ `( f ) := 〈`, f 〉kin =
∫
R2

d2x`(x) f (x) (3.82)

The second step of RAQ consists of finding solutions in D∗kin and in our case these are functionals
that satisfy

[Ĉ′`]( f ) := `(Ĉ† f ) =
∫
R2

d2x ¯̀(x)p̂†
1 f (x) = ih̄

∫
R2

dx1dx2
∂`

∂x1
(x1,x2) f (x1,x2)

!= 0 (3.83)

Obviously, the elements of D∗phys⊂Dkin are those linear functionals that do not depend on x1.Therefore,
physical operators defined on Hphys or a dense subspace Dphys respectively are operators that de-
pend only on x̂2, p̂1, p̂2 because those commute with the constraint Ĉ = p̂1. Now, since p̂1 is a con-
straint operator involving p̂1 correspond to classical objects that vanish on the constraint surface
and are thus rather uninteresting physical operators. For this reason the relevant physical operators
will be functions of x̂2, p̂2 only. Hence, the physical Hilbert space in this simple example is just
Hphys = L2(R,dx2). Let us show that we end up with the same result when we use the rigging map
to construct the physical Hilbert space. The projector for group averaging in this example has the
form

P̂ :=
∫
R

dteit p̂1 (3.84)

and using P̂ to define the corresponding rigging map η : Dkin→D∗phys we obtain

η( f ) :=
∫
R

dt〈eit p̂1 f , .〉kin =
∫
R

dt
∫
R2

d2x f (x1 + t,x2) (3.85)

where we used that the unitary operator exp(it p̂1) generates translations. The physical inner prod-
uct can then be defined as

〈η( f ), η( f̃ )〉phys := [η( f̃ )]( f ) =
∫
R

dt
∫
R2

dx1dx2 f̃ (x1 + t,x2) f (x1,x2) (3.86)

Let us introduce the variable t ′ := t + x1 then we rewrite the expression in (3.86) as

〈η( f ), η( f̃ )〉phys =
∫
R

dx2

∫
R

dt ′ f̃ (t ′,x2)

∫
R

dx1 f (x1,x2)

= 〈ψ̃, ψ〉L2(R,dx2) (3.87)
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showing that the physical Hilbert space we end up with is indeed Hphys = L2(R,dx2).

Finally, let us say a few words about alternative methods to solve the constraints in cases where the
refined algebraic quantization (RAQ) framework cannot be applied. This is for instance the case
for the Hamiltonian constraints since their algebra involves structure functions instead of struc-
ture constants. A way to circumvent this problem is to replace the Hamiltonian constraint by the
corresponding master constraint M defined in (2.21) [27] , that (i) satisfies a trivial algebra and is
constructed in such a way that one obtains a self-adjoint operator [61]. Now one could on the one
hand apply RAQ to find solutions to the Master constraint. On the other hand one can also use the
direct integral decomposition (DID) method in order to construct the physical Hilbert space. In the
latter case one uses the fact that for self adjoint operators Ô on separable Hilbert spaces the Hilbert
space can be written as a direct integral

H '
⊕∫
R

dµ(λ )Hλ (3.88)

whereby µ is the spectral measure and Hλ are again separable Hilbert spaces with an inner product
induced from H . On each of this Hilbert spaces the operator Ô acts by multiplication. So assuming
that Ô is a constraint operator the physical Hilbert space is just the Hilbert space Hλ associated
with the eigenvalue λ = 0, that is Hphys = H0. For LQG the kinematical Hilbert space on which
the master constraint operator M̂ will be defined is non separable. However, Hkin decomposes into
a direct sum of separable Hilbert spaces each of which are left invariant by the action of M̂ and
therefore the DID method can be applied to each of the individual Hilbert spaces in the direct sum,
see [62] for an application of this method.

3.3.3 Quantization and solutions of the diffeomorphism constraint

When looking for solutions of the diffeomorphism constraint, we would like to proceed in a
similar way as for the Gauss constraint. Doing so, the first step consists in defining the infinitesimal
version of the spatial diffeomorphism operator which is classically of the form

~C(~N) =
∫
Σ

d3xNaF j
abEb

j (x) (3.89)

where Na is the shift vector, Fab = F j
abτ j/2 the curvature associated to A j

a and Ea
j the densitized

triad, where we neglected the terms involving the Gauss constraint G j. Considering the term in-
volving the Gauss constraint it is possible to rewrite ~C(~N) as an integral over Σ of Ea

j and (L~NA j)a

yielding, similar to the Gauss constraint, to an expression that involves the densitized triad smeared
over a 3 dimensional integral with a phase space dependent smearing function. Now, when one
tries to proceed and expresses ~C(~N) in terms of holonomies and fluxes one realizes that the op-
erator corresponding to ~C(~N) does not exist on Hkin. Note that recently in [63] using the habitat
introduced in [78] a quantization of the infinitesimal diffeomorphism operators was performed us-
ing a densitized shift vector of the form Na = Ea

j /
√

q yielding an expression that is less singular
and can be quantized. As we will see in section 4.2 the same is also true for the classical expression
qabCaCb.
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However, that Ĉa itself does not exist is not a problem as far as the Dirac quantization program
is concerned because the requirement that the representation should be diffeomorphism covariant
ensures that finite spatial diffeomorphisms are implemented unitarily (see also section 3.4 for a
more detailed discussion). As a consequence we can work with the operators denoted by Û(ϕ) for
ϕ ∈ Diff(Σ) instead when looking for solutions of the diffeomorphism constraint.
In order to define the action of Û(ϕ) on a given spin network function we define the multilabel
s = {γ,~j,~I}. Then we have for Ts = T

γ,~j,~I

Û(ϕ)Ts = Tϕ·s f.a. ϕ ∈ Di f f (Σ) (3.90)

with ϕ · s = {ϕ · γ,ϕ ·~j,ϕ ·~I} and

ϕ · γ := (ϕ · e = ϕ(e))e∈E(γ(s))

ϕ ·~j :=
(
(ϕ ·~j)ϕ(e) = je

)
e∈E(γ(s))

ϕ ·~I :=
(
(ϕ ·~I)ϕ(v) = Iv

)
v∈V (γ(s))

(3.91)

where E(γ(s)) denotes the set of edges of the underlying graph γ(s) of Ts and V (γ(s)) denotes the
set of vertices of γ(s). We see that the action of Û(ϕ) maps the graph γ(s) on which Ts is defined
onto its image under the diffeomorphism ϕ . Note that definitions above are understood in the way
that the order in which the edges at the vertices are coupled to obtain the corresponding intertwiners
is not changed under the action of the diffeomorphism operator. That the infinitesimal constraints
do not exist as operators can be also seen from the fact that the family of operators Û(ϕ) are not
weakly continuous. A family of unitary operators Û(ϕt) is said to be weakly continuous if we have
that

lim
t→0
〈Ts ,Û(ϕt)Ts′〉= 〈Ts , Ts′〉 f.a. Ts,Ts′ ∈Hkin (3.92)

Let ϕV
t be a one-parameter family of diffeomorphisms generated by a vector field V 6= 0. If we

choose γ in the support of V then there exists ε > 0 such that for all t ∈ (0,ε) ϕV
t (γ) 6= γ . Now we

choose Ts = Ts′ and obtain

lim
t→0
〈Ts ,Û(ϕV

t )Ts〉= lim
t→0
〈Ts ,TϕV

t (s)〉= 0 6= 1 = 〈Ts , Ts〉 (3.93)

which shows that the finite diffeomorphisms are not weakly continuous. For the reason that any
cylindrical function fγ can be written as a linear combination of spin network functions, the action
of Û(ϕ) can be easily extended to fγ . In contrast to the Gauss constraint, solutions to the spatial
diffeomorphism constraint will not live in a subspace of Hkin and we need to apply the RAQ
program here, which has been done in [44]. An application to 2+1 Euclidian gravity can be found
in [64] and in [65] the RAQ quantization program was applied to a scalar field toy model.
As a first step in RAQ we need to choose a dense subspace of Hkin on which arbitrary finite powers
of the elementary operators are defined. In the case of LQG Dkin = Cyl the space of smooth
cylindrical functions. Now we are looking for solutions in the algebraic dual D∗kin = Cyl∗ and
for this purpose the action of operators and particularly of Û(ϕ) on Hkin needs to be extended to
functionals ` in D∗kin and is given by

[Û ′(ϕ)`]( f ) = `(Û−1(ϕ) f ) f.a. f ∈Dkin,ϕ ∈ Di f f (Σ) (3.94)
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where we denoted the extension of the operator with a prime as above. This allows us to formulate
the requirement for solutions `

[Û ′(ϕ)`]( f ) = `(Û−1(ϕ) f ) != `( f ) f.a. f ∈Dkin,ϕ ∈ Di f f (Σ) (3.95)

Those solutions are elements of D∗phys ⊂ D∗kin defined as the set of those ` ∈ D∗kin that satisfy the
condition in (3.95). Since the spin network functions lie dense in Dkin = Cyl we can restrict the
construction of solutions to the diffeomorphism constraint to them and then express diffeomor-
phism invariant cylindrical functions as linear combinations of the solutions associated with spin
network functions.

[Û ′(ϕ)`](T
γ,~j,~I) = `(Û−1(ϕ)T

γ,~j,~I) = `(T
ϕ−1(γ),~j,~I)

!= `(Ts) f.a. f ∈Dkin,ϕ ∈ Di f f (Σ) (3.96)

Let us introduce the orbits of s associated with Di f f (Σ) denoted by [s]

[s] := {ϕ · s, φ ∈ Di f f (Σ)} (3.97)

For all orbits [s] a diffeomorphism invariant distribution can then be constructed as

`[s] = ∑
s′∈[s]
〈Ts′ , .〉kin (3.98)

We need to ensure that the sum in (3.98) converges when applied to some spin network function Ts

as otherwise `[s] would not be an element of D∗phys. Fortunately, due to the orthogonality property of
spin network functions that follows from the Peter & Weyl theorem, already mentioned in section
3.1, in the expression

`[s](Ts̃) = ∑
s′∈[s]
〈Ts′ , Ts̃〉kin = χ[s](s̃) (3.99)

only one term will be non-vanishing where χ denotes the characteristic function. First, we only
obtain a nonvanishing contribution if s̃ ∈ [s], meaning the graph Ts̃ is defined on must be diffeo-
morphic to the graph associated with the multi-label s. Furthermore the righthand side of (3.99) is
only nonvanishing if additionally the representations associated with the edges agree. Note that in
the context of group averaging (3.99) can be understood as group averaging over the orbits of [s]
under Diff(Σ) using a counting measure on the orbit. That those `[s] are invariant under the action
Û(ϕ) can be easily seen

Û ′(ϕ)`[s](Ts̃) = ∑
s′∈[s]
〈Ts′ , Û†(ϕ)Ts̃〉kin

= ∑
s′∈[s]
〈Û(ϕ)Ts′ , Ts̃〉kin

= ∑
s′∈[s]
〈Tϕ(s′), Ts̃〉kin

= ∑
s′′∈[s]
〈Ts′′ , Ts̃〉kin

= `[s](Ts̃) (3.100)

As far as the operators corresponding to strong Dirac observables with respect to spatial diffeo-
morphism are concerned, these are operators that strongly commute with Û(ϕ), one can show [44]
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that Hkin splits into mutually orthogonal super selection sectors, that is, it decomposes into a direct
sum of Hilbert spaces associated with the individual orbits [s]

Hkin =
⊕
[s]

H
[s]

kin with H
[s]

kin =
⊕
s′∈[s]

H s′
kin (3.101)

and (strongly) diffeomorphism invariant operators preserve those individual Hilbert spaces H
[s]

kin .
The rigging map η is then constructed for each individual H

[s]
kin separately. For this purpose let

us choose some dense subspace D
[s]
kin ⊂H

[s]
kin and consider the algebraic dual (D [s]

kin)
∗
. A family of

rigging maps ηa : D
[s]
kin→ (D [s]

diff)
∗

can then be defined as

ηa(Ts) := a[s]`[s](Ts) (3.102)

where a[s] > 0 ∈ R is some up to now unspecified number labeling the family of maps. However,
in general a[s] depends on the orbit of the multilabel s and not on the orbit of the graph γ(s) only.
As a consequence we will not be able to define a symmetric inner product by means of ηa unless
we will choose the coefficients a[s] in such a way that they depend on the equivalence class of the
graphs only.

In order to discuss how the coefficients a[s] need to be modified and also make the connection to the
group averaging more transparent we will rewrite ηa as sum over diffeomorphisms in Diff(Σ). Note
that the naive ansatz where one averages over the total group Diff(Σ) does not work for the reason
that there exist uncountably infinitely many diffeomorphisms that leave a given spin network Ts

invariant. Thus the trivial diffeomorphisms need to be factored out in order to obtain a well defined
element of (D [s]

diff)
∗ ⊂ (D [s]

kin)
∗
. We consider the diffeomorphisms that leave a given spin network

function Ts invariant and distinguish between two cases:

T Di f f[s] := {ϕ ∈ Di f f (Σ)|ϕ · s = s}
T Di f f[γ] := {ϕ ∈ Di f f (Σ)|ϕ · γ = γ, ϕ(e) = e f .a.e ∈ E(γ(s))} (3.103)

where ϕ(e) = e should be interpreted as saying that the edge including its orientation are preserved.
We used a notation analogous to the one introduced in [5]. However, in [5] the group averaging
and the rigging map is defined in terms of equivalence classes of graphs and not of spin network
functions. Both T Di f f[s] and T Di f f[γ] are subgroups of Di f f (Σ). T Di f f[s] includes all diffeo-
morphisms that preserve the spin network Ts whereas elements of T Di f f[γ] additionally preserve
all edges of the underlying graph γ(s) and hence do not depend on the multilabel s anymore but
only on the graph. The quotient of the two groups turns out to be a finite group, the group of spin
network symmetries of Ts denoted by

S[s] := T Di f f[s]/T Di f f[γ] (3.104)

The group averaging can then be expressed as an averaging over the group of spin network sym-
metries and an averaging over the remaining diffeomorphisms that fill the orbit [s] of s which is
Di f f (Σ)/T Di f f[s] = Di f f[s](Σ). The projector associated to the averaging over S[s] can be ex-
pressed as

PS[s] :=
1
|S[s]| ∑

ϕ∈S[s]

Û(ϕ) (3.105)
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Note, that in general the size of S[s] and S[s′] will be be different even when the graphs associated
with the multilabels s and s′ are diffeomorphic. As a consequence, we need to consider this in the
definition of the prefactor that enters into the rigging map ηa to ensure that the prefactor depends on
the equivalence class of the graphs only. Hence, when we consider also the averaging with respect
to those diffeomorphisms that move the spin network we obtain for the rigging map

ηa(Ts) = a[γ]|S[s]| ∑
ϕ∈Di f f[s](Σ)

〈Û(ϕ)PS[s]Ts , .〉kin (3.106)

Here we introduced a[γ] as the real number that one obtains from defining the group averaging in
terms of graphs and not spin network functions in order to make a comparison with the notation
used in [5] possible. We have defined the rigging map above in a way that the norm of the most
unsymmetric spin network function is given by a[γ] which can be chosen to be one.
A diffeomorphism invariant inner product can the be constructed on the image of ηa denoted by
ηa(D

[s]
kin) ⊂ (D [s]

diff)
∗

and the diffinvariant Hilbert space H
[s]

diff is then the completion of D
[s]
diff with

respect to 〈., .〉diff

〈ηa(Ts′),ηa(Ts)〉diff := [ηa(Ts)](Ts′) = a[γ]|S[s]| ∑
ϕ∈Di f f[s](Σ)

〈Û(ϕ)PS[s]Ts , Ts′〉kin (3.107)

It can be shown that the so defined inner product satisfies all five requirements mentioned in section
3.3.2 in equations (3.69), (3.72) and (3.73). The Hilbert space Hdiff can then be constructed as the
direct sum of the individual Hilbert spaces H

[γ]
diff. Those requirements in (3.69), (3.72) and (3.73)

do not yield any further restrictions on the factor a[γ] in (3.107) except the already implemented
condition that a[γ] is a real positive number. Consequently, as far as operators are considered that
correspond to strong Dirac observables with respect to spatial diffeomorphisms the inner product
of the solution space is not unique because we have a freedom to normalize the inner products
associated with the mutually orthogonal spaces H

[γ]
diff. However, one expects that operators cor-

responding to weak observables, that is, operators that commute with the spatial diffeomorphism
constraint only modulo constraint operators, will mix super selection sectors and could therefore
yield additional requirements for the normalization constants and hence further restrict the ambi-
guity of the inner product on Hdiff.

Finally, let us briefly mention that also the Gauss constraint can be solved using group averag-
ing. Let us denote the unitary operators corresponding to finite SU(2) gauge transformations by
Û(g), then the associated rigging map is given by

η(Ts) =
∫

SU(2)Σ

∏
x∈Σ

dµH((g(x))〈Û(g)Ts , .〉kin (3.108)

Using η above to construct the gauge invariant Hilbert space H G
kin yields to exactly the same result

as we obtained in section 3.3.1. Note, that solving the Gauss constraint can equivalently be done
either before solving the diffeomorphism constraints or afterwards. The resulting Hilbert space
H G

kin is, similar to the kinematical Hilbert space Hkin still non-separable. In [66] a proposal was
introduced to obtain a separable Hilbert space for Hdiff by allowing fields to have isolated point
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of non-differentiability. The associated gauge symmetry is an extension of Diff(Σ) and includes
homeomorphisms that, together with their inverse are smooth everywhere except at at most finitely
many points. An application of the RAQ program with respect to this extension of Diff(Σ) yields a
separable Hdiff.

3.4 More on representations of A

We have already discussed one representation of the canonical commutation relations (3.1)
(or rather their integrated version (3.13)). This was the diffeomorphisms covariant representation
(3.19) on the Ashtekar-Lewandowski Hilbert space Hkin. In this section we would like to discuss
other representations. Why would it be interesting to do so? There are some aspects of the standard
representation that are peculiar, and one might wonder whether there are other representations that
do not have these properties. Examples are: In the standard representation,

• there are no operators representing the connection A directly,

• the generator of the unitary maps implementing diffeomorphisms does not exist,

• the spectrum of geometric operators is purely discrete.

Natural requirements for a “fundamental” representation include:

1. The representation is irreducible, i.e., each state in the representation Hilbert space is cyclic.

2. The representation is diffeomorphism covariant, i.e., there exist unitary operators implement-
ing the diffeomorphisms.

3. There is at least one state that is invariant under diffeomorphisms.

A representation with all these characteristics is, however, equivalent to the the Ashtekar-Lewandowski
representation (3.19). This is a consequence of the uniqueness theorem

Proposition 1 ([67, 45]). There is only one cyclic representation of A with diffeomorphism invari-
ant cyclic vector – the Ashtekar-Lewandowski representation (3.19).

We note that to really prove the above proposition, the algebra A and the class of diffeomor-
phisms has to be defined in great detail. We also note that there are interesting representations
that violate one or more premises of the above proposition.6 For example, [68] exposes a diffeo-
morphism invariant representation that is reducible. In [69], a cyclic and diffeomorphism invariant
representatiopn of an algebra slightly larger than the one from the above proposition are described.

In the following, we will however describe a simpler class of representations due to Koslowski,
[70, 71, 72]. These representations have been called representations with classical spatial back-
ground geometry. The basic observation is that the Ashtekar-Lewandowski representation is a
member of a family of very similar representations. The AL ground state is peaked on a degenerate

6To be precise, the examples given in the literature are for the somewhat simpler case of the structure group SU(2)
replaced by U(1), but it is likely that they generalize to the SU(2) case.
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triad E(0) = 0. But it is easy to construct similar representations which, however are peaked on
different classical triad fields E(0). A rough sketch of the situation is as follows:

AL ground state Ω =̂ δ0(E) in momentum rep. (3.109)

Ground states w. background ΩE(0) =̂ δE(0)(E) in momentum rep. (3.110)

How are these representations defined precisely? The Hilbert space, and the representation of the
holonomies stays the same,

HE(0) = Hkin, πE(0)(h) = h, (3.111)

but the representation of the fluxes is changed by adding a c-number term,

πE(0)(En(S)) = Xn(S)+E(0)
n (S) id, E(0)

n (S) =
∫

S
∗E(0)

i ni d2x. (3.112)

The new representations have the following properties.

• The representations πE(0) are cyclic.

• One can regularize the geometric operators in the representations πE(0) with exactly the same
methods as in the standard representation (described in sec. 3.2). The resulting operators are

Âr(S) = ÂrAL(S)+Ar(E(0),S) id, V̂ (R) = V̂AL(R)+V (E(0),R) id, (3.113)

where S is a surface, R a region, the subscript AL denotes operator in the standard represen-
tation7, and the c-number terms are given by the classical value in the respective background.
This result is very simple to state, but the proof is non-trivial [71].

• Only the symmetries of E(0) can be implemented unitarily in the new representations.

We also note that for E(0) = 0, we recover the standard representation from (3.111),(3.112). Equa-
tion (3.113) shows that the new representations can be interpreted as containing a “geometric con-
densate”.

If we want to use the more general representations in the place of the standard representation
when implementing constraints, the failure of the diffeomorphisms to be implemented unitarily is
of concern. For example, for the operators U(φ) implementing the diffeomorphisms in the standard
representation one finds that generically

U(φ)πE(0)(En(S))U(φ)† 6= πE(0)(Eφ∗n(φ(S))) (3.114)

for diffeomorphisms φ . But one can easily show that one can also not find other unitaries that will
do the job. The reason is that the geometrical background E(0) is fixed can can not transform under
any operation on HE(0) ≡Hkin. There is a way to remedy this problem, at the price of going over
to a much larger Hilbert space and a reducible representation. Let us use the notation

|T 〉E(0) ≡ |T,E(0)〉 (3.115)

7V̂AL can be either, the Ashtekar-Lewandowski, or the Rovelli-Smolin version, depending on which regularization
procedure is chosen.
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for a spin network function T interpreted as an element of HE(0) . Then define

H[E(0)] =
⊕

E(0)∈[E(0)]

HE(0) . (3.116)

Here the direct sum is over all background triads in one gauge and diffeomorphism equivalence
class,

E(0) ∈ [E(0)] ⇐⇒ ∃g,φ : E(0) = Adg(φ∗E(0)), (3.117)

where g denotes a gauge transformation and φ a diffeomorphism. We note that the Hilbert space
(3.116) is thus labeled by a spatial metric modulo diffeomormphisms, that is, a spatial geometry, or
a point in superspace. A is represented on H[E(0)] through the direct sum of the representations πE(0)

for E(0) ∈ [E(0)], and gauge transformations, diffeomorphisms, as well as their semidirect product
can be implemented unitarily. The representation on H[E(0)] is not cyclic, however.

Starting from H[E(0)], it is possible to obtain states that solve the diffeomorphism and Gauss
constraint by group averaging, just as in the case of the standard representation discussed in detail
in sections 3.3.2. Let us consider the diffeomorphisms as an example. We make the definitions

TDiff([s],E(0)) := {Diffeos φ : φ∗E(0) = E(0) and φ · s = s} (3.118)

TDiff([γ],E(0)) := {Diffeos φ : φ∗E(0) = E(0) and φ(e) = e for all edges e of γ} (3.119)

Note that these definitions exactly parallel those used in the detailed treatment of the group aver-
aging procedure in section 3.3.3. Like in the standard case both of these sets actually form groups.
Moreover their quotient , the group of spin network symmetries given by

S([s],E(0)) = TDiff([s],E(0))/TDiff(γ,E(0)) (3.120)

can be shown to be a finite group. Here, it is understood that Ts is cylindrical on the graph γ .
Then group averaging for a spin net Tγ in the E(0)-sector of H[E(0)] effectively reduces to averaging
over diffeomorphisms modulo TDiff([s],E(0)) denoted by Diff[s](Σ) = Diff(Σ)/TDiff([s],E(0)) and over
S([s],E(0)). More precisely, let

(Ts,E(0)|Ts′ ,E ′(0)〉 := a[γ]|S[s]| ∑
G(φ)∈Diff[s](Σ)

〈Ts,E(0) |PS
([s],E(0))

U†
φ
|Ts′ ,E ′(0)〉, (3.121)

where the projection PS
([s],E(0))

is defined as

PS
([s],E(0))

|Ts,E(0)〉 :=
1∣∣∣S[s],E(0))

∣∣∣ ∑
G(φ)∈S

[s],E(0))

Uφ |Ts,E(0)〉. (3.122)

Now it is easy to show that

Proposition 2. The linear functionals (Ts,E(0)| are well defined, finite, and diffeomorphism invari-
ant,

(Ts,E(0)| ◦Uφ = (Ts,E(0)| for all φ ∈ Diff. (3.123)
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Again, these definitions reduce, for the case E(0) = 0, to the diffeomorphism averaging map
defined in section 3.3.3. Similar results can be obtained for gauge transformations and, taking
the semidirect product of diffeomorphisms and gauge transformations, for bundle automorphisms.
This means that the quantum kinematics can be developed to the same point for the new representa-
tions as for the standard representation. Among other things, this shows nicely that diffeomorphism
invariance is not antithetical to being peaked on a fixed geometry.

As an example consider the operator V̂ol for the volume of the entire spatial slice. Also in
the new representations, it commutes with all automorphisms. It thus defines an operator on Haut.
Moreover, this operator acts in precisely the way one would expect. If f is an eigenstate of the
volume operator in the standard representation, with eigenvalue λ , then | f ,E(0)) is an eigenvector
of V̂ol with eigenvalue λ +Vol(0).

We also note that the invariant states resulting from the vacuum representation are again con-
tained in these constructions as the special case E(0) = 0. Finally, while H[E(0)] is large, this is
partially remedied by the group averaging. For example, vectors |1,E(0)〉, |1,E ′(0)〉 ∈ H[E(0)] are
mapped onto the same vector in Haut. More generally

( f ,φ∗E(0)|= (φ−1
∗ f ,E(0)|. (3.124)

4. Quantum dynamics

In this section we discuss the quantum dynamics of loop quantum gravity. In the case that we
use pure Dirac quantization the dynamics is encoded in the Hamiltonian constraint and its quanti-
zation is explained in section 4.1. When we consider the Brown-Kuchar or the scalar field model
earlier introduced the dynamics is encoded in a so called physical Hamiltonian. However, the quan-
tization of the latter relies in both models on techniques that have been used for the Hamiltonian
constraint. The details of the quantization of the Brown-Kuchar model are discussed in section 4.2,
whereas the quantum theory of the scalar field model is presented in 4.3.

4.1 The quantum Hamilton constraint

As we have seen in section 2.1, the Hamilton constraint of the classical theory is given by

C =
β

2
1
√

q
Ea

i Eb
j ε

i j
kFk

ab︸ ︷︷ ︸
=:CE

−β (1+β
2)

1
√

q
Ea

i Eb
j Ki

[aK j
b]︸ ︷︷ ︸

=:T

. (4.1)

In the present section we will discuss how to turn this classical expression into a well defined
operator. The general difficulty with this is obviously that C is a complicated nonlinear function
in the phase space variables, hence ordering problems present themselves. There are also some
specific difficulties with the expression:

• (4.1) contains the inverse volume element. The volume element itself has a large kernel when
quantized, see the discussion in section 3.2, so its inverse is ill defined.

• The expression (4.1) contains the curvature F of A, as well as the extrinsic curvature K. For
neither of them there is a simple operator in the quantum theory.

41



P
o
S
(
Q
G
Q
G
S
 
2
0
1
1
)
0
0
2

From Classical to Quantum Gravity: Introduction to Loop Quantum Gravity

A guiding principle in the quantization process can be the Dirac algebra (2.18)–(2.20). In particu-
lar, the quantum Hamiltonian constraint should be invariant under gauge transformations, covariant
under diffeomorphisms, and the commutator of two Hamilton constraints should give a diffeomor-
phism constraint.

We should say that the knowledge about the quantization and implementation of the Hamilton
constraint is not complete. Many things remain to be understood. But we will show that at least
there is a strategy that leads to well defined constraint operators. Given the difficulties outlined
above this is highly nontrivial in itself.

The quantization strategy we will describe in the following is due to Thiemann [73, 74, 75],
but draws on important earlier work and ideas by Rovelli, Smolin, Lewandowski and others. Our
presentation is in part based on [5].

Thiemann’s tricks

The quantization is based on two key ideas. The first one is to use various ingenious classical
identities to express parts of the Hamilton constraint in terms of Poisson brackets before quanti-
zation. The second one is to express curvature in terms of holonomies. Let us explain them in
turn.

Let
V =

∫
Σ

d3x
√

detq, K =
∫

Σ

d3xKi
aEa

i (4.2)

be the total volume of the spatial slice, and the integrated extrinsic curvature. Then

Ea
i Eb

j ε i jk

√
detq

=
4
κ

ε
abc{V,Ak

c}, K j
a =

2
κ
{K,A j

a}. (4.3)

These identities can be used to write

CE(N) = c
∫

Σ

d3xNε
abc tr(Fab{Ac,V}) , (4.4)

T (N) = c′
∫

Σ

d3xNε
abc tr

(
{Aa,K}{Ab,K}{Ac,K}

)
, (4.5)

where we have used the notation for the two parts of the Hamilton constraint introduced in (4.1).
The constants are c = 8/κ and c′ = 16/κ3. The idea behind these reformulations is that it is natural
to replace Poisson brackets by commutators in the quantization process,

{ · , · } −→ 1
ih̄

[ · , · ]. (4.6)

This means that the quantization would be greatly simplified if operators existed for the quantities
V,K. Indeed we have already seen in section 3.2 that an operator exists for V . With respect to K,
the identity

K = {V,CE} (4.7)

suggests to first quantize CE, and then use the commutator with the volume operator to define the
operator for K. Thus we have already dealt with two of the difficulties regarding the quantization of
C: The inverse volume element is gone, and the extrinsic curvature is dealt with. What remains is
the quantization of the curvature F of A. Here we use the well known fact that holonomies encode
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information about curvature. Let S be an oriented surface such that the integral
∫

S F is small, and
let α be the (oriented) boundary of S. Then the first term on the right hand side of

∫
S

F =
1
2
(
hα −h−1

α

)
+O

((∫
S

F
)2
)

(4.8)

is a good approximation to the left hand side. Let e be an edge starting at a point s(e). A similar
approximation plus a second Taylor expansion gives

ε ėa(s(e)){A(s(e))a,V} ≈ h−1
e {he,V} (4.9)

where ė is the tangent to e in a chosen parametrization e(t) , and ε is the coordinate length ε =
∫

e dt
of the edge in the given parametrization. In this way, we can express curvatures and connections by
holonomies. Putting everything together we can get a Riemann sum approximation of the Euclidean
part of the constraint,

CE(N)≈C(�)
E :=

c
2 ∑

�

N(v�)
3

∑
I=1

[(
h−1

αI(�)−hαI(�)

)
h−1

sI(�)

{
hsI(�),V

}]
. (4.10)

Here {�} is a decomposition of Σ into 3-dimensional cells, and for each cell a point v� has been
fixed. {αI(�)} is a set of loops and {sI(�)} a set of edges such that their tangents span the tangent
space in the point v� in the following sense: there is a basis {bI(�)} of the tangent space at v(�),
such that bI(�) is tangent to both αI(�) and sI(�), and compatible with their orientations. We call
the data ({�}, {v�}, {sI(�)}, {αI(�)}) a regulator of CE, and sometimes denote it simply by �.
The exact shape of these cells, loops and edges does not matter. The approximation is good as long
as the cells are much smaller than the scale on which the fields A,E vary, and the loops and edges
stay within the cell.

Finally, we can consider families of regulators such that the cells shrink to points. Then the
corresponding approximations will converge to the exact result for a wide variety of such families.

The same kind of arguments can also be made for the second part of the Hamiltonian con-
straint T (N). The connection components Aa in (4.5) can be replaced by holonomies along edges
with suitable tangents, and the integrated exterior curvature K by Poisson brackets of V with the
regulated Euclidean part (4.10), as per (4.7). The resulting expression is quite complicated and
contains ambiguities, but the correct refinement limit is obtained for a large class of regulators.

Quantization

We will now come to the quantization. The general idea is clear: Pick a family of regu-
lators which converge to the continuum result. Replace Poisson brackets by commutators, and
holonomies and volume operators by their operator counterparts, and obtain operators

Ĉ(�)
E (N) =

c
2 ∑

�

N(v�)
3

∑
I=1

((
h−1

αI(�)−hαI(�)

)
h−1

sI(�)

[
hsI(�),V̂

])
. (4.11)

on the kinematic Hilbert space. Now take the refinement limit �→ Σ to obtain an operator ĈE.
There are, however, several difficulties when putting this program into practice:
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1. In the limit of infinite refinement, the operator is in danger of creating infinitely many loops
and edges. Hence the limit may be ill defined.

2. Even if problem 1. can be overcome, the operator will generically not converge, since typi-
cally Ĉ(�)

E Ψ⊥ Ĉ(�′)
E Ψ for regulators � 6= �′.

3. Since h and V̂ do not commute, there are ordering ambiguities.

4. There is a lot of ambiguity in the choice of regulators since now there is no guarantee that
different families of regulators will converge to the same operator, if they converge at all.

The first problem can be solved by a suitable ordering. Let us consider the action on a spin network.
The volume operator acts only at the vertices, hence ordering it to the right will force the loops and
edges that are created by ĈE to be attached to the vertices of the spin network only. Thus, for a
given spin network, only finitely many new edges and loops can be created. This also partially
solves problem 3. To deal with the rest of the difficulties, we will be less ambitious, and not
demand convergence in the kinematic Hilbert space. Rather, we consider the matrix elements of
Ĉ(�)

E between one kinematic state and one diffeomorphism invariant one. It turns out that due to
the diffeomorphism invariance of the one state, many of the ambiguities in the attachment of the
loops and edges do not change the matrix elements. What is more, for several types of regulators it
is known that the matrix elements converge,

lim
�→Σ

(Ψ|Ĉ(�)
E | fγ〉 is well defined. (4.12)

Typically, the matrix elements already become constant at a finite refinement, namely when the
decomposition of Σ into cells is already so fine that there is at most one vertex of γ per cell.

Now we have to be careful. Convergence of the above matrix elements does not imply that
there exists a limit operator on the kinematic Hilbert space. Rather, we can interpret (Ψ|Ĉ(�)

E | as an
element in the (algebraic) dual space of Cyl, and hence conclude that there is an operator

Ĉ†
E : Hdiff −→ Cyl∗ . (4.13)

The detailed features of this operator depend on the chosen family of regulators. But the generic
features do not:

• Ĉ†
E acts locally at the vertices.

• It acts by creating and annihilating edges and loops.

One can proceed in the same way with the quantization of T (N), but since the quantized expres-
sion contains double commutators with Ĉ(�)

E , the operator action becomes extremely complicated.
Nevertheless it is well defined and finite.

Solutions

Given the definition of the Hamilton constraints we sketched above, what are the solutions?
They are states Ψ in Hdiff such that

(Ψ|C(N) f 〉= 0 for all f ∈ Cyl and all N. (4.14)
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One simple solution is the LQG vacuum | 〉, which can also be interpreted as a state in Hdiff. But
more complicated solutions exist. For working out the set of solutions in some detail, details of
the regularization used in the quantization of the constraints have to be fixed, since they do matter.
Suffice it to say that so called exceptional edges play an important role in the construction of
solutions. Exceptional edges are edges of the type created by the quantum constraint itself. We
will not discuss this in detail, but refer to [73, 74, 75, 5] for more detailed accounts.

Solutions lie in the intersection of the kernels of all Hamilton constraints. Formally, the pro-
jector on this space can be expressed and approximated as follows [76]:

PC = δ (Ĉ) =
∫

DNeiĈ(N)

= 1+ i
∫

DN
∫

N(x)Ĉ(x)+
i2

2

∫
DN

∫∫
N(x1)N(x2)Ĉ(x1)Ĉ(x2)+ . . . .

(4.15)

Ĉ(x) denotes the local action of the constraint, which is zero unless x is the position of a vertex of the
state acted upon. The path integral over N gives an infinite result, but by requiring diffromorphism
invariance, it can be split into a divergent term that can be normalized away, and a finite remainder
[77].

The matrix elements of the projector can then be expanded into a series

(Tγ1 |PCTγ2) =
∞

∑
N=0

∑
v1

. . .∑
vn

cv1...vN (Tγ1 |Ĉ(v1)Ĉ(v2) . . .Ĉ(vN)|Tγ2) (4.16)

where the finite sums are over all vertices of γ2 and cv1...vN is the finite remainder of the integral
over the lapse function. It only depends on the diffeomorphism equivalence class of the vertex set
{v1,v2, . . .vN}. We note that a priori the multiple applications of the local constraint in (4.16) do
not make sense, since we have up to now only defined the constraint operators in such a way that
domain and range are disjoint, see (4.13). But it is possible to enlarge the domain of definition in
such a way that multiple applications of the constraints become possible [77, 78]. We will sketch
how this is done when we discuss the question of anomalies below.

These matrix elements are interesting, because in principle they contain all the information
about the inner product on the Hilbert space of physical states,

(Tγ1 |PCTγ2) = 〈PC Tγ1 |PC Tγ2〉phys. (4.17)

The expansion (4.16) can be interpreted as a kind of Feynman expansion, organized in terms of
how many times the constraint acts. The individual terms can be nonzero only if the action of the
constraint operators on Tγ2 produces exactly Tγ1 . Thus the non-zero diagrams can be thought of as
terms coming from the evolution of one spin network state into another. More precisely, they can
be labeled by a two-complex, whose faces carry representations and whose edges carry intertwin-
ers. The complex has the graphs γ1,γ2 as boundaries, and the internal vertices correspond to the
cation of the constraints. These diagrams are called spin foams, and they show up independently
in approaches that discretize the covariant path integral for gravity, compare the contribution by
Rovelli. That they show up in an expression for the physical inner product of the canonical theory
is a very encouraging link between canonical and covariant picture. In fact, in the light of the re-
cent developments that are treated in Rovelli’s contribution to this volume, we are getting close to
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actually having a precise correspondence

quantum Hamilton constraint ←→ spinfoam model. (4.18)

We will now discuss some further aspects of the Hamilton constraint quantization.

Symmetry, anomaly freeness, ambiguities

In principle, it would be desirable to produce a symmetric, or even selfadjoint Hamiltonian
constraint,

C†(N) = C(N). (4.19)

But this turns out to be hard in practice, and there are even some no-go theorems [78]. Interestingly,
there are heuristic arguments to the effect that one can not have both, symmetric constraints and a
constraint algebra that is anomaly free.

We have seen that the constraints classically close to form an algebra with respect to the Pois-
son bracket. The same should happen on the quantum level, now with respect to the commutators.
Otherwise the gauge symmetries may have been broken when quantizing the theory. Such an
anomaly in the gauge symmetries would strongly suggest the quantum theory to be unphysical. In
particular, we are interested in the commutators

[C(M),C(N)] (4.20)

since by the above construction, we can already see that the Hamilton constraints transform cor-
rectly under gauge transformations and diffeomorphisms. Classically the above commutator is
proportional to a diffeomorphism constraint, hence at minimum one requires that the commutator
should vanish states of Hdiff. The problem is that the constraints map Hdiff to a certain subspace of
Cyl∗ which is strictly larger than Hdiff. So the above commutator is not well defined, as it stands.
There are two proposed solutions to this problem. The first, by Thiemann [75], is to look at the
commutator on Hkin, before removing the regulator. He finds

[C(�)(M),C(�)(N)] = something 6= 0, (Ψ| something = 0 for |Ψ) ∈Hdiff. (4.21)

In this sense,
[C(M),C(N)]|Hdiff = 0, (4.22)

and the quantization is anomaly free. The other solution to defining the commutator is by Lewan-
dowski and Marolf [78]. They introduce a certain class of elements of Cyl∗ that is slightly larger
than Hdiff. Without going into technical details, a vertex-smooth state |Ψ) is a state

|Ψ) ∈ Cyl∗ : (Ψ|Uφ fγ) is a function of V (φ(γ)), (4.23)

i.e., of the set of vertices of the graph φ(γ), for any diffeomorphism φ . Trivial examples of vertex
smooth states are given by diffeomorphism invariant states. A less trivial example is the linear
functional given by

Ψ
′ 7→ (Ψ|

∫
Σ

N
√̂

detq||Ψ′〉 (4.24)

for a lapse function N and |Ψ) in Hdiff.
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Lewandowski and Marolf observe that (Ψ|C(N) is vertex-smooth for a large class of regula-
tors, and that its action can be extended to vertex-smooth states. Moreover, they find

(Ψvs|[C(M),C(N)] = 0, (4.25)

where Ψvs is vertex-smooth. As far as diffeomorphism invariant states are concerned, this result
would be expected for an anomaly free representation. But since it holds for all vertex-smooth
states, it is surprising and a little worrisome, since the term in the Dirac algebra that results from the
Poisson bracket of two Hamiltonian constraints, a diffeomorphism constraint, would be expected
to act non-trivial on most vertex smooth states. But this has to be checked explicitly, and it may be
possible to find quantizations of this term that indeed vanish on vertex-smooth states. New light on
this question may be shed by new results of Laddha and Varadarajan [79, 80, 63], who employ new
techniques to define constraints and their commutator algebra.

We should not finish without pointing out that there are various ambiguities in the above proce-
dure that are poorly understood, for example regarding the loop attachment and the representation
of the newly created links (see however [81]). Overall, it is however very encouraging that we
can find a family of well defined constraint operators that are anomaly free in a certain sense, and
that lead to a convergence of the canonical and the spin-foam picture. Given the complexity of the
Hamiltonian constraints of general relativity, these results are highly non-trivial.
Some of the techniques discussed in this section will be used in the following two sections where
the quantization of the two classical models introduced in section 2.2.1 and 2.2.2.

4.2 The quantum Brown-Kuchar model

In this section we will discuss the quantization of the Brown-Kuchar model introduced in
section 2.2.1. We want to quantize the reduced phase space whose elementary variables are given
by the observables AJ

j and E j
J shown in equation (2.29). Hence we need to look at the algebra of

these elementary observables in order to know what kind of representations are possible for the
corresponding quantum theory. A property of those models where deparametrization occurs is that
the algebra of the elementary observables is isomorphic to the kinematical one, that is

{AJ
j(σ),Ek

K(σ ′)}=
κ

2
δ

J
Kδ

k
j δ

3(σ ,σ ′) (4.26)

In general the algebra of observables can be more complicated and is given by the expression [82]

{OA,T ,OE,T} ' O{A,E}∗,T (4.27)

which involves the Dirac bracket denoted by {., .}∗. Here we denoted the general observables as-
sociated with A,E with respect to a reference field T by OA,T and OE,T respectively. The reason
why the Dirac bracket occurs on the righthand side is that the originally first class constraint of a
given system together with the gauge-fixing constraints for the clock fields CI := TI− τI , where I
labels the individual reference fields of a given model, form a system of second class constraints.
Applied to general relativity, we would start with the first class system given by the Hamiltonian
C and spatial diffeomorphism constraint Ca . Then for the Brown-Kuchar-model we choose four
reference fields T,S j with j = 1,2,3 and obtain four gauge-fixing constraints C0 = T − τ = 0,
C j = S j−σ j = 0. In the framework of gauge unfixing introduced in [83] the construction of the
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observables in section 2.2.1 corresponds to transforming the second class constraints C and Ca

again into first class constraints and using the gauge-fixing constraints to construct a projector that
maps A and E onto their corresponding observables with respect to the now first class constraints C
and Ca. Thus, the way how observables are constructed in the relational framework is a particular
case of the gauge unfixing procedure.
It seems that for the Brown-Kuchar-model the quantization of the reduced phase space seems to be
a trivial task and considering only the algebra it looks like even a Fock quantization would be possi-
ble. However, this is not the case because likewise to the Dirac quantization where one requires that
the kinematical representation needs to allow to implement the constraints as well defined opera-
tors, here we are only interested in those representations in which the physical Hamiltonian Hphys

in (2.33) can be implemented as a well defined operator. Since Hphys consists of terms that involve
the gravitational contribution of the Hamiltonian and diffeomorphism constraint, Fock quantiza-
tion is excluded. However, a possible representation would be the one of the (gauge invariant)
kinematical Hilbert space in LQG on which the constraint operators can be defined. Note that
this representation becomes physically in this model since we are quantizing the reduced phase
space here. Hence, as a first possible representation for Hphys let us choose Hphys = L2( ¯A ,dµAL),
restricted to its gauge invariant subspace. Now, our task is to quantize the generator of the dynam-
ics, that is Hphys. On the classical reduced phase space the expression h2(σ) = C2−q jkC jCk is
constrained to be positive. Implementing this in the quantum theory would correspond to defining
self-adjoint operators for h2(σ) and restrict for each σ the spectral resolution of the Hilbert space
to the positive part of the spectrum. Since this is technically impossible at the moment because of
the complexity of the operators in the full theory, we use the absolute value under the square root
and instead and quantize

Hphys =
∫
S

d3
σ

√∣∣C2−q jkC jCk
∣∣(σ) (4.28)

As a first step, likewise to the construction in section 4.1, we need to regularize the classical ex-
pression. For this purpose we choose a partition of the spatial dust manifold S into 3 dimensional
cells � such that S =

⋃
�. Hence, Hphys can be written as

Hphys = ∑
�

∫
�

d3
σ

√∣∣C2−q jkC jCk
∣∣(σ) (4.29)

Let us denote the refinement limit in which the partition becomes the continuum by �→S , the
volume of the cells by V0(�) and a point inside � by σ(�), then we can rewrite Hphys as a limit of
a Riemann sum

Hphys = lim
�→Σ

∑
�

V0(�)
√∣∣C2−q jkC jCk

∣∣(σ(�)) (4.30)

As a second step we will reformulate the expression under the square root above so that we are able
to use quantization techniques that have been successfully applied to the case of the Hamiltonian
constraint and have been discussed in section 4.1. For simplicity we will restrict our discussion
to the euclidean part of the Hamiltonian constraint CE . As has been explained in section 4.1 once
this part has been quantized the remaining part can be quantized using the operator for CE . We
introduce the (rescaled) magnetic field B j

J and its contraction with a co-triad given by

B j
J := 2ε

jk`FJ
k`, B := B j

JτJe j (4.31)
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where τJ =−iσJ/2 are, as before, a choice of a basis for su(2), σ j are the Pauli matrices and FJ
jk is

the curvature associated to AJ
j . Note that the index position of the capital indices is not important

here since these are the su(2) Lie algebra indices are pulled with δ JK . Using that Tr(τJτK) =−1
2 δJK

we obtain
Tr(B) =−ε

jk`FJ
k`e

J
j (4.32)

The co-triad can be expressed in terms of triads by the following formula

eJ
j =

1
2

1

det(e j
J)

ε
JMN

ε jmnem
Men

N (4.33)

together with the identities E j
J =

√
det(q)e j

J and det(eJ
j) = sgn(det(e))

√
det(q) we obtain

Tr(B) =−sgn(det(e))
εJKLFJ

k`E
k
KE`

L√
det(q)

(4.34)

Consequently we have [Tr(B)]2 = C2
E . For the second term under the square root q jkC jCk using

q jk = E j
J Ek

Kδ JK/det(q) and C j = FK
jkEk

K we obtain

q jkC jCk =
FL

` jE
`
LE j

JFM
mkEm

MEk
Kδ JK

det(q)
(4.35)

On the other hand when we use that Tr(τIτJτK) = 1
4 εIJK and consider the term 4Tr(BτK) we obtain

4Tr(BτK) =−sgn(det(e))
FI

k`E
k
I E`

K√
det(q)

(4.36)

Thus we have
q jkC jCk = 16Tr(BτJ)Tr(BτK)δ JK =: δ

JKCJCK (4.37)

Let us introduce the quantities

C(�) :=
∫
�

d3
σC(σ) CJ(�) :=

∫
�

d3
σCJ(σ) (4.38)

then in the refinement limit we can rewrite Hphys as

Hphys = lim
�→S

∑
�

√
|C2(�)−δ JKCJ(�)CK(�)| (4.39)

and this finishes the regularization of the classical expression. Using the notation τ̃µ := (−I2,4τJ)
with µ = 0,1,2,3 and the classical identity in (4.3) we can rewrite the regularized expressions as

Cµ(�) =
∫
�

d3
σTr(Bτ̃µ) =

4
κ

∫
�

Tr(F∧{V(�),A}τ̃µ) (4.40)

where V (�) is the volume of � given by

V (�) =
∫
�

d3
σ
√

det(q) (4.41)
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The corresponding quantum operator is then defined as

Ĥphys = lim
�→S

∑
�

√∣∣∣Ĉ†
0(�)Ĉ0(�)−δ JKĈ†

J(�)ĈK(�)
∣∣∣ (4.42)

and one needs to show that the limit yields a well defined operator on Hphys. For the operator
Ĉ0(�) this has been shown in [26] and is briefly discussed in section 4.1. The operator ĈI(�)
can be quantized using similar techniques since in its definition also enters the Tr(B) term with an
additional τ̃J matrix inside the trace. At this point the symmetries of the classical physical Hamilto-
nian become important. As mentioned in section 2.2.1 the physical Hamiltonian is invariant under
(active) diffeomorphisms on the dust manifold S and we would like to preserve this symmetry also
in the quantum theory having the consequence that Ĥphys needs to be implemented as a spatially
diffeomorphism invariant operator. The representation we choose for Hphys is the gauge invariant
sector of the usual kinematical representation of LQG, namely L2( ¯A ,dµAL). For this representa-
tion it was shown in [44] that spatially diffeomorphism invariant operators, need to be quantized
in a graph preserving way, meaning that those operators do not modify the underlying graph that
a spin network function is defined on. However, in its usual quantization discussed in section 4.1
the operator Ĉ0 is quantized in a graph changing way. Thus, choosing the usual kinematical rep-
resentation of LQG for Hphys together with the requirement that the classical symmetries of Hphys

carry over to the quantum theory forces us to quantize the operators Ĉµ in a graph preserving way.
Since the Hilbert space in the chosen representation decomposes into an orthogonal sum of the
Hilbert spaces associated with each individual graph, this means that each of these graph Hilbert
spaces needs to be preserved separately. In order to implement this graph preserving property we
introduce the notion of a minimal loop: Given a graph γ , consider a vertex v ∈ V (γ) and a pair of
edges e, ẽ ∈ E(γ) of edges starting at the vertex v. A loop αγ,e,ẽ in γ starting at v going a long the
edge e and ending at v along the edge ẽ−1 is said to be minimal provided that there exist no other
loop in γ with these properties and fewer edges transversed. Using the notion of a minimal loop we
can define an operator for each graph at a given vertex v

Ĉµ,γ,v =
1

`2
p|Tv(γ)| ∑

(e1,e2,e3)∈Tv(γ)
ε

IJK 1
|Lγ,v,eI ,eJ |

∑
α∈Lγ,v,eI ,eJ

Tr
(
τ̃µ ĥα ĥeK [ĥ−1

eK
,V̂γ,v]

)
(4.43)

here Tv(γ) denotes the set of ordered triples of edges at the vertex v, whose tangent vectors at v are
linearly independent. and Lγ,v,eI ,eJ is the set of minimal loops8 Furthermore, V̂γ,v is the Ashtekar-
Lewandowski volume operator shown in equation (3.48). The operator for the physical Hamilto-
nian for each graph γ is then defined as

Ĥphys,γ = ∑
v∈V (γ)

√∣∣Pγ

(
Ĉ†

γ,vĈγ,v−δ JKĈ†
J,γ,vĈK,γ,v

)
Pγ

∣∣ (4.44)

whereby Pγ : Hphys → H ′
phys,γ is an orthogonal projection operator defined analogously to the

orthogonal decomposition shown in (3.29), that needs to be introduced in order to ensure that

8Note that the introduction of the minimal loop here causes no further complication when the semiclassical limit of
this operator is considered. This can for instance be seen in [84] where the semiclassical limit in the context of AQG is
discussed and also the concept of the minimal loop is used in the quantization.
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Hphys,γ is graph preserving. Although the loop is attached along already existing edges of the
graph it can still be the case that when a holonomy operator is acting the resulting product of
representation includes the trivial one. The final operator is then defined as

Ĥphys =
⊕

γ

Ĥphys,γ (4.45)

The fact that Ĥphys has to be quantized in a graph preserving way comes from the spatial diffeo-
morphism invariant corresponding classical expression of the physical Hamiltonian. However, one
might take the point of view that including those projection operators into the operator Ĥphys to
enforce the graph preserving property of the operator looks slightly artificial. A way to avoid this
issue and thus also the projection operators in (4.44) is to change the representation for Hphys. One
possible other representation introduced in the framework of Algebraic Quantum Gravity (AQG)
[29] is von Neumann’s infinite tensor product representation (ITP). In the context of AQG one does
not work with the embedded graphs used in LQG but considers one (fundamental) abstract combi-
natorial graph on which the quantum dynamics is defined. The embedding of the graph into a given
spatial manifold happens only in the semiclassical sector of the theory and how the abstract graph
is embedded is encoded in semiclassical states. To each edge of the abstract graph one associates
an L2(SU(2),dµH) Hilbert space and one considers a graph with countable infinitely many edges.
One of the motivations to introduce the AQG model was that semiclassical computations of dynam-
ical operators technically simplify in this setup. This is due to the fact that for graph preserving
operators the current existing semiclassical states can be used and those operators can be defined
more naturally in the AQG framework. In [84] a combinatorial graph of cubic topology was chosen
and considering this graph we can define an (algebraic) operator for the physical Hamiltonian. The
algebraic version of the operator in (4.43) is given by

Ĉµ,v = ∑
s1,s2,s3=±1

s1s2s3ε
I1I2I3Tr

(
τ̃µ ĥαI1s1 ,I2s2

ĥev,I3s3
[ĥ−1

ev,I3s3
,V̂v]
)

(4.46)

here ev,Is denotes the edge starting at v and going in positive (s=+1) or negative (s=-1) I-direction
and αIs,Js̃ is the unique minimal loop in the algebraic graph of cubic topology, that starts at v goes
along the edge eIs and comes along the edge e−1

Js̃ before ending in v again. In analogy one can
define an algebraic volume operator, that is for a cubic graph of the form

V̂v := `3
p

√√√√∣∣∣∣∣ 1
48 ∑

s1,s2,s3=±1
ε IJKεLMN ĴL

ev,Is1
ĴM

ev,Js2
ĴN

ev,Ks3

∣∣∣∣∣ (4.47)

The final algebraic operator is then given by

Ĥphys = ∑
v∈V (γ)

√∣∣∣Ĉ†
vĈv−δ JKĈ†

J,vĈK,v

∣∣∣ (4.48)

where the sum runs over the countable infinitely many vertices of the algebraic graph. In contrast
to the LQG framework in AQG trivial representations associated to the edges are allowed. The pic-
ture of the dynamics is then that dynamical operators do not change the underlying infinite abstract
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algebraic graph but only representations associated to the edges. However, since trivial representa-
tions are allowed subgraphs of the fundamental algebraic graph can and will be modified so that the
quantum dynamics in the algebraic framework looks similar to the graph modifying one in LQG.
In both formulations the usual LQG and the AQG model geometrical operators are defined on the
physical Hilbert space and are thus observables. Hence, these models are two examples where the
discrete spectra of those operators is carried over to the physical sector.
A further possibility to formulate a model for LQG, in which operators can be defined in a graph
changing way is the scalar field model discussed in section 2.2.2 whose quantization will be dis-
cussed in the next section.

4.3 The quantum scalar-field model

In this section we discuss the quantization of the scalar field model whose classical theory was
introduced in section 2.2.2 and we will closely follow the presentation from [85]. As already men-
tioned at the end of section 2.2.2 the physical Hilbert space Hphys of this model will be constructed
from the gauge invariant subspace of the diffeomorphism invariant Hilbert space denoted by H G

diff
for the reason that the diffeomorphism as well as the Gauss constraint are solved by means of Dirac
quantization. As discussed in section 3.3.2 and 3.3.3 the diffeomorphism invariant Hilbert space
can be constructed by using a rigging map ηdiff : Dkin→D∗diff ⊂D∗kin. In addition in order to con-
struct the operator corresponding to the physical Hamiltonian Hphys of this model, we need another
Hilbert space denoted by Hdiff,x associated to a subgroup denoted by Di f f (Σ,x) of Di f f (Σ) in-
cluding those diffeomorphisms, which preserve a given point x∈ Σ. The construction of the rigging
map for Di f f (Σ,x) works analogously to that of Di f f (Σ) when using the techniques introduced in
section 3.3.2. Next the gauge invariant subspace of these two Hilbert spaces can be easily obtained
because for each gauge invariant cylindrical function f̃ ∈ Cyl, the linear functional ηdiff( f̃ ) is not
affected by gauge transformations that act on f ∈ Cyl in the sense that the expression [ηdiff( f̃ )]( f )
is invariant under gauge transformation. Consequently, we obtain H G

diff and H G
diff,x respectively by

restricting Dkin =Cyl to the subspace of gauge invariant cylindrical functions.

When we decide to do not reduce with respect to the Hamiltonian constraint at the classical level,
we need to construct solutions to the Hamiltonian constraint in the quantum theory, this yields an
equation of the form (

π̂(x)− ĥ(x)
)

Ψ = 0 (4.49)

Taking into account that π̂ is quantized as −iδ/δφ(x) (setting h̄ = 1) we obtain as a (formal)
general solution

Ψ(φ ,A) = e
∫

Σ
d3xφ̂(x)ĥ(x)

ψ(A) (4.50)

where ψ(A) is an SU(2) gauge and spatially diffeomorphism invariant function.

Physical operators, these are operators that correspond to classical Dirac observables, will be de-
fined on Hphys or a dense subspace Dphys of it. We explained in section 3.3.2 that the action of
operators on Hkin can be extended to D∗kin. Therefore, in our case, we have for symmetric dif-
feomorphism and gauge invariant operators L̂ defined originally on Hkin a natural action on Hdiff,
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where we denote the extended operator by L̂′, given by

[L̂′ηdiff( f )]( f̃ ) := [ηdiff( f )](L̂† f̃ ) = [ηdiff( f )](L̂ f̃ ) = 〈ηdiff(L̂ f ) , ηdiff( f̃ )〉diff (4.51)

So far, the operators L̂ are only observables with respect to the diffeomorphism and Gauss constraint
but not with respect to the Hamiltonian constraint. In this model those observables are not con-
structed at the classical level, like in the Brown-Kuchar model of section 2.2.1 but are constructed
as Dirac observables directly in the quantum theory on Hphys. A quantum Dirac observable Ô is
defined as an operator on Hphys (or a dense subspace Dphys) with the following properties

• Ô is SU(2)-gauge and spatially diffeomorphism invariant.

• The operator Ô commutes with the Hamiltonian constraints, that is [Ĉtot(x), Ô] = 0 for all
x ∈ Σ.

Inspired by the relational framework [30, 31] for the classical theory, one can (formally) define a
family of Dirac observables. Let L̂ be an SU(2) gauge and diffeomorphism invariant linear opera-
tors, then the operator Ô(L) defined as

Oτ(L̂) := e
i
∫
Σ

d3x(φ̂(x)−τ(x))ĥ(x)
L̂ e
−i
∫
Σ

d3x(φ̂(x)−τ(x))ĥ(x)
(4.52)

is a quantum Dirac observable. Here τ is the value that the reference field φ takes while being
transformed along its gauge orbit. We need to choose τ(x) := τ with τ being a constant real
number in order to ensure that the resulting operator is spatially diffeomorphism invariant. Note
that the expression above can also be obtained from the requirement that the (formal) solutions
shown in (4.50) should be mapped into solutions by Dirac observables. The classical interpretation
of these Dirac observables is precisely the analogue of those formal power series used to construct
the observables AJ

j and E j
J in the Brown-Kuchar model shown in equation (2.29). Explicitly, we

have in the quantum theory

Oτ(L̂) =
∞

∑
n=0

in

n!

L̂,
∫
Σ

(φ̂(x)− τ)ĥ(x))


(n)

(4.53)

which is the quantization of the classical expression

Oτ(L) =
∞

∑
n=0

1
n!
{L,

∫
Σ

(φ(x)− τ)h(x))}(n) (4.54)

The quantum dynamics of the observables is given by the following equation

−i
d

dτ
Oτ(L̂) =

[
O(L̂), Ĥphys

]
(4.55)

and those equations are the analogue of the Heisenberg picture in quantum mechanics. Our final
task is to implement the operator Ĥphys that is a quantization of the classical expression in (2.39).
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Promoting the individual terms under the square root in Hphys to operators we obtain the heuristic
expression

Ĥphys =
∫
Σ

d3x

√
−
√

q̂Ĉ +
√

q̂
√

Ĉ2− ̂qabCaCb (4.56)

where q̂ := d̂et(q). This operator will be defined on a suitable domain of H G
diff and thus act only

on states that are spatially diffeomorphism invariant as long as we restrict to the operator evolution
defined by (4.53). The operators corresponding to the classical expression qabCaCb should annihi-
late diffeomorphism invariant states. Therefore, assuming a suitable operator ordering for Hphys we
assume that we can work with the simplified operator

Ĥphys =
∫
Σ

d3x
√
−2
√

q̂Ĉ :=
∫
Σ

d3xĥ(x) (4.57)

and this is also the physical Hamiltonian suggested by Rovelli and Smolin in [35]. Although
we can use some of the already existing quantization techniques in the literature for Ĉ and

√
q̂

respectively, what we need to define is an operator for
√
−2
√

qC and the already existing operators
are the Hamiltonian constraint Ĉ smeared against arbitrary lapse functions (graph-modifying) in
[26], the master constraint mentioned in section 2.2 [27] (graph-modifying and graph-preserving)
and the physical Hamiltonian of the Brown-Kuchar model (graph preserving) in [34]. The physical
Hamiltonian Ĥphys for the scalar field model will be defined on a suitable domain of H G

diff in a graph
changing way. Let us briefly sketch the quantization procedure. The regularization of the classical
expression for C will be that of [5], where the operator valued distribution for Ĉ is defined as∫

Σ

d3xN(x)Ĉ(x) = ∑
x∈Σ

N(x)Ĉ′x (4.58)

One of the differences to the regularization chosen by Thiemann in [26] is the way how the loop is
attached to the graph on which the spin network functions are defined on. In Thiemann’s proposal
the loop runs along the edges eI and eJ that belong to the graph γ (see section 4.1) whereas in the
regularization in [5] the loop lies in the plane spanned by the edges eI and eJ but is only connected
to the graph at the vertex v. Note that neither the operator

√̂
qĈ(x) nor the operator ĥ(x) are

defined on H G
diff due to their dependence on x that breaks diffeomorphism invariance. Therefore,

we need the Hilbert spaces H G
diff,x in order to implement those operators in the quantum theory.

Each individual operator Ĉ′x maps its domain from Hdiff to Hdiff,x and as discussed in [85] defines
naturally an operator on Hdiff,x. The operators Ĉ′x from [5] are non-symmetric, which is no problem
as long as we are working with constraint operators. However, here we are quantizing a physical
Hamiltonian, that involves a square root and we will need to perform a spectral decomposition in
order project on the positive part of the spectrum of the operator under the square root. Therefore,
we consider the operators

Ĉx :=
1
2
(
Ĉ′x +Ĉ′†x

)
(4.59)

The operator valued distribution, that we consider for implementing the Hamiltonian density h(x)
of Hphys is then of the form

Ĉ(x) := ∑
x′∈Σ

δ (x,x′)Ĉx′ (4.60)
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Likewise one can define an operator valued distribution for the classical expression
√

q given by

√̂
q(x) = ∑

x′∈Σ

δ (x,x′)
√̂

qx′ (4.61)

Note that both operator values distributions above are well defined for the reason that when they
are smeared against an arbitrary smearing function F and applied to some cylindrical function only
a finite number of non zero terms occur in the sum∫

Σ

d3xF(x)
√̂

q(x) fγ =
N

∑
k=1

F(vk)
√̂

qvk
fγ (4.62)

where v1, ...,vN are the vertices of the graph γ and similar for the operator Ĉ(x). The expressions
in (4.60) and (4.61) can then be used to define an operator for Hphys =

∫
Σ

h(x) on (a subspace of)
H G

diff,x

ĥ(x) := ∑
x′∈Σ

δ (x,x′)

√
−2
√̂

q
1
2

x′Ĉx′
√̂

q
1
2

x′ (4.63)

Due to the square root in the equation above ĥ(x) is only well defined on the subspace of H G
diff,x

where the spectrum of
√̂

q
1
2

x′Ĉx′
√̂

q
1
2

x′ is positive. In order to be able to consider only the positive
part of the spectrum we need to choose a selfadjoint extension for ĥ(x) and in general this choice
might not be unique. Let us denote the subspace of Hdiff,x corresponding to the positive part of
the spectrum by Hdiff,x,+. As discussed in [85] there exists a natural map ηΣ : H G

diff,x→H G
diff with

ηdiff(Σ,x)( f ) 7→ ηdiff(Σ)( f ). The domain of the physical Hamiltonian operator is then the image of ηΣ

on Hdiff,x,+ and we obtain as the physical Hilbert space Hphys = ηΣ(Hdiff,x,+) with inner product

〈e
∫

Σ
d3xφ̂ ĥ

ψ,e
∫

Σ
d3xφ̂ ĥ

ψ
′〉phys := 〈ψ,ψ ′〉diff (4.64)

with ψ,ψ ′ ∈H G
diff. The final form of the operator for Ĥphys is then given by

Ĥphys =
∫
Σ

ĥ(x) = ∑
x∈Σ

√
−2
√̂

q
1
2

x Ĉx
√̂

q
1
2

x (4.65)

Finally, let us comment on the classical symmetries of the Hamiltonian in this model. Likewise
to the Brown-Kuchar model Hphys is invariant under spatial diffeomorphisms. However, for the
reason that here a different representation than the kinematical representation of LQG was chosen,
the requirement that Hphys needs to be quantized in a graph preserving way is absent. Furthermore,
also the classical Hamiltonian densities {h(x),h(y)} = 0 commute a general property of those de-
parametrized models. In the framework of the habitat, being the home of so called vertex smooth
states, briefly mentioned at the end of section 4.1, it was shown in [78] that the commutator of two
Hamiltonian constraints smeared against arbitrary lapse functions vanishes on the habitat. Thus,
one would expect that the Hamiltonian densities in the scalar field model will also vanish on the
habitat [ĥ(x), ĥ(y)] = 0.
Although the graph modifying property of the physical Hamiltonian in the scalar field model has
some advantages as far as the rather artificial infinitely many conservation laws for graph pre-
serving operators in the Brown-Kuchar model are concerned, when the semiclassical sector of the
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model is considered the analysis becomes more complicated. The reason for this is that with the
current existing semiclassical techniques for the full theory, graph modifying operators cannot be
analyzed and those techniques would need a strong improvement in order to be able to analyze the
semiclassical sector of the scalar field model in full generality.
Summarizing, both quantum models, the Brown-Kuchar as well as the scalar field model could be
a step in the right direction and help in the future to extract some physical information out of full
LQG but of course this is a long range project and on the way there are still many technical issues
to solve.

5. Summary and open problems

In the present lectures we have given an introduction to loop quantum gravity, in particular its
canonical quantization techniques. We also saw how it makes contact with the path integral for-
mulation developed in spin foam gravity. The latter topic, and its connection to what we presented
here is covered in detail in the contribution by Rovelli. But also in what we did cover, we have
left out many details, and did not even touch on any applications, such as to the quantum theory of
black hole horizons (covered in the contribution by Barbero, Lewandowski and Villaseñor), or to
cosmology (covered in the contribution by Singh). A good starting point to get an overview over
all of these developments is the contribution by Ashtekar in these proceedings.

However, we hope that we have explained at least some of the other big achievements of loop
quantum gravity, namely its description of quantum geometry and the corresponding dynamics.
The quantum theory of (extrinsic and intrinsic) geometry, as described in section 3 comprises
in particular geometric operators with a discrete spectrum, the scale of which is set by Planck
lenght, and diffeomorphism invariant states. We have furthermore seen that, based on this, well
defined Hamiltonian constraints, and in the case of the matter models we considered, well defined
Hamiltonian operators can be obtained. This is a highly non-trivial result, given the complicated
nature of the classical dynamics. Moreover, there is a clear connection to the spin foam approach
to loop quantum gravity.

Although many of the structures that we have described have already been investigated for
some time, there are still lots of new developments. Some of those have already been mentioned
in the main text, but there are many more that we could not cover in these lectures, among them
new connections between the full theory and symmetry reduced models [86, 87], coherent states
for quantum geometry [88, 89, 90, 91, 92, 93], an interpretation of quantum geometry in terms
of polyhedra in flat space [94, 95, 96, 93, 97, 98], and corresponding stunning results about the
quantum volume [99] and the use of spinor techniques [93, 100, 101, 102, 103].

Let us finally list some important questions that are the subject of ongoing investigation in
loop quantum gravity:

• Barbero-Immirzi parameter: What role does it ultimately play in loop quantum gravity with
and without matter?

• Controlled approximations: Loop quantum gravity is a non-perturbative approach to the
quantization of gravity, but approximations will be vital to do physics. How can we find
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controlled approximations to situations with symmetries from the full theory, or approxi-
mately solve the Hamilton constraints? In the context of the reduced models the Hamilto-
nian constraint is already solved and what we end up is an evolution equation in the physical
Hilbert space. However, also here one needs approximation techniques for the reason that
the evolution equations are similar complicated to the solution equations of the Hamiltonian
constraint.

• Loop quantum gravity and matter: Which types of matter can be consistently coupled to
loop quantum gravity? What are the implications of quantized space-time geometry to the
propagation of matter?

• Physics from Hamilton constraints and Hamiltonians: How does one extract physics from
the solutions to the constraints? In particular one should be able to understand how ordinary
quantum field theory and classical general relativity are embedded into loop quantum gravity.
The first should correspond to a sector of quantum gravity where quantum fluctuations of
the geometry are small but matter is still treated as a quantum object, whereas for general
relativity both the matter and geometry quantum fluctuations are expected to be negligible.
Furthermore, it is important to analyze how ambiguities in the quantization of constraints
and physical Hamiltonians do reflect in physical properties of the theory.

• Connection to spin foam gravity: What is the precise relation between scattering amplitudes
and the physical inner product? Which quantization of the Hamilton constraint corresponds
to which vertex amplitude?

For some of these, there are already some insights. Answers to these questions will be crucial for
the path that loop quantum gravity takes in the future.
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