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Group field theories are particular quantum field theories defined on D copies of a group which
reproduce spin foam amplitudes on a space-time of dimension D. In these lecture notes, we
present the general construction of group field theories, merging ideas from tensor models and
loop quantum gravity. This lecture is organized as follows. In the first section, we present basic
aspects of quantum field theory and matrix models. The second section is devoted to general
aspects of tensor models and group field theory and in the last section we examine properties of
the group field formulation of BF theory and the EPRL model. We conclude with a few possible
research topics, like the construction of a continuum limit based on the double scaling limit or the
relation to loop quantum gravity through Schwinger-Dyson equations.
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1. Introduction

Despite decades of effort, constructing a quantum theory of gravity remains one of the most
tantalizing open problems in fundamental physics. Indeed, the gravitational field encodes the ge-
ometry of space-time and conventional quantization techniques rely on a preexisting geometry such
as Minkowski space. As soon as the geometry is promoted to a dynamical variable, its quantum
fluctuations at the Planck scale lP ' 10−33 cm ruin the consistency of standard quantum field theory
based on perturbative renormalization.

Quantum gravity (see the books [1] and [2]) is an attempt at constructing a quantum theory
(not necessarily based on fields) whose long distance limit should be general relativity coupled to
matter fields, governed by the action

S[gµν ,Aµ ,φ ,ψ] =
1

16πG

∫
d4x
(
R−2Λ

)
+
∫

d4x
√
−gLmatter(gµν ,Aµ ,φ ,ψ) (1.1)

with gµν the metric, Aµ a gauge connection including the electroweak and strong sectors, ψ the
fermionic matter fields and φ the Higgs boson. In the sequel, we restrict our attention to pure
gravity. We only briefly mention extensions including a non trivial cosmological constant Λ or the
matter fields.

Some approaches to a quantum theory of gravity interpret the failure of perturbative quantum
field theory as an indication of new physics at the Planck scale, just as the non renormalizability
of the Fermi theory signals new degrees of freedom encoded in the electroweak theory. These ap-
proaches may include new degrees of freedom on existing space-time, as is the case in string theory,
or involve radically new ideas about the nature of space-time, as exemplified by non commutative
geometry. The other approaches are more conventional. Some of them rely on renormalization
group ideas by seeking for a non trivial UV fixed point, realizing Weinberg’s asymptotic safety
scenario. Renormalization group techniques are also essential in Hořava-Lifshitz gravity, based on
an improved power counting obtained at the price of a breakdown of Lorentz invariance, the latter
being only recovered in the low energy limit. One may also resort to discretizations, like dynam-
ical triangulations that encode all the geometry of space-time in triangulations with simplexes of
fixed shape. In this case, the quantum theory is constructed as a sum over these triangulations,
Alternatively, in a canonical approach, one can triangulate the space manifold and consider the
holonomies of the Ashtekar connection as the fundamental variables. This is the route followed
by loop quantum gravity and its space-time counterpart, spin foam models. Since these last two
approaches to quantum gravity lie at the root of the group field approach, let us give describe them
shortly.

Dynamical triangulations and spin foam models rely on a path integral formulation of quantum
gravity, which aims at defining the path integral over metrics

Ψ(g
∣∣
∂M

) = ∑
topologies
∂M fixed

∫
g|∂M fixed

[Dg]exp
iS[g]

h̄
. (1.2)

It involves an integration over metrics modulo diffeomorphisms on a space-time manifold M which
reduce to a fixed metric on the boundary. As a functional of the boundary metric, it can be consid-
ered as the wave function of the quantum gravitational field. Note that fluctuations of the topology
of space-time are also allowed, even if these may be omitted in a first approximation.
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In the context of dynamical triangulations (see the books [3] and the review [4], the path
integral over metrics on a space-time of dimension D is replaced by a sum over all possible D-
dimensional triangulations with fixed boundary,

∑
topologies
∂M fixed

∫
g|∂M fixed

[Dg]exp
iS[g]

h̄
→ ∑

triangulationsT
∂T fixed

1
CT

exp
iSRegge[T ]

h̄
(1.3)

The metric aspect of the geometry is recovered by assigning a fixed geometry to the simplexes of
the triangulations, say regular simplexes of edge length a. SRegge[T ] is the Regge action of the trian-
gulation, which is a discretized version of the Einstein-Hilbert action and CT a combinatorial factor
accounting for the discrete automorphisms of the triangulation. Two remarks are in order. First, the
sum over triangulations, to be understood as a sum over ways of gluing of D-simplexes along their
boundaries, naturally implements a sum over topologies. Second, the sum over triangulations can
also be obtained as the perturbative Feynman graph expansion of a tensor model, whose dynamical
variable is a tensor Mi1,...,iD , extending to higher dimensions the relation between matrix models
and two dimensional gravity.

On the other hand, in loop quantum gravity and spin foam models (see the books by Rov-
elli [5] and Thiemann [6], the lectures by Rovelli [7] and by Giesel and Sahlmann at this school
[8], the lectures by Dona and Speziale [9] and the recent review by Perez [10]) is rooted in the
canonical quantization programme. We start by splitting the space-time manifold of dimension
D as M ∼ R×Σ and consider the time evolution of triangulations of the space manifold Σ. In
its simplest formulation, the loop quantum gravity Hilbert space is based on a triangulation of the
space manifold by (D−1)-simplexes. The incidence relations of the triangulation are encoded in
a graph Γ and the dynamical variables are SU(2) elements associated to links of Γ representing
the holonomies of the Ashtekar connection. The dynamics is formulated in terms of spin foams
which are 2-complexes made of vertices, edges and faces that describe histories of these boundary
graphs. Spinfoams are dual to triangulations of space-time and their interaction vertices correspond
to D-simplexes. The definition of a spin foam model is completed by assigning a weight to any
spinfoam, which is a function of spins and intertwiners associated to its faces and edges, so that
transition amplitudes can be computed by summing over all intermediate states as required by the
superposition principle.

Group field theory arises from the marriage between tensor models and spin foam models. It
is a quantum field theory whose Feynman graph expansion reproduces spin foam amplitudes∫

[DΦ] expS[Φ] = ∑
triangulationsT
⇔Feynman graphs

1
CT

AT (1.4)

The group field theory Feynman graphs are in one to one correspondence with 2-complexes dual
to triangulations. CT is the symmetry factor of the graph corresponding to T and AT the spin foam
amplitude of the triangulation. The tensors in the models generating dynamical triangulations
are replaced by functions over D copies of a group G = SU(2),SO(3),SO(4),SL(2,C), Mi1,...,iD →
Φ(g1, . . . ,gD). The action can be written symbolically as S[Φ]∼Φ2+ΦD+1. The field Φ represents
a (D−1)-simplex, the interaction a D-simplex made of D+1 (D−1)-simplexes. The application
of Wick’s theorem implements the gluing of D-simplexes along their boundary (D−1)-simplexes.
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Finally, the Feynman graph amplitudes, expressed as an integral over group elements, reproduce
the spin foam amplitudes.

The first group field theory has been proposed by Boulatov [11] for three dimensional quantum
gravity, which is nothing but the topological BF theory, and then generalized to BF theory in four
dimensions by Ooguri [12]. The first four dimensional quantum gravity model has been formulated
in group field theory by De Pietri, Freidel, Krasnov and Rovelli [13]. Recent years have seen an
outburst of new results, relying on two breakthroughs: the ?-product formulation of Baratin and
Oriti [14] and the colored models introduced by Gurau [15], allowing Gurau to construct a 1/N
expansion [16] and Ben Geloun and Rivasseau to define the first model renormalizable to all orders
[17].

The reader should be warned that these notes are lectures notes as opposed to a review. No
attempt is made at giving a detailed account of the field. Our goal is to present the subject in
its simplest possible form, starting from basic quantum field theory and matrix models, as can be
found in the first chapters of [18]. Almost all the material covered can be found in the literature,
at the exception of the group field theory formulation of the lorentzian EPRL/FK model. This spin
foam model is currently the best candidate for a quantum theory of gravity in dimension four and
we refer the reader to the lectures by Rovelli at this school for an overview [7]. The reader is also
advised to consult more advanced and/or specialized reviews on group field theory. First of all, the
review by Freidel [19] had a profound influence on our presentation and presents interesting new
ideas that can be the starting point for research in the field. The recent review by Oriti [20] presents
general ideas about group field theory as well as an account of the ?-product formulation. State
of the art of colored tensor models (as of mid 2011) is reviewed by Gurau and Ryan [22]. The
renormalization program in group field theory is outlined by Rivasseau in [23] and [24] (see also
[25] for a up to date account). Finally, it is instructive to have a look at the review of Baratin and
Oriti [26], discussing some fundamental issues in group field theory.

This lecture is organized as follows. In the first section, we present basic aspects of quantum
field theory and matrix models. The second section is devoted to general aspects of tensor models
and group field theory and in the last section we examine properties of the group field formulation
of BF theory and of the EPRL/FK model. We conclude with a few possible research topics, like
the construction of a continuum limit based on the double scaling limit or the relation to loop
quantum gravity through Schwinger-Dyson equations. A few facts regarding the unitary irreducible
representations of the Lorentz group and coherent states are collected in the appendix.

2. QFT and Feynman graphs

2.1 Feynman graph expansions

In its most general form, quantum field theory can be defined as the quantum theory of systems
with continuous degrees of freedom. Its basic object of interest is the functional integral expectation
value of observables

〈O〉=
∫
[DΦ]O[Φ]exp iS[Φ]

h̄∫
[DΦ] exp iS[Φ]

h̄

(2.1)
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The integration is over a suitable space of fields, which are functions Φ defined on a manifold. The
observable O belongs to a certain class of functionals of the fields which may be taken as products
of fields evaluated at different points O[Φ] = Φ(x1) · · ·Φ(xn) to define n-point Green’s functions
G(x1, . . . ,xn).

The dynamics of the theory is encoded in the action functional, which we often split S[Φ] =

S0[Φ]+Sint[Φ] as the sum of a free action

S0[Φ] =
1
2

∫
dxdyΦ(x)K −1(x,y)Φ(y) (2.2)

and an interaction term

Sint[Φ] = ∑
n≥2

λn

n!

∫
dx1 · · ·dxnVn(x1, . . . ,xn)Φ(x1) · · ·Φ(xn) (2.3)

The kernel K −1 is the matrix inverse of a more fundamental object K that appears in the Feynman
rules. When K is invertible, it is defined by

∫
dzK (x,z)K −1(z,y) =

∫
dzK −1(x,z)K (z,y) =

δ (x,y).
For instance, for a scalar field on Minkowski space with a local polynomial interaction

S[Φ] =
1
2

∫
dxdyδ (x− y)Φ(x)(�−m2)Φ(y)−∑

n

λ

n!

∫
dxΦ

n(x) (2.4)

with �= ηµν∂µ∂ν the d’Alembertian and ηµν = diag(1,−1, · · · ,−1) the Minkowski metric. It is
sometimes convenient to work in the euclidian setting where (2.1) is replaced by (setting h̄ = 1)

〈O〉=
∫
[DΦ]O[Φ]exp−S[Φ]∫

[DΦ] exp−S[Φ]
(2.5)

where S[Φ] is the euclidian action,

S[Φ] =
1
2

∫
dxdyΦ(x)δ (x− y)(−∆+m2)Φ(y)+ ∑

n≥2

λn

n!

∫
dxΦ

n(x) (2.6)

with ∆ is the Laplacian.
It is convenient to collect all Green’s functions into their generating functional

Z [J] =
∫
[DΦ][Φ]expi{S[Φ]+ J ·Φ} (2.7)

with J ·Φ =
∫

dx j(x)Φ(x). Green’s functions are recovered by functional differentiation of Z [J],

G(x1, . . . ,xn) = (−i)n δ nZ

δJ(x1) · · ·δJ(xn)

∣∣∣∣
J=0

(2.8)

To compute Z [J], one resorts to perturbation theory by expanding the result around the free field
theory. For free fields the integral is Gaußian and the result is given by Wick’s theorem∫

[DΦ]Φ(x1) · · ·Φ(x2n)expiS0[Φ] = ∑
pairings of
{1,2,...,2n}

in K (xi1 ,xi2) · · ·K (xi2n−1 ,xi2n) (2.9)
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y1 y2

Figure 1: Examples of Feynman graphs

where a pairing is a partition of {1,2, . . . ,2n} = {i1, i2}∪ · · · ∪ {i2n−1, i2n} into pairs and vanishes
for an odd number of fields. The free field functional integral is normalized in such a way that∫
[DΦ] expiS0[Φ] = 1.

The perturbative expansion is obtained by expanding expiSint[Φ] in powers of Φ and apply-
ing Wick’s theorem to all the monomials. Let us first consider the vacuum function (or partition
function) expanded as

Z =
∫
[DΦ]expiS[Φ] = ∑

γ

vacuum Feynman graph

1
Cγ

Aγ (2.10)

A vacuum Feynman graph is just a graph (i.e. a set of vertices V joined by edges E) such that
each vertex has valence at least 2. The combinatorial factor Cγ is the cardinal of the group of
transformations of the half-edges that leave the graph unchanged. The amplitude is computed
according to the following Feynman rules:

• assign variables xi to the half-edges of γ

• associate every vertex of valence n with −iλnVn(xi1 , . . . ,xin)

• associate every edge with iλK (xi,x j)

• integrate over xi the product of the vertex and edge contributions

Aγ =
∫

∏
half-edges

dxi ∏
vertices

iλnVn(xi1 , . . . ,xin)∏
edges

iλK (xi,x j) (2.11)

Note that in a theory invariant under translations, one integrates on all but one of the vertices.

The expansion of the generating functions of Greens functions is obtained similarly

Z [J] =
∫
[DΦ]expi

{
S[Φ]+ J ·Φ

}
= ∑

γ

Feynman graph

1
Cγ

Aγ (2.12)

The Feynman graphs in this expansion involve also univalent vertices. The same Feynman rules
are applied except for univalent vertices that contribute as iJ(x). Because of the normalization by
Z [J], the Feynman graphs involves in the expansion of Z are such that any connected component
contains at least one univalent vertex. Then, the n-point Green’s functions are obtained by differ-
entiating with respect to J(x). In this case, the univalent vertices, known in the particle physics
terminology as external legs, carry fixed space-time arguments xn.
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To illustrate the Feynman rules, let us evaluate the two examples drawn on figure 1. For the
first graph

(−iλ4)
2

2×4!

∫
dx1 · · ·dx8 V4(x1, . . . ,x4)K (x1,x5)K (x2,x6)K (x3,x7)K (x4,x8)V4(x5, . . . ,x8)

(2.13)
while the second one evaluates to

(−iλ4)
2

3!

∫
dx1 · · ·dx8 K (y1,x1)V4(x1, . . . ,x4)K (x2,x6)K (x3,x7)V4(x5, . . . ,x8)K (x8,y2) (2.14)

Let us conclude this section by a few remarks that will be useful in the sequel.

• At the combinatorial level, it is simpler to work with logZ and logZ [J] whose expan-
sion only involve connected graphs. Furthermore, when dealing with renormalization, it is
convenient to introduce the Legendre Γ[Φ] transform of logZ [J], with the classical field
Φ(x) = − i δ logZ [J]

δJ(x) , whose lowest order term is nothing but the action S[Φ]. In many mod-
ern treatments of quantum field theory, one also uses the background field effective action
defined in the euclidian setting as

Sbackground[Φ] =− log
∫
[Dχ]exp−S[Φ+χ] (2.15)

where Φ is a background field and χ a fluctuating field.

• We have been working with a real field that involves a symmetric kernel K (x,y) =K (y,x).
In the case of a complex field, the quadratic part of the action reads

∫
dxdyK −1(x,y)Φ(x)Φ∗(y).

The kernel only has hermitian symmetry K (x,y) = K ∗(y,x) so that the resulting graphs
have oriented edges. For fields having a more complicated structure, like matrix models or
non commutative fields, it may also be useful to write the interaction using vertices with less
symmetry than all permutations. In the example of matrix models, we formulate the theory
in terms of vertices only invariant under circular permutations.

• We have emphasized the role of the covariance K (x,y) (or propagator in the particle physics
language) as opposed to the kernel K −1(x,y) involved the free field action. This is be-
cause all we need to define the perturbative expansion is a Gaußian measure with covariance
K (x,y). This is defined even if K is not invertible since possible zero modes of K are set
to zero. This can be seen by regularizing K (x,y)→K (x,y)+ εδ (x,y). As ε → 0, the zero
modes of K are subject to a Gaußian measure of width ε that set them to 0.

• There are many equivalent formulations of the same quantum field theory that differ by a
change of variable in the functional integral, Φ→Φ′ where we express Φ in terms of a new
field Φ′. The functional integrals are equal∫

[DΦ]O[Φ]expiS[Φ] =
∫
[DΦ]O ′[Φ]expiS′[Φ] (2.16)

with O ′[Φ′] = O[Φ(Φ′)] and S′[Φ′] = S[Φ(Φ′)]− i logdet δΦ

δΦ′ , this last term arising form the
Jacobian of the transformation.
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x = x +

x

(2.18)

Figure 2: Schwinger-Dyson equation for a Φ5 interaction

2.2 Schwinger-Dyson equations

Schwinger-Dyson equations are quantum analogues of the classical equations of motion. They
follow from the invariance of the path integral representation of Z [J] under the change of variable
Φ(x)→ Φ(x)+ ε(x), with ε(x) an arbitrary infinitesimal function. Performing explicitly the in-
finitesimal change of variable and using Φ(x) = i δ expiJ·Φ

δJ(x) , it yields a functional differential equation
for Z [J]

δZ [J]
δJ(x)

=

(∫
dx1K (x,x1)J(x1)

)
Z [J]

+ ∑
n≥2

λn
(n−1)!

∫
dx1 · · ·dxnK (x,x1)Vn(x1. . . . .xn)

δ nZ [J]
δJ(x1) · · ·δJ(xn)

(2.17)

Graphically, (2.17) can be interpreted as follows: Choose a univalent vertex and follow the edge it
is attached to. This edge may either end on another univalent vertex or on a vertex of higher degree.
For instance, for a Φ5 interaction, it can be illustrated on figure 2.

When translated into an equation for the classical field Φ(x) = -i
δ logZ [J]

δJ(x) , they reduce to lowest
order in h̄ to the classical equations of motion. Indeed, if we restore h̄ and define the generating
function of connected graphs

exp
i
h̄
W [ j] =

∫
[DΦ]exp

i
h̄

{
S[Φ]+ J ·Φ

}
(2.19)

Then, we get in the limit h̄→ 0

Φ(x) =−∑
n≥2

λn

(n−1)!

∫
dx1 · · ·dxnK (x,x1)Vn(x1. . . . .xn)Φ(x1) · · ·Φ(xn) (2.20)

The most salient aspect of the Schwinger-Dyson equations is that they provide an equivalent
formulation of quantum field theory. Indeed, at the formal perturbative level we are working at for
the time being, the path integral representation for Z [J] in (2.7) is the unique solution to (2.17), up
to a multiplicative constant to be determined by the normalization. This is natural since a recursive
resolution of (2.17) generates all the Feynman graphs as a power series in the coupling constants
λn. We refer to [18] for a slick functional proof.

2.3 Ultraviolet divergences and renormalization

Let us consider a scalar field in D-dimensional Minkowski space with a local polynomial
interaction, as given by (2.6). It is convenient to work in momentum space by Fourier transforming
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all fields and Green’s functions. A n-point connected Green’s function Gn(p1, . . . , pn) depends on
external momenta and can be expressed as a sum over all connected graphs with n external legs.
Each edge of such a graph is given an arbitrary orientation and comes equipped with a momentum
ke. Vertices enforce a momentum conservation law while external legs are equipped with external
momenta pi. A global momentum conservation law can be factored as

Gn(p1, . . . , pn) = δ (p1 + · · ·+ pn)G̃n(p1, . . . , pn) (2.21)

G̃n(p1, . . . , pn) is computed by assigning a momentum space propagator to each edge

i
k2

e −m2 + iε
(2.22)

and integrating over all independent momenta after taking into account momentum conservation
at the vertices. The momentum space propagator is the Fourier transform of the kernel of the
Klein-Gordon equation (�y−m2)K(x,y) = δ (x,y), computed using Feynman’s prescription as

K (x,y) = lim
ε→0+

∫ dk
(2π)D

eik(x−y)

k2−m2 + iε
(2.23)

Consider a connected graph with e edges, n external legs and vn′ vertices of valence n′. Since
there is one momentum per edge and one conservation law per vertex, there are l = e−∑n′ vn′ +1
independent momenta. Therefore, the degree of divergence ω , defined as the leading power of the
integral as we rescale all momenta by s, with s→ ∞, is ω = lD−2e+∑n′ δvn′ . Since each edge is
either connected to an external leg or to a vertex, we also have 2e = n+∑n′ n′vn′ . Altogether, the
degree of divergence reads

ω = ∑
n′

(n′D
2
−D−n′

)
vn′+n+D− nD

2

It is obvious that a graph with ω ≥ 0 is divergent. It is less obvious that a graph with ω < 0 for
all its (1 particle irreducible, i.e. that cannot be disconnected by cutting a single line) subgraphs is
convergent (see the book [27] for a proof). Theories that involve only interactions with n′ ≤ D

D
2−1

in dimension D are especially nice: The only divergent Green’s functions are those for which
n ≤ D

D
2−1

. The divergences correspond to the vertices already present in the action and can be
removed by suitably choosing the coupling constants and rescaling the field. In the system of units
we have adopted, the action is dimensionless so that the field has mass dimension D

2 −1. Therefore,
a theory is renormalizable if and only if its coupling have positive mass dimension. This is not the
case for gravity, whose coupling constant G has mass dimension 2−D.

Ultraviolet divergences occur because the virtual particles propagating in the loops of a graph
can have arbitrarily high momenta, even if the real particles on the external legs have fixed low
momenta. To deal with this problem, one restricts the internal momenta to lie below a cut-off Λ0.
In a renormalizable theory, the parameters λ bare

n (Λ0,µ,λnren) can be chosen in such a way that, once
they have been fixed at a low energy scale µ to take the value λ ren, all Green’s functions remain
finite, order by order in λ ren

n . For a λΦn interaction, λ bare
n is the sum of the divergent part of all

graphs with n external legs, once their possible subdivergences have been taken into account. The
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precise recursion relation is encoded in the Bogoliubov-Parasiuk-Hepp-Zimmermann formula (see
the book [27]).

More in general, renormalization stipulates that at a lower scale Λ one should use an effective
action SΛ obtained by integrating all the modes between Λ and Λ0

SΛ[Φ] =− log
∫
[Dχ]Λ,Λ0 exp−SΛ0 [Φ+χ]

where the background field Φ has all its momenta below Λ while the fluctuating field has momenta
between Λ and Λ0. Performing the path integral, we obtain all types of interaction, including non
renormalizable ones, even if we started with only renormalizable ones at scale λ0. The strength
of an interaction with mass dimension δ < 0 is of order λ (Λ) = Λδ u(logΛ), with u(logΛ) a di-
mensionless function that varies slowly with the energy scale. Accordingly, effective field theories
involve non renormalizable couplings obeying the previous scaling law, provided the cut-off re-
mains finite. Moreover, these couplings are not all independent: Being obtained by integration
over fast modes of a single action, they all belong to a single renormalization group trajectory.
From this point of view, the non renormalizable Einstein-Hibert action is perfectly acceptable as
an low energy effective action. However, it necessarily involves an ultraviolet cutoff that cannot be
taken to infinity.

2.4 The propagator in Schwinger’s proper time as one dimensional gravity with matter

For our purposes, it is also fruitful to view quantum field theory on Minkowski space with
action (2.4) as a second quantization of relativistic particles interacting locally. The classical dy-
namics of a relativistic particle with space-time trajectory xµ(s) is governed by the action S[x] =
−m

∫
dx
√
−ẋ2 with ẋµ = dxµ

ds and ẋ2 = ηµν ẋµ ẋν . At the classical level, this action is equivalent to

S[x,e] =
1
2

∫
ds
(

e−1ẋ2− em2
)

(2.24)

with e(s) an auxiliary function. This action is invariant under reparametrizations of the worldline
s→ s′ provided we transform ẋµ→ ẋµ ds

ds′ and e→ e ds′
ds . The dynamics of a relativistic point particle

can be considered as a theory of gravity in one space-time dimension coupled to matter, where the
auxiliary function e is the einbein and xµ a quantum field with D components. Note that in this
interpretation, the mass m is a cosmological constant. A mass term for the one dimensional field
xµ can be included as an harmonic oscillator potential 1

2 ω2ηµνxµxν .
To evaluate the path integral

∫
[De][Dx] expiS[e,x], one has to deal with reparametrization

invariance in order not to overcount equivalent configurations. It is convenient to fix this ambiguity
by imposing that e(s) = α > 0 is a constant that can be understood as the proper time. Then, the
path integral reads∫

[De][Dx] expiS[e,x] = N
∫

∞

0
dα

∫
[Dx] expi

{1
2

∫
ds
(
α
−1ẋ2−α m2)} (2.25)

with N a normalizing factor. The path integral over xµ is the standard quantum mechanical path
integral for a free particle∫

[Dx]expi
{1

2

∫
dsα

−1ẋ2
}
=

N ′

(2πα)
D
2

expi
(x− y)2

2α
(2.26)
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with x and y the endpoints of the worldline. After a rescaling of α and an appropriate choice of the
normalizing factors, we find∫

[De][Dx] expiS[e,x] = lim
ε→0+

1
(2π)D

∫
∞

0
dα

∫
dk expi

{
k(x− y)+α(k2−m2 + iε)

}
(2.27)

which is the Fourier transform of the Klein-Gordon propagator. Note that the Feynman prescription
+iε with ε > 0 ensures the convergence of the integral.

Thus, it is possible to understand the Feynman graph amplitudes in D-dimensional Minkowski
space as one dimensional quantum gravity amplitudes with D matter fields. The analogy goes on
to the hamiltonian framework and we recover the Klein-Gordon equation as the constraint to be
fulfilled by the wave function of the one dimensional system, (�−m2)ψ(x) = 0. A two dimen-
sional version of this construction also exists: The point particle is replaced by a string and the
corresponding quantum field theory that generates all string theory amplitudes is known under the
name of string field theory. In that respect, the task of finding a quantum field theory whose Feyn-
man graphs describe four dimensional quantum gravity amplitudes seems hopeless. We will adopt
an easier approach based on matrix models and their generalizations.

2.5 Matrix models and 2d gravity

Two dimensional gravity is a very interesting arena for testing some ideas that may be helpful
in constructing a four dimensional theory of quantum gravity, in spite of the topological nature
of the Einstein-Hilbert action in dimension two. For our purposes, the interesting aspect of this
theory lies in the possibility of defining a continuum limit, including a sum over topologies, as the
Feynman graph expansion of matrix models. We refer the reader to the review by Di Francesco,
Ginsparg and Zinn-Justin [28] for a thorough survey of matrix models applied to two dimensional
gravity.

Let Σh be a closed surface with h handles. For instance, Σ0 is a sphere and Σ1 a torus, as
illustrated on figure 3. Up to homeomorphism, there is a single surface for each genus h. If we
equip Σh with a metric, then the Einstein-Hilbert action is nothing but the Euler characteristics
χ(Σh) = 2−2h

1
2π

∫
Σh

√
|g|R = χ(Σh) (2.28)

We discretize the surface by assuming that it has been obtained by gluing together euclidian trian-
gles along their sides to define a triangulation T made of vertices v, edges e and triangles t. Then
the discrete analogue of the Einstein-Hilbert action is the Regge action

SRegge =
1

2π
∑
v

δv with δv = 2π−∑
t3v

αv,t (2.29)

αv,t is the angle at vertex v in the triangle t and δv the deficit angle at v (see figure 4). δv is a discrete
analogue of the curvature: If the triangles lie flat in the plane we have δv=0, otherwise δv > 0 for
positively curved spaces and δv < 0 for negatively curved ones. Taking into account ∑v∈t αv,t = π ,
we recover the Euler characteristics SRegge = t(T )−e(T )+v(T ) = χ(T ), with f (T ), e(T ) and v(T )
the number of triangles, edges and vertices in T and χ(T ) = χ(Σh) if T is a triangulation of a genus
h surface.
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Figure 3: Sphere, torus and genus two surface

δ

Figure 4: Deficit angle in dimension two

Figure 5: Triangulation of a sphere with 2 triangles

The sum over triangulations weighted by exp−κSRegge is generated by the following Feynman
graph expansion of

F (λ ,N) = log
∫
[DM] exp

{
− N

2
TrM2 +

λN
3

TrM3
}
= ∑

T
triangulations

λ t(T )Nχ(T )

CT
(2.30)

where the integral is over hermitian N×N matrices with the measure ∏i< j dIm(Mi j)∏i≤ j dRe(Mi j),
with a suitable normalizing factor. For instance, the graph depicted in figure 5 yields λ 2N2

2 .
Let us explain how this follows from a Feynman graph expansion. Wick’s theorem for matrices

relies on the following normalized Gaußian integral∫
[DM] exp−

{N
2 TrM2

}
Mi jMkl =

1
N δilδ jk (2.31)

as well as generalization to products of an even number of matrix elements involving sums of
pairings as in (2.9). Note that one can use M ji = M∗i j to compute pairings that involve complex
conjugate matrix elements.

The basic variable is the matrix Mi j associated with the edges of the triangulation. The triva-
lent vertex TrM3 = ∑i, j,k Mi jM jkMki represents the three sides of a triangle (see figure 6) and the
propagators implement the gluing of the triangles along their sides. Since matrices carry two in-
dices, the perturbative expansion of the matrix model (2.30) involves Feynman graphs whose edges
are made of two lines. These graphs are ribbon graphs γ which possess, in addition to edges e(γ)
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ij

j

k k

i

Figure 6: Matrix model interaction dual to a triangle

and vertices v(γ), faces f (γ) made of closed lines of matrix indices. Ribbon graphs are dual to
triangulations of orientable surfaces through the correspondence v(γ)↔ t(T ), e(γ)↔ e(T ) and
f (γ)↔ v(T ). The combinatorial factor CT is the symmetry factor of the dual graph and the loga-
rithm restricts the summation to connected graphs. We have been working with complex hermitian
matrices M ji = M∗i j, which correspond to orientable surfaces, but several other choices are possi-
ble. For instance, if we work with real symmetric matrices, we have to sum over triangulations
of possibly non orientable surfaces. This is reflected in the fact that for a real symmetric matrix,
the propagator involves an extra term with a twist in the matrix indices. Note what we called tri-
angulation is in fact a generalization of what is called triangulation in mathematics. The latter are
defined as simplicial complexes (see 3.1), while the triangulations we are talking about may fail
to be simplicial complexes when the graphs have self-loops (edges with both ends attached to the
same vertex) of multiple edges (pairs of vertices joined by several edges in parallel).

To define the continuum limit, we collect terms having the same genus, so that

F (λ ,N) = ∑
h

N2−2hFh(λ ) (2.32)

The sum defining Fh(λ ) can be shown to be convergent for λ below a critical value λc and exhibits
a scaling behavior of the type

Fh(λ ) ∼
λ→λc

(λc−λ )(1−
γ

2 )(2−2h) (2.33)

with γ a fixed critical exponent (γ = −1
2 for pure gravity, as considered here). Therefore, in the

double scaling limit N → ∞ and λ → λc with N(λc− λ )1− γ

2 = e−κ fixed, the matrix model ex-
pansion can be considered as a definition of the path integral of quantum gravity (1.3) for closed
manifolds.

To deal with surfaces with boundaries, it is convenient to expand the connected expectation
values of products of b traces〈

Tr(z1−M)−1 · · ·Tr(zb−M)−1〉
c
= ∑

T triangulations
b(T )=b

1
CT

λ t(T )Nχ(T )

zn1(T )+1
1 · · ·znb(T )+1

b

(2.34)

where the sum is over triangulations with b(T ) = b connected components and χ(T ) = t(T )−
e(T )+ v(T ) = 2− 2h− b its Euler characteristics. Connected correlations are defined using the
cumulants, for instance〈

Tr(z1−M)−1Tr(z2−M)−1〉
c
=
〈
Tr(z1−M)−1Tr(z2−M)−1〉−〈Tr(z1−M)−1〉〈Tr(z2−M)−1〉

(2.35)
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They obey Schwinger-Dyson equations which translate into the loop of 2d quantum gravity.
Finally, let us sketch how matter can be included in the matrix model formulation of quantum

gravity. We choose the q-state Potts model as a simple form of matter. On a given triangulation, it
is defined by assigning a spin σt ∈ {1,2, . . . ,q} to each triangle. Two spins interact if and only if
they belong to nearby triangles and the partition function is

ZPotts(T ) = ∑
{σt}

exp−βH({σt}) with H =−J ∑
e edges of T

δσt(e),σt′(e) (2.36)

with t(e) and t ′(e) the two triangles sharing the edge e in T . Gravity coupled to the Potts model is
generated by the following multi-matrix model

log
∫
[DM] exp

{
− N

2 ∑
1≤α,β≤q

Qα,β TrMαMβ + λN
3 ∑

1≤α≤q
TrM3

α

}
= ∑

T
triangulations

λ t(T )Nχ(t)ZPotts(T )
CT

(2.37)
where Qα,β is the quadratic form

Qα,β =− 1
(e−βJ−1)2(e−βJ +q−1)

(
1−δα,β

)
+

e−βJ +q−2
(e−βJ−1)2(e−βJ +q−1)

δα,β (2.38)

Thus, the spin degrees of freedom are encoded in a extra index in the matrix Mi j → Mi j,α which
obeys it own dynamics governed by the matrix Qα,β .

3. From simplicial gravity to group field theory

3.1 Simplexes and triangulations

In order to present in a self-contained form tensor models and group field theories, let us
introduce some mathematical terminology following [3]. A n-simplex is the convex hull of n+ 1
points in Rd with d ≥ n

σn = 〈x1 . . .xn〉=
{

∑
i

λixi
∣∣λi ∈ [0,1] with ∑

i
λi = 1

}
(3.1)

We assume that these points dot not belong to a n− 1 dimensional subspace of Rd , otherwise the
simplex would be degenerate. Note that at this stage there is no metric assigned to σn and any
realization of σn may be taken. A standard choice is to take the subspace of Rn+1 made of points
with all coordinates positive and summing to 1. For instance, a 0-simplex is a vertex, a 1-simplex
is a segment, a 2-simplex is a triangle, a 3-simplex is a tetrahedron and a 4-simplex is sometimes
referred as a pentachoron, see figure 7. An m dimensional face of a simplex 〈x1 . . .xn〉 is the convex
hull of a subset of m points 〈xi1 . . .xim〉. The boundary ∂σ of a n-simplex σ is the set of its n− 1
dimensional faces,

∂ 〈x0 · · ·xn〉=
{
〈x1 · · ·xn〉,〈x0x2 · · ·xn〉, . . . ,〈x0 · · ·xi−1xi+1 · · ·xn〉, . . . ,〈x0 · · ·xn−1〉

}
(3.2)

A simplicial complex is a finite collection of simplexes K = {σ} such that: i) If σ ′ is a
face of σ ∈ K then σ ′ ∈ K. ii) If σ ,σ ′ ∈ K with σ ∩σ ′ 6= /0 then σ ∩σ ′ is a face of σ and of
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x0

x1

x2

x0

x1

x2

x3

x0

x1

x2

x3

x4

Figure 7: Simplexes of dimension two, three and four

σ ′. Its dimension is the dimension of its top dimensional simplex. Two simplicial complexes are
isomorphic if there is a bijection between them preserving the incidence relations. An abstract
triangulation (i.e. a triangulation not associated to any a priori given space) is an isomorphism
class of simplicial complexes. An abstract triangulation is a triangulation of a topological space X

if there is an homeomorphism from the simplicial complex K to X .
An abstract triangulation is associated to a pseudo-manifold of dimension n if: i) For any

σ ∈ K, there is σ ′ ∈ K of dimension n such that σ ⊂ σ ′. ii) Any σ ∈ K of dimension n− 1 is
contained in one or two simplexes of dimension n. In the first case σ is a boundary simplex while
in the second case it is an inner one. iii) Any two simplexes of dimension n are connected by a
sequence of simplexes of dimension n that share a simplex of dimension n− 1. The first axiom
excludes lower dimensional pieces, the second one states that there is no branching and the third
one is a kind of connectedness.

To understand how a pseudo-manifold may fail to be a manifold, let us introduce some more
terminology. Two simplicial complexes are combinatorially equivalent if they can be included in
finer simplicial complexes that are isomorphic. For any vertex v, we define the star of v in K as
the simplicial complex made of all the faces of the simplexes in K that contain v. The link of v
in K is obtained from its star by removing all simplexes that contain v. Then a pseudo-manifold
of dimension n defines a (combinatorial) manifold if the link of any vertex is combinatorially
equivalent to the boundary of a of a n-simplex.

The simplexes we have defined up to now are not oriented and 〈xτ(0) · · ·xτ(n)〉= 〈x0 · · ·xn〉 for
any permutation τ . To orient the simplexes, we introduce for each ordered set of vertices x0, · · · ,xn

two simplexes 〈x0 · · ·xn〉 and 〈x0 · · ·xn〉∗ that differ by their orientations

〈xτ(0) · · ·xτ(n)〉=

{
〈x0 · · ·xn〉 if τ is even
〈x0 · · ·xn〉∗ if τ is odd

(3.3)

This notion is useful to define oriented triangulations. We also define the oriented boundary ∂σ of
an oriented n-simplex σ as the set of its oriented n−1 dimensional faces,

∂ 〈x0 · · ·xn〉=
{
〈x1 · · ·xn〉,〈x0x2 · · ·xn〉∗, . . . ,〈x0 · · ·xi−1xi+1 · · ·xn〉∗

i
, . . . ,〈x0 · · ·xn〉∗

n−1}
(3.4)

where ∗n = 1 if n is even and ∗n = ∗ if n is odd.

3.2 Simplicial gravity

In general, the most natural way of attempting a non-perturbative definition of the quantum
gravity path integral (1.3) consists of discretizing the geometry. This is also the approach used in
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elementary quantum mechanics and lattice gauge theory. Therefore, we choose a triangulation T
of a D dimensional space-time M made of n-simplexes σn ∈Sn for n ∈ {o, . . . ,D}. Working in
the euclidian setting for simplicity, metric degrees of freedom are captured by assigning lengths
to the edges of the D-simplexes. This specifies completely the embedding of the simplex in RD

up to rotation, translation and reflection, as can be checked by the counting of degrees of freedom:
D(D+1)

2 =D(D+1)−D2− D(D−1)
2 . Thus, the n-volume of any n-simplex is known. In particular, the

cosmological constant term in the gravity action (4.47) is proportional to the sum over D-simplexes
weightrf by their volumes,

Λ

G

∫
M

dDx
√
|g| → λ ∑

σD∈SD

VσD (3.5)

Because Newton’s constant G has mass dimension 2−D, a discretization of the Einstein-Hilbert
action involves volumes of (D−2)-simplexes. This leads to the D-dimensional version of Regge’s
action

1
G

∫
M

dDx
√
|g|R→ κ ∑

σD−2∈SD−2

VσD−2δσD−2 (3.6)

with curvature measured by the deficit angle δσD−2 defined as follows. In any D-dimensional sim-
plex containing the (D−2)-dimensional simplex σD−2, consider the two distinguished (D−1)-
dimensional simplexes σD−1 and σ ′D−1 that contain σD−2. If we further assume all simplexes to be
oriented, the embedding of σD ∈ RD allows us to associate σD−1 and σ ′D−1 with outward pointing
normals N and N′. Then we define the angle ασD,σD−2 of σD at σD−2 as the angle between N and
N′. Then, the deficit angle is defined as

δσD−2 = 2π− ∑
σD⊃σD−2

ασD,σD−2 (3.7)

To define discretized path integrals, there are two alternative choices. Following Ponzano and
Regge, we may fix a triangulation and sum over the lengths associated to its edges. Alternatively,
we may fix the size of the simplexes and sum over triangulations. In this case, the choice of
the triangulation encodes all the degrees of freedom of the theory. This is the approach known
as dynamical triangulations. From now one, we focus on the latter approach and defer a brief
overview of the Ponzano-Regge model to the section 4.1 devoted to spin foam models .

If we restrict our attention to regular euclidian simplexes of size a, the deficit angle only counts
how many D simplexes contain a given D-2 simplex σD−2. Then, the discretized Einstein-Hilbert
action with cosmological constant reads

S(T ) =
aD−2

G′
nD−2(T )+

(
Λ′aD

G′
+

aD−2

G′′

)
nD(T ) (3.8)

where nk(T ) is the number of k-dimensional simplexes in the triangulation and Λ′, G′ and G′′ are
proportional to Λ and G. An arbitrary metric is approximated by a sufficiently fine triangulation.
Because the length a is fixed, the only degrees of freedom lie in the choice of the triangulations.
Therefore, the path integral (1.3) becomes a sum over triangulations with fixed boundary,

∑
topologies
∂M fixed

∫
g|∂M fixed

[Dg]expiS[g] → ∑
T triangulations

1
CT

expiS(T ) (3.9)

P
o
S
(
Q
G
Q
G
S

2
0
1
1
)
0
0
5

005 / 16



P
o
S
(
Q
G
Q
G
S
 
2
0
1
1
)
0
0
5

Group field theories Thomas Krajewski

i1
i2
i3
i4

i1
i2
i3
i4

Figure 8: Propagation of a tetrahedron

i1

i3
i2

i4

Figure 9: A tetrahedron and its four triangles

with CT a combinatorial factor, usually chosen to be the cardinal of the automorphism group of T .
In this sum, we do not necessarily restrict ourselves to triangulations with a fixed topology. In this
way, it implements a sum over topologies. When D = 2, we recover the matrix model expansion
(2.30). This remains true in D > 2, provided one uses tensor models.

3.3 Tensor models as generalized matrix models

We aim at generalizing matrix models to higher dimensions as tensor models. Recall that in
matrix model formulation of quantum gravity in D = 2 dimensions, the matrix Mi j represents a
(D−1)-simplex (edge), its indices i and j two (D−2)-simplexes (points) and the interaction TrM3

the boundary of a D-simplex (triangle). Detailed proofs of the following results can be found in an
article by De Pietri and Petronio [29].

The generalization to D > 2 dimensions goes as follows:

• The basic field Mi1...iD is a tensor with D indices. It represents a (D−1)-simplex and its in-
dices stand for the D (D−2)-simplexes on the boundary of this (D−1)-simplex, as illustrated
on figure 9. The indices belong to an index set I which is for the time being left arbitrary.

• As for matrix models, the tensor Mi1...iD may be real or complex and obey different transfor-
mation laws under permutations of its indices. To fix the notations, we momentarily choose
the one analogous to hermitian matrices

Miτ(1)···iτ(D)
=

{
Mi1···iD if τ is even
(Mi1···iD)

∗ if τ is odd
(3.10)

Many other choices are also possible and lead to summations over different classes of tri-
angulations. For instance, for a real symmetric tensor, we are no longer able to assign an
orientation to the simplexes. In this case, the sum involves possibly non orientable triangu-
lations. If we do not impose any invariance under permutations, we are led to colored tensor
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i01

i02

i03

i03i13i23

i23
i02
i12

i12i13i01

i01

i02

i03

i04

i04
i14

i24i34

i34
i03

i13
i23

i23
i24
i02
i12

i12 i13
i14

i01

Figure 10: Vertex in D = 3 and D = 4

models (see [22]) which we will briefly discuss in section 4.4 in the context of group field
theory.

• The quadratic term in the action enforces the gluing of two (D-1) simplexes with opposite
orientations

1
2
|M|2 = 1

2 ∑
i1,...,iD

Mi1···iD(Mi1···iD)
∗ (3.11)

It represents the propagation of a (D−1)-simplex through an edge made of D strands that
stand for the (D−2)-simplexes. For example, in four dimensions, we have four strands
corresponding to the four faces of a tetrahedron, as illustrated in 8.

• The interaction term reproduces the D+1 (D−1)-simplexes that form the boundary of an
oriented D-simplex, given in the oriented boundary(3.4)

V (M) =
λ

D+1 ∑
ik,l with

1≤k 6=l≤D+1

{
∏

0≤k≤D
(Mik,1,...,ik,k−1,ik,k+1,...ik,D)

∗k

∏
0≤k<l≤D

δik,l ,il,k

}
(3.12)

M∗
k

is the complex conjugate of M if k is odd and M if k is even. There is a sum over
the indices ik,l associated to the (D−2)-simplexes obtained by removing the vertices k and
l from the D-simplex. These (D−2)-simplexes arise from the boundaries of each of the
(D−1)-simplexes in the boundary of the D-simplex. Since each of these (D−2)-simplexes
appears twice in the boundary, we identify ik,l and il,k. It is also worthwhile to note that the
symmetry properties of the tensor ensure the reality of the action. Finally, the factor 1

D+1
reflects the invariance under cyclic permutations of the labels.

To illustrate the general formula, let us treat in detail the cases D = 2,3,4. We use the invari-
ance of the field (3.10) to rewrite the interaction in more conventional form, depicted in dimension
three and four in picture 10.

• D=2: the boundary of a triangle

∂ 〈x0x1x2〉= {〈x1x2〉,〈x0x2〉∗,〈x0x1〉} (3.13)
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so that the interaction is the matrix model interaction

V (M) =
λ

3 ∑
i01 ,i02 ,i12
i10 ,i20 ,i21

Mi01,i02(Mi10,i21)
∗Mi20i21 δi01,i10δi21,i12δi20,i02

=
λ

3 ∑
i01,i02,i12

Mi12i02Mi02i12Mi12i01 (3.14)

• D=3: the boundary of a tetrahedron is

∂ 〈x0x1x2x3〉= {〈x1x2x3〉,〈x0x2x3〉∗,〈x0x1x3〉,〈x0x1x2〉∗} (3.15)

Each of these four terms correspond to a triangle, which is itself made of three edges. This
leads to the interaction, after the identifications provided by the Kronecker symbols

V (M) =
λ

4 ∑
i01,i02,i03,i12,i13,i23

Mi01i02i03(Mi01i12i13)
∗Mi02i12i23(Mi03i13i23)

∗

=
λ

4 ∑
i01,i02,i02,i12,i13,i23

Mi01i02i03(Mi03i13i23)
∗Mi23i02i12(Mi12i02i01)

∗ (3.16)

• D=4: the boundary of a 4-simplex is

∂ 〈x0x1x2x3x4〉= {〈x1x2x3x4〉,〈x0x2x3x4〉∗,〈x0x1x3x4〉,〈x0x1x2x4〉∗,〈x0x1x2x3〉} . (3.17)

Each of these five terms correspond to a tetrahedron, which is itself made of four triangles.
Accordingly, the interaction reads, after the identifications provided by the Kronecker sym-
bols

V (M) =
λ

5 ∑
iab

Mi01i02i03i04(Mi01i12i13i14)
∗Mi02i12i23i24(Mi03i13i23i34)

∗Mi04i14i24i34

=
λ

5 ∑
iab

Mi01i02i03i04Mi04i14i24i34Mi34i03i13i23Mi23i24i02i12Mi12i13i14i01 (3.18)

In complete analogy with matrix models, we compute the path integral for a tensor model as

Z (λ ,N) =
∫

DM exp
{
− 1

2
|M|2 +V (M)

}
= ∑

G
stranded graph

λ v(G )N f (G )

C(G )
(3.19)

The expansion is over stranded graphs, i.e. graphs whose edges are made of D strands. N is the
cardinal of the index set I of the tensor, C(G ) the symmetry factor of the graph and v(G ) the
number of vertices of G . The number of faces F(G ) is the number of cycles obtained by following
the strands through the edges and the vertices. In D = 2 it coincides with the notion of face of a
ribbon graph. We integrate over the real and imaginary parts of the tensor

DM = ∏
i1<i2<···<iD

dIm(Mi1···iD) ∏
i1≤i2≤···≤iD

dRe(Mi1···iD) (3.20)

with a suitable normalizing factor.
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⇔

Figure 11: Triangulation of a 3d sphere with 2 tetrahedra

This expansion relies on the tensor model generalization of Wick’s theorem for matrices (2.31)
given by the Gaußian integral∫

[DM] exp−
{1

2 |M|
2}Mi1···iDM j1... jD =

1
D! ∑

τ

odd permutation

δi1, jτ(1) · · ·δiD, jτ(D)
(3.21)

supplemented by a sum over pairings if more tensors are involved. As for matrix models, pairings
involving complex conjugate fields can be computed using the reality conditions (3.10), for instance∫

[DM] exp−
{1

2 |M|
2}Mi1···iDM∗j1... jD =

1
D! ∑

τ

even permutation

δi1, jτ(1) · · ·δiD, jτ(D)
(3.22)

This ensures that two (D−1)-simplexes have opposite orientations when identified, as requested
by the orientability of the space we triangulate.

Alternatively, every vertex of the graph represents a D simplex and the edges with their strands
yield a prescription for gluing these D-simplexes along their (D−1)-simplexes by an identifications
of their (D−2)-simplexes. Loosely speaking, any such gluing can be viewed as a triangulation, so
that we can also write

Z (λ ,N) =
∫

DM exp
{
−|M|2 +V (M)

}
= ∑

T
triangulation

λ nD(D)NnD−2(T )

CT
(3.23)

in complete analogy with the two dimensional case (2.30). We recover the path integral of sim-
plicial quantum gravity (3.9) by analytical continuation of Z (λ ,N). For instance, the stranded
graph in figure 11 evaluates to λ 2N6 which correspond to the six edges and two tetrahedra. It is the
3-dimensional analogue of the ribbon graph given in figure 5.

However, there is a notable difference between matrix and tensor models. In the former case,
the Feynman graphs only yield triangulations of surfaces (apart from self-loops and and graphs with
multiple edges), which are orientable for hermitian matrices and non orientable for real symmetric
matrices. In the case of tensor models, the situation is more involved and the summation also
contains triangulations of pseudo-manifolds. Moreover, many possible field contents are available:
the field may be real or complex and may obey various invariance properties under permutations
of its indices. This generates sums over different kind of triangulations. In the sequel, we leave
open the field content of the theory and focus on the construction of a vertex suitable for spin foam
models.
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3.4 Spin foam models of quantum gravity

Spin foam models are discretized versions of the path integral of quantum gravity, devised in
order to define the scalar product between spin network states in loop quantum gravity. The latter
is an approach to quantum gravity rooted in the canonical formalism. Space-time is assumed to be
decomposed as M = R×Σ and the basic degrees of freedom are the holonomies of the Ashtekar
connection A, an SU(2) connection on Σ. Let Γ be a graph defined by its links L and nodes N as
well as source s : L→ N and target t : L→ N maps1. This graph is obtained from a triangulation of
space by tetrahedra: a node is associated to each tetrahedron and there is a link between two nodes
if the corresponding tetrahedra share a triangle.

The gauge invariant graph Hilbert space is defined as

HΓ = L2(SU(2)L/SU(2)N)={
ψΓ(hl) such that ψΓ(gsl hlg−1

tl ) = ψΓ(hl) for all gn ∈ SU(2)
}

(3.24)

with sl and tl the source and target nodes of the link l. This is reminiscent of lattice gauge theory,
with gauge fields on the links subjected to gauge transformations associated with the nodes. Note
that the graphs have to be oriented, but reversing the orientation of the edge l yields an isomorphic
Hilbert space, provided we trade hl for h−1

l . Moreover, the graph need not to be connected, if
Γ = Γ1∪Γ2, then HΓ = HΓ1⊗HΓ1 .

The gravitational wave function ψΓ(hl) depends on the SU(2) link variables hl which represent
the holonomies of the Ashtekar connection. On these wave functions, A acts by multiplication and
its canonically conjugate momentum, the densitized triad E, by functional differentiation. More-
over, physically relevant operators, like area and volume operators, are well defined on this Hilbert
space and have a discrete spectrum in a basis built on spin networks, which are graphs whose
links are labeled by SU(2) representations and nodes by intertwiners between the representations
associated to the incoming and outgoing links.

In the canonical formalism, the dynamics of general relativity is equivalent to three sets of
constraints associated with symmetries. The first one is the Gauß law, associated with the SU(2)
gauge symmetry of the connection A. Since states in HΓ are gauge invariant, it is already imple-
mented. The second one is the vector constraint that implements space diffeomorphism invariance.
Roughly speaking, if we think of the graph as embedded in Σ, one may take the vector constraint
into account by declaring that two graphs are equivalent if one can be obtained from the other by
the action of a diffeomorphism of Σ. Thus the precise location of Γ in Σ does not matter and the
only relevant information is of combinatorial nature. Again, it can be considered as implemented
in our construction because we only used abstract graphs that do not refer to any embedding.

Lastly, the scalar constraint supplements the vector constraint to recover space-time diffeo-
morphism invariance. It is implemented through the definition of a new scalar product in HΓ that
modifies the canonical scalar product in L2(SU(2)L/SU(2)N). This procedure is similar to the one
encountered in the dynamics of a relativistic particle: enforcing the mass-shell condition, associ-
ated to reparametrization of the trajectories, forces us to modify the scalar product on the wave
function by inserting δ (k2−m2).

1We use the word links and nodes instead of edges and vertices because we reserve the latter for spin foams.
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Figure 12: Simple evolution of a triangulation of the sphere

Inspired by Feynman’s path integral, the scalar product implementing the hamiltonian con-
straint is defined by inserting sums over intermediate states

〈ψΓ′ |ψΓ〉= ∑
Γ1,...,Γk

〈ψΓ′ |ψΓk〉 · · · 〈ψΓi+1 |ψΓi〉 · · · 〈ψΓ1 |ψΓ〉 (3.25)

Here, Γi differs form Γi+1 by some elementary operations like splitting or joining nodes. This
sequence of graphs defines a two dimensional object C . Its vertices encode the elementary oper-
ations on the nodes to obtain Γi+1 from Γi. If the graphs are spin networks, edges and faces of C

are decorated by interwiners and representations and define a spin foam.
Following closely Rovelli’s lecture notes at this school [7], let us give a purely combinatorial

definition of spin foam models. An oriented 2-complex is defined as a set of faces F , edges E
and vertices V together with two incidence relations. The first incidence relation defines, for each
e ∈ E, its the source s(e) ∈ V and target t(e) ∈ V . The second one defines the boundary of any
face ∂ f as a cyclically ordered set of edges that bound the face. We assume that each edge belongs
to the boundary of at least one face. The edges that belong to the boundary of a single face are
the boundary edges. They are called links and we retain the term edge only for the edges that are
not links. We also assume that the vertices incident to at least a link are incident to exactly one
edge. These boundary vertices are the nodes and we call vertices only the inner vertices. These
restrictions allows us to think of the boundary of a 2-complex as a graph ∂C = Γ and of C as an
history of graphs whose nodes join and split, as illustrated in figure 12.

The amplitude associated to C is the state in H∂C defined as

AC (hl) =
∫

SU(2)
∏
v, f

dhv, f ∏
f

δ (h f ) ∏
v

Av(hv, f ,hl) (3.26)

with a group variable hl associated to every link on the boundary graph and an integration over
group variables hv, f for each pair of a vertex v and a face f incident to v. By isolating vertices, we
decompose C =∪v∈V Cv into elementary 2-complexes made of single vertices, whose amplitude Av

must be given a priori. Each of these elementary 2-complexes defines a boundary graph Γv = ∂Cv,
whose link variables are h±v, f depending on the orientation. For every face of C , h f is the product
around ∂ f of the link variables h±l and h±v, f and the sign ± depend on the relative orientation of
the links and the faces. The Dirac distribution δ (h f ) ensures the proper gluing of all the variables
around the face.

The explicit expression of the vertex amplitudes Av(hv, f ,hl) can be found in section 4.1 for BF
theory and in section 4.5 for the EPRL/FK model. In these cases, the explicit expressions involve
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sums over spins attached to the faces and intertwiners attached to the edges so that we recover the
previous definition of spin foam models. In the general case, the vertex amplitude is constrained
by gauge invariance on the nodes. If we denote by gnv gauge transformations on the nodes of Γv,
gauge invariance reads

Av(gslv
hlvg

−1
tlv
) = Av(hlv). (3.27)

These 2-complexes and spin foams are related to triangulations of space-time as follows. If
T is a triangulation of a space-time M of dimension D, we define a 2-complex C as the dual
2-skeleton of T . The vertices of C are the D-simplexes of T , edges (D−1)-simplexes and faces
(D−2)-simplexes. Two vertices are joined by an edge if the corresponding D-simplexes share the
(D−1)-simplex associated to the edge, oriented in an arbitrary way. In the models we consider,
any change of orientation simply induces a replacement of a group variable by its inverse. To
obtain the incidence relation between faces and edges, consider a generic slice of the triangulation
by a plane. A (D−2)-simplex appears as a point surrounded by a cyclically ordered sequence of
(D−1)-simplexes. By construction, in dimension D we recover only those 2-complexes for which
every vertex has valence D+1 and every edge belongs to the boundary of D faces. The orientation
of the face is provided by the common orientation of the D-simplexes of the triangulation, if space-
time is oriented. Although the orientation of the faces appears in the spin foam amplitudes (3.26),
it turns out that it does not play any role in the two models we consider SU(2) BF theory and
the Lorentzian EPRL/FK. This is not a generic feature of spin foam models but a peculiarity of the
finite dimensional representations of SU(2) and of the prinicpal series of irreducible representations
of SL(2,C), any of them being equivalent to its complex conjugate.

The boundary graph ∂C is the 1-skeleton of the boundary triangulation ∂T . Its nodes corre-
spond to (D−1)-simplexes and its links to (D−2)-simplexes. The basic variables are group ele-
ments hl attached to (D−2)-simplexes of the boundary triangulations. Then, the elementary ampli-
tudes for a D simplex are glued together to reproduce the amplitude associated to the 2-skeleton of
the triangulation. Finally, the spin foam amplitude (3.26), supplemented with a weighted sum over
2-compexes with fixed boundary is the spin foam definition of the quantum gravity path integral
(1.3)

Ψ(g
∣∣
∂M

) = ∑
topologies
∂M fixed

∫
g|∂M fixed

[Dg]exp
iS[g]

h̄
→ ψΓ(hl) = ∑

2-complexes
∂C=Γ

wC AC (hl) (3.28)

with wC a suitable combinatorial weight that may also include powers of a coupling constant.

3.5 General definition of a group field theory

Let us now give a general definition of a group field theory by combining the combinatorics
of tensor models with the group theoretical definition of quantum gravity amplitudes provided by
spin foam models. The basic field of the theory is a function Φ(g1, . . . ,gD) on D copies of the
group G. It represents a (D−1)-simplex and the group elements g1, . . . ,gD are associated with its
D faces of dimension D−2. Intuitively, the group elements define a connection whose curvature is
concentrated on the (D−2)-simplexes, as is the case in Regge calculus.
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g1
g2
g3
g4

g1
g2
g3
g4

Figure 13: Propagation of a tetrahedron in a four dimensional group field theory

For definiteness, we assume that the field obeys the reality conditions

Φ(gτ(1), . . . ,gτ(D)) =

{
Φ(g1, . . . ,gD) if τ is even
Φ∗(g1, . . . ,gD) if τ is odd

(3.29)

but the field may as well be taken to be real or to obey different symmetry relations. An important
alternative to these symmetry rules is provided by colored models, see section 4.4.

In complete analogy with tensor models, we choose the quadratic term to be the trivial one

|Φ|2 =
∫

GD
∏dgi Φ(g1, . . . ,gD)Φ

∗(g1, . . . ,gD) (3.30)

This ensures an identification of the group elements associated to the (D−2)-simplexes in the gluing
of the D simplexes (see figure 13). Alternative choices are discussed below.

The interaction vertex is required to reproduce the vertex amplitude Av(hl) of the spin foam
model associated with a D-simplex. The latter involves D(D+1)

2 group elements hl associated to the
links of the complete graph which is the 1-skeleton of the dual of the boundary of the D-simplex.
Labeling the vertices of the D simplex with letters a,b ∈ {1, . . . ,D}, the variables hl are written as
hl = hab with the convention that hba = h−1

ab . This means that we orient the links of the boundary
from a to b if a < b. We introduce D(D+ 1) variables ga,b such that hab = gbag−1

ab . The variable
ga,b is attached to the (D−2)-simplex which is the intersection of the (D−1)-simplexes associated
to the nodes a and b. Then, the interaction term is built combining the tensor model interaction
(3.12) and the spin foam vertex amplitude

V (Φ) =
λ

D+1

∫
GD(D+1)

∏
0≤a6=b≤D

dgab

{
Av
(
gbag−1

ab

)
∏

0≤a≤D
Φ
∗a(

ga,b6=a
)}

(3.31)

where Φ
(
ga,b6=a

)
is a shorthand for Φ

(
ga,1, . . . ,ga,a−1,ga,a+1, . . .ga,D+1

)
. Φ∗

a
= Φ if a is even and

Φ∗ if a is odd.
Let us note that we have made a specific choice of orientation of the boundary graph, which

amounts to the choice of an orientation of the strands that meet at the vertex. This choice of orien-
tation is irrelevant if the vertex amplitude is invariant under the inversion of any of its arguments
hl . We assume that this invariance holds in the following discussion. This is the case for the two
models we consider in the next sections. If this is not the case, the amplitude depends on the orien-
tations of the faces and the group field must be supplemented with an extra Z2 index Φ± conserved
along the strands. This extra index allows one to distinguish the two orientations of the faces.

Working with real fields, this is nothing but the interaction term introduced in [19]. Here, we
are working with complex fields and the complex conjugation is necessary in order to have a real
potential. The reality of the potential is necessary in order to make sense at a non perturbative level
of a path integral of the type

∫
[DΦ]expi{|Φ|2 +V (Φ)} since, in even space-time dimensions, the
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g12

g13

g10

g01g02g03

g30
g31
g32

g23 g20 g21

g12

g10

g13

g01g02g03

g31
g30
g32

g23 g20 g21

Figure 14: Two equivalent forms of the vertex in D = 3

g01

g02

g03

g04

g40
g41

g42g43

g34
g30

g31

g32

g23

g24
g20

g21

g12 g13
g14

g10

Figure 15: Vertex iand D = 4

interaction is an odd monomial. The situation is similar to the case of Chern-Simons theory, the
matrix models of D = 2 quantum gravity or the theory of Airy functions: an integral like

∫
R dxeix3

may be defined as a semi-convergent one while
∫
R dxe±x3

is meaningless.

By performing a circular permutation of the arguments of the fields, which is an odd permu-
tation for D even and an even permutation for D odd, we can rewrite the interaction for D even
as

V (Φ)=
λ

D+1

∫
GD(D+1)

∏
1≤a6=b≤D+1

dgab

{
Av
(
gbag−1

ab

)
∏

0≤a≤D
Φ
∗a(

ga(a+1), . . . ,gaD,ga,0 . . . ,ga(a−1)
)}

(3.32)
and for D odd

V (Φ)=
λ

D+1

∫
GD(D+1)

∏
1≤a6=b≤D+1

dgab

{
Av
(
gbag−1

ab

)
∏

0≤a≤D
Φ
(
ga(a+1), . . . ,gaD,ga,0 . . . ,ga(a−1)

)}
(3.33)

For definiteness, let us explicitly list the interactions in low dimension, using the symmetry of
the fields under permutations to rewrite these interactions in various forms. These are illustrated
on figure 14 and 15.
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• D=2

λ

3

∫
G

∏
0≤a<b≤2

dgab Av(gbag−1
ab ) Φ(g01,g02)Φ

∗(g10,g12)Φ(g20,g21)

=
λ

3

∫
G

∏
0≤a<b≤2

dgab Av(gbag−1
ab ) Φ(g01,g02)Φ(g20,g21)Φ(g12,g10)

(3.34)

• D=3

λ

4

∫
G

∏
0≤a<b≤3

dgab Av(gbag−1
ab ) Φ(g01,g02,g03)Φ

∗(g10,g12,g13)Φ(g20,g21,g23)Φ
∗(g30,g31,g32)

=
λ

4

∫
G

∏
0≤a<b≤3

dgab Av(gbag−1
ab ) Φ(g01,g02,g03)Φ

∗(g30,g31,g32)Φ(g23,g20,g21)Φ
∗(g12,g13,g10)

=
λ

4

∫
G

∏
0≤a<b≤3

dgab Av(gbag−1
ab ) Φ(g01,g02,g03)Φ(g30,g32,g31)Φ(g23,g20,g21)Φ(g13,g12,g10)

(3.35)

• D=4

λ

5

∫
G

∏
0≤a<b≤4

dgab Av(gbag−1
ab ){

Φ(g01,g02,g03,g04)Φ
∗(g10,g12,g13,g14)Φ(g20,g21,g23,g24)Φ

∗(g30,g31,g32,g34)Φ(g40,g41,g42,g43)
}

=
λ

5

∫
G

∏
0≤a<b≤4

dgab Av(gbag−1
ab ){

Φ(g01,g02,g03,g04)Φ(g40,g41,g42,g43)Φ(g34,g30,g31,g32)Φ(g23,g24,g20,g21)Φ(g12,g13,g14,g10)
}

(3.36)
As was already pointed out in [19], the interaction is invariant under a gauge symmetry and a

global symmetry. The global symmetry is a consequence of the fact that the vertex amplitude only
depends on the products gbag−1

ab . Thus, the potential obeys

V (TgΦ) =V (Φ) with TgΦ(g1, . . . ,gD) = Φ(g1g, . . . ,gDg) (3.37)

Its analogue in electrodynamics is translation invariance under A(x)→ A(x−a).
The gauge invariance is a consequence of the gauge invariance at the nodes of the spin foam

vertex amplitude, A (gahabg−1
b ) = Av(hab) for all ga ∈ G. In the group field theory formalism, it

translates into
V (Φ+ϒ) =V (Φ) with

∫
G

dgϒ(gg1, . . . ,ggD) = 0 (3.38)

which is easily checked using the invariance of the Haar measure under g→ hg and g→ g−1. It is
similar to the gauge invariance of electrodynamics A→ A+χ with dχ = 0. On a simply connected
space-time, the Poincaré lemma states that χ = dΛ, so that we recover the ordinary formulation of
gauge invariance.
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The trivial group field theory propagator (3.30) is invariant under the global symmetry (3.37),
|TgΦ|2 = |Φ|2 but not under gauge transformations (3.38). However, we may always split the field
as Φ = Φgauge +Φinv with∫

G
dgΦgauge(gg1, . . . ,ggD) = 0 and

∫
G

dgΦinv(gg1, . . . ,ggD) = Φinv(g1, . . . ,gD) (3.39)

Equivalently, the invariant part of the field obeys

Φinv(gg1, . . . ,ggD) = Φinv(g1, . . . ,gD) (3.40)

Gauge degrees of freedom decouple in the sense that |Φ|2 = |Φgauge|2+ |Φinv|2 and V (Φ) =V (Φgauge),
so that the group field theory path integral splits as∫

[DΦ]exp{−|Φ|2 +V (Φ)+ J ·Φ}=
∫
[DΦgauge]exp{−|Φgauge|2 + Jgauge ·Φgauge}×∫

[DΦinv]exp{−|Φinv|2 +V (Φinv)+ Jinv ·Φinv} (3.41)

where a source term J(g1, . . . ,gD), obeying the same reality conditions (3.29) as Φ , has been
introduced with

J ·Φ =
∫

G
∏dgi J(g1, . . . ,gD)Φ(g1, . . . ,gD) (3.42)

and decomposed as J = Jgauge + Jinv as in (3.39). Thus, the effect of the gauge degrees of freedom
manifest themselves only at vanishing coupling, i.e. for Feynman graph made of single edges, and
for a non invariant source. It is therefore convenient to factor them out and consider a path integral
over gauge invariant terms.

It is often useful to allow more general quadratic terms of the form

Φ ·K −1 ·Φ∗ =
∫

G
∏dgidg′i K

−1(g1, . . . ,gD;g′1, . . . ,g
′
D)Φ(g1, . . . ,gD)Φ

∗(g′1, . . . ,g
′
D) (3.43)

We require K −1 to be real and symmetric,

K −1(g′1, . . . ,g
′
D;g1, . . . ,gD) = K −1(g1, . . . ,gD;g′1, . . . ,g

′
D) (3.44)

The global invariance (3.37) remains true if

K −1(g1g, . . . ,gDg;g′1g, . . . ,g′Dg) = K −1(g1, . . . ,gD;g′1, . . . ,g
′
D) (3.45)

and gauge degrees of freedom decouple provided K −1 commutes with the projection onto invari-
ant states,∫

G
dgK −1(gg1, . . . ,ggD;g′1, . . . ,g

′
D) =

∫
G

dgK −1(g1, . . . ,gD;gg′1, . . . ,gg′D) (3.46)

The group field theory formulation of Wick’s theorem is analogous to its tensor model formulation,∫
[DΦ]exp{−1

2 Φ·K −1 ·Φ∗}Φ(g1, . . . ,gD)Φ(g′1, . . . ,g
′
D)= ∑

τ

odd permutation

K (g1, . . . ,gD;g′
τ(1), . . . ,g

′
τ(D))

(3.47)
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where K and K −1 are related by∫
G
∏dg′i K

−1(g1, . . . ,gD;g′1, . . . ,g
′
D)K (g′1, . . . ,g

′
D;g′′1, . . . ,g

′′
D) = ∏

i
δ
(
gi(g′′i )

−1) (3.48)

As for tensor models, if more than two fields are involved, one has to sum over pairings. Moreover,
pairings involving the complex conjugate field are computed using the reality conditions to enforce
orientability.

As already mentioned in the introductory section on quantum field theory, K need not to be
invertible to provide a well defined Feynman graph expansion. All we need is to have a Gaußian
measure

∫
[DΦ]K with a well defined covariance K to perform the wick contractions, like for

instance∫
[DΦ]K Φ(g1, . . . ,gD)Φ(g′1, . . . ,g

′
D) = ∑

τ

odd permutation

K (g1, . . . ,gD;g′
τ(1), . . . ,g

′
τ(D)) (3.49)

If K is invertible, it reduces to the standard Gaußian measure [DΦ]K = [DΦ]exp{−1
2 Φ ·K −1 ·

Φ∗},
This allows one to choose as a covariance the projector onto gauge invariant states

K (g1, . . . ,gD;g′1, . . . ,g
′
D) =

∫
G

dh ∏
i

δ
(
gi(g′i)

−1h
)

(3.50)

This propagator usually leads to divergent Feynman graph amplitudes, because of the distributional
nature of the Dirac distribution δ . It is convenient to regulate the theory by replacing the Dirac
distribution by the heat kernel on the group G (which we assume to be compact for simplicity)

Kα(g1, . . . ,gD;g′1, . . . ,g
′
D) =

∫
G

dh ∏
i

{
∑
ρ

dρe−αCρ TrVρ

[
gi(g′i)

−1h
]}

(3.51)

where TrVρ
is the trace in the irreducible representation ρ , dρ its dimension and Cρ . For G= SU(2),

d j = 2 j+1 and C j = j( j+1).
The group field theory Feynman graphs are stranded graphs made of edges consisting of D

strands. These strands represent the (D−2)-simplexes that carry curvature in Regge calculus.
They define (D−1)-simplexes propagating along the edges of the stranded graph. These (D−1)-
simplexes interact on the boundary of a D-simplex. Altogether, a stranded graph yields a pre-
scription for how to glue together D-simplexes, as in tensor models, with the further information
provided by the vertex amplitude. This leads to the following Feynman graph expansion∫

[DΦ]K expV (Φ) = ∑
G stranded graph

without external legs

AG

CG
(3.52)

Because the graph does not carry external legs, it only involves closed strands. We construct a
2-complex by gluing a disk to each of these closed strands. This way we obtain particular 2-
complexes such that each vertex has D+1 incident edges and each edge has D incident faces. These
are the 2-complexes corresponding to triangulations, i.e. in our context spaces obtained by gluing
D-simplexes. The group field theory amplitude involves an integration over two variables g+v, f and
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(3.56)

Figure 16: A boundary graph (dashed) triangulating a sphere with 4 triangles

g−v, f for each strand f (strands represent (D−2)-simplexes and are in bijection with faces of the 2-
complex) and vertex v whose amplitude is nothing but the spin foam amplitude. It is equivalent to
an integration over the variables hv, f with the constraint δ (∏v∈∂ f hv, f ), for a normalized measure on
a compact group. With the heat kernel propagator Kα , only gauge invariant states are involved in
the functional integral. Then, the perturbative expansion of the group field theory partition function
reads ∫

[DΦ]K expV (Φ) = ∑
Feynman graph⇔2-complexes

wC AC (3.53)

Thus, the group field theory perturbative expansion reproduces exactly a sum over the spin foam
amplitudes (3.26), with a combinatorial weight equal to the symmetry factor of the graph. Working
with the heat kernel propagator we obtain regularized spin foam amplitudes.

This is a discretized version of the quantum gravity path integral for the partition function and
corresponds to a manifold without boundary. To deal with the quantum gravity wave function, one
has to insert observables associated with some boundary state.

3.6 Boundary states

The case of 2-complexes with fixed boundary Γ is more involved since it does not immediately
correspond to group field theory Green’s functions defined as∫

[DK Φ]expV (Φ) ∏
n∈N

Φ(gn,1, . . . ,gn,D) = ∑
G stranded graph

with N external legs

AG (gn,a)

CG
(3.54)

However, for any graph Γ encoding the incidence relations of a triangulation of space, we associate
the observable [30]

OΓ[Φ](hl) = ∏
l link of Γ

δ (gs(l),lhlg−1
t(l),l)∏

n∈N
Φ(gn,l1 , . . . ,gn,lD) (3.55)

Note that the group variables gn,l correspond to the half-links of the graph Γ, or equivalently, to a
pair formed by a node and a link attached to it.

Its normalized connected expectation value is sum over all spin foams with fixed number of
boundary (D−1)-simplexes.

〈OΓ[Φ](hl)〉c = ∑
T possibly disconnected boundary triangulations with

nboundary (D -1)-simplexes

AT/Γ(hl)

CT
(3.57)
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= + · · ·+ + · · ·

Figure 17: Contributions to the four point function
.

Figure 18: The 1-4 Pachner move

The subscript 〈· · · 〉c refers to the connected expectation value. For instance, if Γ is connected
〈OΓ〉c = 〈OΓ〉 and if Γ = Γ1∪Γ2 has two connected components, 〈OΓ〉c = 〈OΓ1OΓ2〉−〈OΓ1〉〈OΓ2〉.
This is similar to the matrix model loop functions (2.35). The sum runs over possibly disconnected
triangulations in order to encompass processes like the one illustrated by figure 12. The insertion
of the boundary graph imposes new relations between the boundary (D−1)-simplexes which leads
to the new triangulation T/Γ. Taking the connected expectation value imposes that the latter be
connected.

The expectation value of the boundary graph depicted in figure 16 involves the four point func-
tion, as illustrated in figure 17. The two terms in this equation correspond to a single tetrahedron
and to a tetrahedron split into four by adding an extra point (1-4 Pachner move, see figure 18).

Let us explain what we mean by the quotient T/Γ. Each group field theory stranded graph
defines a procedure to glue together D-simplexes. The external legs of the graph define the bound-
ary (D−1)-simplexes that share (D−2)-simplexes given by the open strands. These open strands
define a boundary graph whose nodes are the external legs which are linked if they are related by
an external strand. Then, the observable associated to the graph Γ enforces an identification of the
boundary (D−1)-simplexes following the incidence relations encoded in Γ. These may impose
further relations with respect to the ones already present in ∂T . The resulting triangulation defines
T/Γ. Recall that we have identified a triangulation with a stranded graph so that the sum in (5.1) is
simply a sum over stranded graphs with n external legs.

This also occurs in the case of matrix models [3]. In this case, the observables are products
of traces of powers of the matrix and correspond to boundary graphs which are disjoint unions of
circles,

O[M] = ∏
k

Tr [Mnk ] (3.58)
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The perturbative expansion reproduces the Euler characteristics of a triangulation with boundary
χ = f − e+ v = 2−2h−b, with b the number of boundaries.

Let us illustrate this phenomenon in the simple case of the expectation value of Tr [M3], which
represents a circle made of three arcs. At lowest order in λ , it reads

〈Tr [M3]〉= 〈Tr [M3]
λ

3
Tr [M3]〉0 +O(λ 3) (3.59)

with 〈· · · 〉0 the expectation value with respect to the Gaußian measure on matrices (2.31). There
are two different ways to perform the Wick contraction: one of them yields a factor of N and
corresponds to a triangle bounding the circle while the second one evaluates to N−1 and is obtained
from the first one by further identifying all three points on the triangle.

Note that because the field Φ(gn1, . . . ,gnD) is only invariant under even permutations of the
group elements, the ordering of the half-edges at a node matters up to an even permutation. In the
case D = 3, even permutations are cyclic permutations and the boundary graph is a ribbon graph
which is the 1-skeleton dual to a triangulation of a surface.

4. Group field formulation of BF theory and quantum gravity

4.1 Discretization of BF theories

On a space-time manifold M of dimension D, BF theory is a topological field theory involving
a non abelian gauge field A with curvature F = dA+A∧A and a (D−2)-form B with values in the
Lie algebra of the gauge group. Its action is S[A,B] =

∫
M Tr(B∧F), where the trace is taken is

the adjoint representation. Its relevance to quantum gravity is twofold. First, three dimensional
quantum gravity can be written as a BF theory. In the euclidian setting, the gauge group is SU(2),
the connection is the spin connection and B is the dreibein e. Second, quantum gravity in dimension
four can be seen as a constrained BF theory, as briefly explained in section 4.5.

At a formal path integral level, B is nothing but a Lagrange multiplier enforcing the flatness of
the connection,

ZM =
∫
[DA][DB]ei

∫
M Tr(B∧F) =

∫
[DA]δ (F) (4.1)

On a manifold with a boundary, the path integral yields a wave function ψ∂M (A) which depends
on the values of the gauge field A on the boundary. It is not too surprising that ψ∂M only depends
on A: B is canonically conjugate to A and it is known from quantum mechanics that boundary
conditions in the path integral are imposed only for configuration variables, not momentum ones.

To actually define the path integral we use a discretization involving spin foams [31]. Let
us triangulate the manifold and let C be the 2-skeleton of the dual of the triangulation. Since B
is a (D− 2)-form, it is naturally associated to the faces of C . In this setting, the connection is
represented as group variables he associated to the edges of C and the flatness condition states
that the ordered product of the group elements around each face equals the identity. Therefore, the
partition function reads

ZC =
∫

SU(2)
dhe ∏

f∈F
δ

( →

∏
e∈∂ f

hεe, f
e

)
(4.2)
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where the incidence matrix εe, f = ±1 depending on the relative orientation of the face f and the
edge e. The ordered product is taken around the boundary of f . To write the amplitude we have
chosen an orientation of the edges and faces of C but the amplitude does not depend on these
choices. Let us note that this expression is still formal since it involves products of Dirac distribu-
tions. It may be regularized by replacing the latter by heat-kernels, as in (3.51). It is interesting to
note that in dimension two, the heat kernel regularized amplitude in nothing but the discretization
of Yang-Mills theory, with the Wilson action replaced by the heat kernel one. In three dimensions,
group variables are holonomies of the spin connection and the flatness condition is equivalent to
Einstein’s equation for pure gravity. The standard formulation of Regge’s theory in terms of 6 j
symbols is recovered by expanding the Dirac distributions on characters

δ (g) = ∑
j

d jTrVj(g) (4.3)

with Vj the spin j representation of SU(2) of dimension d j = 2 j + 1. Then, an integration over
group variables yields the 6 j symbols.

Finally, note that there is an analogous discretization on manifolds with boundary, with extra
variables on the links of the boundary graph Γ = ∂C . In this case, we insert group elements
associated to the links on the boundary of the faces in (4.2).

4.2 Group field theory formulation

According to the general construction described in section 3.5, the group field theory that gen-
erates BF amplitudes follows from the general form of the vertex amplitude, which is the amplitude
for a single (D+1)-simplex. Let us label a,b ∈ {1, . . . ,D} the points of this (D+1)-simplex. We
also label by a the (D−1)-simplex obtained by removing a and by ab with a< b the (D−2)-simplex
obtained by removing a and b. Thus, the boundary graph is equipped with link variables hab. The
corresponding vertex amplitude reads

Av(hab) =
∫

G
∏

a
dga ∏

0≤a<b≤D
δ
(
habgag−1

b

)
(4.4)

We further introduce D(D+1) variables gab with a 6= b such that hab = gbag−1
ab , so that the vertex

amplitude reads

Av(gab) =
∫

G
∏

a
dga ∏

a6=b
δ
(
gbag−1

ab gag−1
b

)
(4.5)

Then, the general discussion of section 3.5 applies and the interaction potential reads

V (Φ) =
λ

D+1

∫
G
∏

a
dga ∏

a 6=b
δ
(
gbag−1

ab gag−1
b

)
∏

c
Φ
∗c
(gc,d 6=c) (4.6)

Note that because of δ (g) = δ (g−1), this interaction does not depend on the various orientation
choice we have made, encoded in the variables hab = gbag−1

ab , with a < b. The quadratic term may
be chosen to be the trivial one, the projector onto invariant states or its regularized version. If we
choose the projector onto the invariant states, given by the propagator (3.50), the variables ga in the
vertex are redundant since they also project onto invariant states. Dropping these variables from the
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vertex yields the most concise form of the interaction that is used in actual computations. However,
these variables also ensure manifest gauge invariance at the level of the interaction.

To illustrate our discussion, let us work out the three and four dimensional cases. First, in
dimension three, the potential reads

V (Φ) =
λ

4

∫
G

∏
1≤a≤4

dga ∏
1≤a6=b≤4

dgab{
δ
(
g12g−1

21 g1g−1
2

)
δ
(
g13g−1

31 g1g−1
3

)
δ
(
g14g−1

41 g1g−1
4

)
δ
(
g23g−1

32 g2g−1
3

)
δ
(
g24g−1

42 g2g−1
4

)
δ
(
gv34g−1

42 g3g−1
4

)
Φ(g12,g13,g14)Φ

∗(g21,g23,g24)Φ(g31,g32,g34)Φ
∗(g41,g42,g43)

}
(4.7)

If we use the projector onto the invariant states as a propagator, we can drop the variables ga.
Eliminating the variables gab with b < a, we obtain the conventional form of the interaction, as
initially proposed by Boulatov [11].

V (Φ) =
λ

4

∫
G

∏
0≤a<b≤3

dgab Φ(g01,g02,g03)Φ
∗(g03,g13,g23)Φ(g23,g02,g12)Φ

∗(g12,g13,g01) (4.8)

In dimension four, the very same analysis leads to

V (Φ) =
λ

5

∫
G

∏
0≤a<b≤4

dgab Φ(g01,g02,g03,g04)Φ(g40,g14,g24,g34)Φ(g34,g03,g13,g23)

Φ(g23,g24,g02,g12)Φ(g12,g13,g14,g01) (4.9)

This is the interaction introduced by Ooguri [12].
The perturbative expansion of the BF group field theory generates the spin foam amplitudes

given in (3.53). At a formal level, the integral over the variables gab can be performed, leaving an
integral over the variables ga with a product of a Dirac distribution along every closed strand. In
each D-simplex, there are D+1 variables ga attached to its (D−1) simplexes, so that in the whole
2-complex we relabel them as ga → ge,v. Then, the discretized BF amplitude (4.2) is recovered
from (3.26) after the change of variables he = gs(e),eg−1

t(e),e.
Choosing the projector onto invariant states as a propagator, it is also possible to make contact

with the standard expression in terms of spins and intertwiners. To simplify the notations, let us
restrict our analysis to the case G = SU(2). We expand the field using the Peter-Weyl theorem as

Φ(g1, . . . ,gD) = ∑
j1 ,..., jD

m1,...,mD,m′1 ,...,m
′
D

Φ
j1,..., jD
m1,...,mD,m′1,...,m

′
D
D j1

m1,m′1
(g1) · · ·D jD

mD,m′D
(gD) (4.10)

with D j
m,n(g) the Wigner matrices. The projector onto the invariant states enforces the right invari-

ance of the field, Φ(g1, . . . ,gD) =
∫

dgΦ(g1g, . . . ,gDg). Using the integration formula∫
dgD j1

m′1,m
′′
1
(g1) · · ·D jD

m′D,m
′′
D
(gD) = ∑

i intertwiner between
j1 ,..., jD

im′1,...,m′D i∗m′′1 ,,̇m′′D (4.11)

with im1,...,mD an orthonormal basis of invariant tensors in Vj1⊗·· ·⊗VjD , the invariance of the field
translates into an expansion

Φ(g1, . . . ,gD) = ∑
j1 ,..., jD,m1 ,...,mD

i intertwiner between j1 ,..., jD

M j1,..., jD; i
m1,...,mD

D j1
m1,m′1

(g1) · · ·D jD
mD,m′D

(gD) i∗m′1,...,m′D (4.12)
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j1n1

j3n3

j2n2

j4n4

Figure 19: Coherent states and normals to the tetrahedron

The basic variables are now the complex numbers

M j1,..., jD; i
m1,...,mD

= ∑
m′1,...,m

′
D

Φ
j1,..., jD
m1,...,mD,m′1,...,m

′
D
im′1,...,m′D (4.13)

These numbers obey additional constraints arising from the reality conditions (3.29). Within this
framework, the propagator is trivial and the interaction can be expressed in terms of Wigner’s coef-
ficients. This formalism leads to rather complicated calculations but has two important advantages.

First, it has a clear geometrical interpretation in relation to the quantum triangle and tetrahe-
dron [32] . In dimension three, there is an intertwiner between j1, j2 and j3 if and only if they
obey the triangular inequality | j1− j2| ≤ j3 ≤ j1 + j2 and when the interwiner exists, it is unique.
Therefore spins faithfully represent the lengths of the sides of a triangle. A similar interpretation
holds in dimension four, where the four spins j1, . . . , j4 represent the areas of the faces of a quantum
tetrahedron and the intertwiner i, which may be chosen to be a fifth spin obtained by splitting the
four valent graph into two three valent ones, is the area of a parallelogram inside the tetrahedron .
Thus, the five spin indices describe a quantum tetrahedron while the magnetic indices m1, . . . ,m4

just serve to create the 2-complex and count its faces.
Coherent states provide a more geometrical description of the quantum tetrahedron as follows.

Intertwiners label a basis of invariant tensors in the tensor product H j1 ⊗·· ·⊗H j4 . An arbitrary
element of this tensor product can be expanded over the coherent states (see appendix B) | j1,n1〉⊗
· · ·⊗ | j4,n4〉. This state is invariant if and only if the coherent states and the spins obey the closure
condition

j1n1 + j2n2 + j3n3 + j4n4 = 0 (4.14)

Then, each unit vector can be interpreted as a normal to a face of the tetrahedron, with ji the area
of the face i in Planck units. In fact, four vectors obeying the closure condition are the normals of a
tetrahedron, defined up to rotation and inversion. This can be checked by a simple count of degrees
of freedom 4×3−3−3 = 6. The first term stands for the four vectors jini, to which we subtract
3 degrees of freedom for the closure constraint and three other degrees for freedom because of
rotational invariance. This yields six degrees of freedom corresponding to the lengths of the edges
of the tetrahedron, which specify the geometry up to rotation and inversion.

Second, it can be generalized to the quantum group Uq(SU(2)), with q a root of unity. Quan-
tum groups allow us to treat BF theory with a cosmological constant in dimensions three and four.
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All explicit formulæ for intertwiners generalize to the q-deformed case, provided integers are re-
placed by q-integers [n]q =

qn−q−n

q−q−1 . The corresponding amplitude can then be reproduced as a tensor
model using the sum over spins, as presented by Boulatov in dimension three [11] and Ooguri in
dimension four [12].

Apart from the group and spin formulations, there is a third formulation based on the group
Fourier transform [14]. First, we define the analogues of plane waves as

eg(x) = expiTr(xg) (4.15)

with x ∈ su(2) ' R3 a Lie algebra element and g ∈ SU(2), considered as 2× 2 matrices. Plane
waves are multiplied using the non commutative (but associative) product

eg ∗ eg′(x) = egg′(x) (4.16)

It is convenient to introduce the group Fourier transform

f̂ (x) =
∫

SU(2)
dg f (g)eg(x) (4.17)

and extend the plane wave product (4.16) by linearity to all functions on R3. Furthermore,

δx(y) =
∫

SU(2)
dgeg−1(x)eg(y) (4.18)

play a role analogous to Dirac distributions for the deformed product∫
R3

dyδx ∗ f̂ (y) =
∫
R3

dy f̂ ∗δx(y) = f̂ (x) (4.19)

Then, it is possible to rewrite entirely the group field theory in terms of the Fourier transformed
field

Φ̂(x1, . . . ,xD) =
∫

SU(2)D
dg1 · · ·dgD Φ(g1, . . . ,gD)eg1(x1) · · ·egD(xD) (4.20)

The invariance property of the field (3.40) translates into

Φ̂(x1, . . . ,xD) = Ĉ ∗ Φ̂(x1, . . . ,xD) with Ĉ(x1, . . . ,xD) = δ0(x1 + · · ·+ xD) (4.21)

Thus, in dimension three (resp. in dimension four), the invariance property is related to a non
commutative closure condition on the normals to the edges of a triangle (resp. to the faces of a
tetrahedron). This formulation is especially handy when discussing symmetries [34] and likely to
shed a new light on the coupling to matter since matter fields are described by a non commutative
field theory involving precisely the deformed product (4.16), as shown in [33].

4.3 Analysis of the divergences

The group field theory amplitudes are in general divergent, as is illustrated in the following
section. For notational simplicity, let us focus on the three dimensional case, higher dimensional
cases can be treated similarly. We begin by computing the first correction to the two point function,
given by the graph depicted in figure 20.
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g1
g2
g3

g̃1
g̃2
g̃3

Figure 20: First correction to the 2-point function

The propagators on the external legs are projectors that do not contribute to the amplitude
because they can be absorbed by the projectors on the internal lines. Then the amplitude reads

λ
2
∫

SU(2)
dh1dh2dh3 δ (g1g̃−1

1 h1)δ (g2g̃−1
2 h2)δ (g3g̃−1

3 )δ (h1h−1
2 h3)δ (h2h−1

3 )δ (h3h−1
1 ) (4.22)

Two of the Dirac distributions enforce the condition h1 = h2 = h3 while the remaining one is
redundant, so that the amplitude is

δ (1)
∫

SU(2)
dhδ (g1g̃−1

1 h)δ (g2g̃−1
2 h)δ (g3g̃−1

3 h) (4.23)

The prefactor is divergent and can be regularized either using the heat kernel instead of the the
Dirac distribution or by restricting the sum to spin below a cut-off N. In this last case, δ (1) is
replaced by

λ
2
δN(1) = ∑

j≤N
(2 j+1)2 ∼

N→∞

4
3 N3 (4.24)

Therefore, in the large N limit the amplitude is equivalent to

4
3 λ

2N3
∫

SU(2)
dhδ (g1g̃−1

1 h)δ (g2g̃−1
2 h)δ (g3g̃−1

3 h) (4.25)

This is encouraging since it is nothing but the propagator multiplied by a diverging constant so
that it can be easily renormalized. By the same token, the graph corresponding to the 1-4 Pachner
move given in picture 17 evaluates to the vertex multiplied by a diverging factor δ (1). These two
examples seem to indicate that the BF group field theory is renormalizable, since the divergences
are proportional to the terms already present in the action. However, the correction to the 2n point
function given in figure 21 is divergent for all n and requires its own counterterm. This spoils
renormalization in the naive sense, but we shall see in section 4.4 that renormalizable group field
theories exist, provided a suitable propagator is used.

Applying the Feynman rules, the amplitude can be expressed as

λ
2n
∫

SU(2)
∏

0≤i≤n+1
dhi

δ
[
h0h−1

1

]
δ
[
g1g̃−1

1 h0
]
δ
[
hnh−1

n+1

]
δ
[
g′′n(g̃

′′
n)
−1hn+1

]
δ
[
h0h′′1 · · ·h′′nh−1

n+1(h
′
n)
−1 · · ·(h′1)−1]

∏
1≤i≤n−1

{
δ
[
hih′′i h−1

i+1(h
′
i)
−1]

δ
[
g′′i (g

′′
i+1)

−1h′i
]
δ
[
g̃i(g̃i+1)

−1h′′i
]}

∏
1≤i≤n

δ
[
g′i(g̃

′
i)
−1hi

]
(4.26)
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′
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′′
n

g̃1 g̃
′
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′′
1 g̃2 g̃

′
2 g̃

′′
2 g̃n g̃

′
n g̃

′′
n

Figure 21: A divergent contribution to the n-point function

We use δ (h0h−1
1 ) and δ (hnh−1

n+1) to set h0 = h1 and hn+1 = hn. Then h0h′′1 · · ·h′′nh−1
n+1(h

′
n)
−1 · · ·(h′1)−1 =

1, using the n−1 relations hih′′i h−1
i+1(h

′
i)
−1 = 1. Consequently the graph diverges as

λ
2n

δ (1)
∫

SU(2)
∏

1≤i≤n
dhi δ

[
g1g̃−1

1 h1
]
δ
[
g′′n(g̃

′′
n)
−1hn

]
∏

1≤i≤n−1

{
δ
[
hih′′i h−1

i+1(h
′
i)
−1]

δ
[
g′′i (g

′′
i+1)

−1h′i
]
δ
[
g̃i(g̃i+1)

−1h′′i
]}

∏
1≤i≤n

δ
[
g′i(g̃

′
i)
−1hi

]
(4.27)

Moreover, it can be easily seen that this graph has no divergent subgraph. Accordingly, it should
come with its own counterterm, which is not initially present in the Lagrangian for n > 2. This
means that the Boulatov model in D = 3 is not renormalizable in the naive sense of the term.
A similar conclusion has been obtained by analyzing higher order corrections to the two point
function which require a Laplacian like propagator [35]. The non renormalizabilty of the group
field formulation of BF theory reveals its incompleteness and can be interpreted in several ways.

First, one may argue that the divergences are solely due to the topological nature of the theory.
Such a theory has no local degrees of freedom and should be invariant under refinements of the
triangulation, such as Pachner moves. A simple example of a Pachner move is the 1→ 4 move
where a tetrahedron is split into four tetrahedra by adding an extra point. Any Pachner move intro-
duces new edges in the graph, each equipped with a group element he. Its also creates new closed
strands with Dirac distributions which enforce he = 1. However, these Dirac distributions are not
all independent and give rise to a power of the divergence δ (1). Thus, divergences may be traced
back to topological invariance and we may expect a theory of quantum gravity in four dimensions,
which has local degrees of freedom, to be free of many of these divergences. Unfortunately, a
preliminary analysis shows that this is not the case [56]. In fact, the Pachner moves introduce new
degrees of freedom (coordinates of the extra point in the case of the 1→ 4 move) whose associated
divergences are related to diffeomorphism invariance [57]. Since quantum gravity in four dimen-
sions is diffeomorphism invariant, it is not too surprising that such divergences still occur in this
case.
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It is also possible to follow the standard interpretation of non renormalizable theories in
physics as effective theories with a physical cut-off. Such a cut-off is provided by the cosmological
constant Λ which amounts to the replacement of the group G by a quantum group at roots of unity.
In that case only a finite number of representations (for SU(2) those with j ≤ Λ−1/2, if Λ > 0 is
expressed using Planck units) come into play so that there is no divergence. Moreover, BF theory
with a cosmological constant can be shown to be invariant under refinement of the triangulation,
thus leading to a well defined topological field theory. Four dimensional quantum gravity models
with a non zero cosmological constant are also finite though they exhibit local degrees of freedom,
see [58] and [59]. Last but not least, a non vanishing cosmological constant is also required on ex-
perimental grounds by recent cosmological observations of supernovæ. However, the upper bound
on the cosmological constant is roughly 120 orders of magnitude smaller than the natural scale of
quantum gravity. It is then necessary to be able to master the limit Λ→ 0, or equivalently of large
cut-off on the spins, in the quantum gravity regime.

These divergences can also be seen as the need for a modification of the propagator, which
we have taken to be the trivial one or the projector onto gauge invariant states. This propagator
enforces the gluing of two D−1 simplexes (triangles in D = 3 and tetrahedra in D = 4) that belong
to neighboring D simplexes. The situation is similar to that of an ordinary quantum field theory
with a propagator C(p,q) = δ (p+q) which solely enforces momentum conservation instead of

C(p,q) =
iδ (p+q)

p2−m2 + iε
(4.28)

as is usually the case in quantum field theory. In this case, the internal edges of the graph represent
virtual particles and the numerator p2−m2+ iε suppresses virtual particles far away from the mass
shell, while external legs carry real particles on the mass shell. In the group field theory context,
edges of the graph can be considered as propagators for virtual D−1 simplexes and it is sensible to
modify the propagator in such a way that D−1 simplexes that differ significantly form the real ones
on the external legs are suppressed. In its euclidian version, the quantum field theory propagator

C(p,q) =
δ (p+q)
p2 +m2 = δ (p+q)

∫
∞

0
dα e−α(p2+m2) (4.29)

allows for a proper identification of the various scales of the theory, as required by Wilson’s formu-
lation of renormalization theory. In this framework, effects of unobserved fluctuations of very high
energy, or equivalently, very small scales, are encoded in a low energy or long distance effective
action. In the context of group field theory such a propagator should lead to a series of effective
actions obtained one from another by successive integration over unobserved geometries, closer
and closer to the observed one described by the external legs of the graphs.

The two simple graphs we have worked out in detail show that the divergences are due to
redundancies in the Dirac distributions enforcing the flatness condition. Each closed strand yields
such a Dirac distribution and the redundancy appears whenever the discs bounding the closed strand
form a closed surface called a bubble [36]. This intuitive idea has been made precise in [37] where
divergences are associated with the second Betti number of a twisted cohomology introduced in
[38]. Roughly speaking, this goes as follows. The basic variables are SU(2) elements he associated
to the edges. Then the amplitude on a fixed 2-complex C given in (4.2) is regularized using the
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heat kernel and rewritten as

Z (C ) =
∫

SU(2)
∏

e
dhe exp−Sα [he] (4.30)

with α the heat kernel regularizing parameter and Sα an action functional. Then, in the limit
α → 0, we have Z ' α−ω(C ) with ω(C ) the degree of divergence. ω(C ) is computed using
the stationary phase approximation where Z (C ) is approximated as an integral over classical
solutions and quadratic fluctuations around these solutions. For BF theory classical solutions are
flat connections which define the twisted cohomology. Recall that a cohomology is defined by a
sequence of vector spaces and linear maps

· · · dn−1

−→Vn−1
dn

−→Vn
dn+1

−→Vn+1
dn+2

−→·· · (4.31)

such that didi+1 = 0. Then, the Betti numbers are defined as bn = dim(Kerdn/Imdn−1) and the
degree of divergence is ω(C ) = b2. For an abelian group or if C is simply connected (i.e. every
closed curve can be deformed into a point so that all classical solutions are pure gauge) we use the
ordinary cell cohomology instead of twisted cohomology [39].

Let us mention that there are other power counting results among which are bubble counting
for the so called type I graphs [40] and bounds obtained by the Cauchy-Schwartz inequality [41],
which are compared to the approach presented here in [42]. Note that the approach based on
the Cauchy-Schwartz also provides some non perturbative results since it not only deals with the
behavior of single graphs but also with the summation of the perturbative series. This series is in
general divergent since the origin only lies on the boundary of the analyticity domain. Provided
some regularity requirements are met (see the appendix on the Nevanlinna-Sokal theorem in [41]),
a formal power series F(λ ) = ∑n anλ n defines an analytic function using the Borel resummation
procedure. We assume that G(λ ) = ∑n

an
n! λ n is convergent and define F(λ ) =

∫
∞

0 dt e−tG(tλ ). A
Borel summable modification of the group field theory of three dimensional BF theory has been
proposed in [57] by introducing another term in the interaction, the so called "pillow"

Vpillow(Φ) =
∫

SU(2)
dg1 · · ·dg6 Φ(g1,g2,g3)Φ(g3,g4,g5)Φ(g5,g4,g6)Φ(g6,g2,g1) (4.32)

which represents a tetrahedron obtained by gluing two tetrahedra along two common faces.
All the general results we have mentioned in this section only concern divergences of the

partition function. In the group field theory formalism, this means that we only have the degree
of divergence of the graph without external legs. In order to deal with the renormalization of
group field theory, it is necessary to handle graphs with external legs. The latter correspond to
two-complexes with boundary and it is likely that the technique based on the stationary phase
approximation and twisted cohomology is versatile enough to encompass these cases.

4.4 Colored group field theories

The need to control the divergences occurring in the expansion of the group field theory led
Gurau to introduce colored group field theories [15]. These models provide an interesting alter-
native to the formulations of group field theories we have presented so far. In dimension D, we
start with D+ 1 complex (bosonic or fermionic) fields Φa(g1, . . . ,gD) which carry an extra index
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a ∈ {0,1, . . . ,D} called the color. Although the field is complex, we do not usually impose any
symmetry properties on its arguments and we consider Φa and its complex conjugate Φa as inde-
pendent fields.

The propagator (or covariance) connects the fields Φa with its complex conjugate Φ
a so that

the Gaußian measure analogous to (3.49)∫
[DΦ]K Φ

a(g1, . . . ,gD)Φ
a′(g′1, . . . ,g

′
D) = δ

a,a′K (g1, . . . ,gD;g′1, . . . ,g
′
D) (4.33)

and∫
[DΦ]K Φ

a(g1, . . . ,gD)Φ
a′(g′1, . . . ,g

′
D) =

∫
[DΦ]K Φ

a(g1, . . . ,gD)Φ
a′(g′1, . . . ,g

′
D) = 0 (4.34)

It is essential to note that the propagators preserve the colors and that there is no summation over
permutations.

The interaction does not mix the Φa with its complex conjugate and reads2

V (Φa,Φ a) =
∫

G
∏

0≤a6=b≤D
dgab Av(gbag−1

ab ) ∏
0≤a≤D

Φ
a(ga(a+1), . . . ,gaD,ga1, . . . ,ga(a−1)) + c.c.

(4.35)
Note that we have added the complex conjugate involving the field Φ a in such a way that the action
is real. As usual, the vertex amplitude only depends on the D(D+1)

2 products gbag−1
ab .

Let us point out some characteristic features of the graphs involved in the perturbative expan-
sion of colored tensor models. First, the fields are not constrained by any permutation of their D
arguments. This means that there is no permutation of the D strands so that the stranded graph
is entirely determined by its underlying ribbongraph. Second, the colors labels the edges and the
structure of the strands can be fully recovered from the coloring of the edges. Third, vertices are
of valence D+ 1 and come in two types: a black one for the Φa interaction and a white one for
the Φ a interaction with edges connecting only white vertices to black ones. Such kinds of graphs
are called bipartite graphs. Finally, a color in {0,1, . . . ,D} is assigned to every edge in such a way
that the colors of the edges incident to every vertex are different, which is called a proper coloring
of the edges with D+ 1 colors. Moreover, colors of the edges are in the cyclic order 0,1, · · · ,D
for white vertices and D,D− 1, · · · ,0 for black ones. Such a graph can be reconstructed from an
ordinary graph (i.e. without a cyclic order of the edges at the vertices) as follows. First, it is known
in graph theory that every bipartite graph with vertices of valence D+ 1 admits a proper coloring
of the edges with D+1 colors (see for instance [44]). Then, we choose a suitable cyclic ordering
at each vertex.

In the case of BF theory, the propagator can be chosen as

K (g1, . . . ,gD;g′1, . . . ,g
′
D) =

∫
G

dhδ (g1h(g′1)
−1) · · ·δ (gDh(g′D)

−1) (4.36)

and the vertex amplitude

Av(gab,gba) =
λ

D+1 ∏
0≤a<b≤D

δ (gbag−1
ab ) (4.37)

2It differs from the ordinary formulation of colored tensor models by a relabeling of the colors 0↔ D, 1↔ D−1,
2↔ D−2, . . .
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Performing the integration over half of the variables, the interaction reads, in dimensions D = 2, 3,
4

• D=2

λ

3

∫
G

∏
0≤a<b≤2

dgab Φ
0(g01,g02)Φ

2(g02,g12)Φ
1(g12,g02) + c.c. (4.38)

• D=3

λ

4

∫
G

∏
0≤a<b≤3

dgab

{
Φ

0(g01,g02,g03)Φ
3(g03,g13,g23)

Φ
2(g23,g02,g12)Φ

1(g12,g13,g01)
}

+ c.c. (4.39)

• D=4

λ

5

∫
G

∏
0≤a<b≤4

dgab

{
Φ

0(g01,g02,g03,g04)Φ
4(g04,g14,g24,g34)×

Φ
3(g34,g03,g13,g23)Φ

2(g23,g24,g20,g12)×Φ
1(g12,g13,g14,g01)

}
+ c.c. (4.40)

For p∈ {0,1, · · · ,D}, p-bubbles of a given graph are defined as follows. 0-bubbles are vertices
and 1-bubbles edges. For p> 1, p-bubbles with colors i1, . . . , ip are connected components of made
of edges of colors i1, . . . , ip. Let us denote Bp the space of p-bubbles. There are boundary operators
∂ p : Bp→Bp−1 taking a p-bubble to a (p−1)-bubble

∂
pbi1,··· ,ip =

p

∑
q=0

(−1)q
(

∑
ρ

connected component

b(ρ)i1,...,iq−1,iq+1,...,iq

)
(4.41)

These operators obey ∂ p−1∂ p = 0 and define an homology

. . .
∂ p−1

←−Bp−1 ∂ p

←−Bp ∂ p+1

←−Bp+1 ∂ p+2

←− . . . (4.42)

This homology is instrumental in understanding the relation between the group field theory graph
and the underlying simplicial complex. Furthermore, it provides an exact power counting theorem
in the abelian case [45].

Let us now discuss a few salient features of colored tensor models.
An important breakthrough allowed by colored tensor models lies in the construction of a 1

N
expansion similar to the matrix models case given in (2.32) which opens the possibility of defining
a continuum limit through a double scaling limit. The first result in this direction is the identifi-
cation of the dominant terms as triangulations of the sphere SD [16]. We only outline this result
and urge the reader to consult [16]. For any stranded graph G of a colored tensor model, we de-
fine its jackets as the ribbon graphs with the same vertices and edges as G and faces of colors{

σq(0)σq+1(0) |q ∈ ZD+1
}

with σ a cycle of length D+ 1, i.e. a permutation of the colors that
does not leave any subset of colors globally invariant. There are D! such permutations but the
jacket does not depend on the orientation of the cycle, so that G has D!

2 jackets. Then, we define
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the convergence degree of G as the sum of the genera of all its jackets, ω(G ) = ∑J gJ . It is
convenient to rescale the coupling constant as

λ → λ

δ (1)
(D−1)(D−2)

4

(4.43)

where δ (1) has been regularized, either by a cut-off on the spins or using the heat kernel. It plays
a role analogous to the size N of the matrices in the large N limit of matrix models. By a series of
combinatorial reductions performed on the edges of the graph, one obtains the jacket bound∣∣AG

∣∣ ≤ (λλ )
V
2 δ (1)D−1−D−2

D! ω(G ) (4.44)

for the BF amplitude of a graph with V vertices. By construction, we always have ω(G ) ≥ 0 and
it may be shown that ω(G ) = 0 implies that G corresponds to a triangulation of the sphere SD, the
converse holding in D = 2.

Colored models also enjoy an extended version of the group field theory symmetries, where
fields with different colors have different symmetries transformations. This is used in [34], where
analogues of diffeomeorphisms as local translations of the vertices of the tetrahedra are constructed.
Such an invariance may shed a new light on the divergences as the latter are related to spikes, i.e.
points free to go to infinity inside the triangulation. An example of a spike is given by the point
added in the Pachner move given in figure 18. Let us illustrate the idea of extended symmetries
on the different example of global translations mentioned in section 3.5. In a general group field
theory, the vertex amplitude only depends on the D(D+1)

2 variables gbag−1
ab , which lead us to the

invariance under the global translation (3.37) involving a single group element. In a colored tensor
model, this transformation may be extended to

Tg1,...,gDΦ
a(ga(a+1), . . . ,gaD,ga,0, . . . ,ga(a−1)

)
=

Φ
a(ga(a+1)ga+1, . . . ,gaDgD,ga,0g0, . . . ,ga(a−1)ga−1

)
(4.45)

The color indices are essential in order to define different transformations on the (D−1)-simplexes.
Finally, the first renomalizable four dimensional group field theory has been constructed by

Ben Geloun and Rivasseau [17] using colored models. This construction involves an abelian ver-
sion of the model with group U(1). Since it is four dimensional it involves stranded graphs with
four strands and five colors. Thus, we start with five fields φ a(g1, . . . ,g4) on U(1)4. The colors
a ∈ {1, . . . ,5} have a trivial kinetic term while the color 0 has a kinetic term of the type

Φ(g1, . . . ,g4)
( 4

∑
i=1

∆gi +m2)
Φ(g1, . . . ,g4) (4.46)

Then, we integrate over all but the color 0 with the standard colored interaction we get an effective
action and keep only the leading order terms in N, where N is a momentum cut-off. The resulting
theory for the color 0 is proven to be renormalizable using techniques from multiscale analysis [46].
Note that this model involves terms of degree 6 in the field as well as a non-local one of the type(∫

φ
)2. This construction has been adapted to dimension three by Ben Geloun and Samary [47]. It

also leads to a detailed computation of the β function and a discussion of asymptotic freedom [48].
A systematic presentation of renormalizable models is given by Ben Geloun and Livine [49].
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4.5 The Lorentzian EPRL/FK model

Before we come to grips with its group field theory formulation, we give a very brief overview
of the EPRL/FK spin foam model of Lorentzian quantum gravity in dimension four. This model
has been defined by Engle, Pereira, Rovelli and Livine [50] and Freidel and Krasnov [51], building
on earlier work of Livine and Speziale [52]. We adopt here the formulation presented in [53] and
refer to the lectures by Rovelli [7] for a thorough overview, including recent applications.

Recall that the action of pure gravity can be written as

S[e,ω] =
1

32πG

∫
M

Tr B∧R (4.47)

where R = dω +ω ∧ω is the curvature of the Lorentzian spin connection ω with values in the Lie
algebra of SL(2,C) and B is a 2-form with values in the Lie algebra of the Lorentz group

B = ?(e∧ e)+
1
γ

e∧ e (4.48)

with e the vierbein and γ the Immirzi parameter. All the field carry internal Lorentz indices raised
or lowered with the tensors η IJ and ηIJ . Trace and star are shorthands for Tr B∧R = BIJ ∧RIJ and
(?B)IJ =

1
2 εIJKLBKL. In the Einstein-Cartan formulation of gravity, the second term involving the

Immirzi parameter is absent. This term has no effect in the classical formulation of pure gravity
but is instrumental in making contact with loop quantum gravity.

If we momentarily disregard the constraint (4.48) and consider B as an arbitrary 2-form with
values in the Lie algebra of SL(2,C), then the theory given by the action (4.47) is nothing but a BF
theory with gauge group SL(2,C). Although its gauge group is non compact, it can be formally
quantized in terms of spin foams using a discretization and writing the Dirac distribution as

δ (g) = ∑
j

∫
R

dρ (ρ2 + j2)TrVj,ρ (g) (4.49)

where the sum runs over all representations of the principal series described in the last section A.
This would lead to a vertex amplitude of the BF type as in (4.6).

Roughly speaking, taking into account the constraint (4.48) amounts to restrict the summation
to the representations that obey ρ = γ j and project onto the SU(2) subrepresentation of lowest spin
in the decomposition (A.14). This amounts to replacing the δ function on SL(2,C) by

∑
j

∫
SU(2)

dk d2
j TrVj(k)TrVj,γ j(gk) = ∑

j
d j TrVj

(
Y †

j,γ jgYj,γ j
)

(4.50)

with Yj,ρ : Vj→Vj,ρ the embedding as SU(2) representation. The integration over k implements a
projection onto Vj, as follows from the Schur orthogonality relations (A.12). Therefore, the vertex
reads

Av(hab) =
∫

SL(2,C)4
∏

0≤a≤4
d′ga ∏

0≤a<b≤4

{
∑
jab

d jabTrVjab

[
habYjab,γ jab gag−1

b Y †
jab,γ jab

]}
(4.51)

where ∏0≤a≤4 d′ga means that, because of the gauge invariance ga→ gag, one of the non compact
SL(2,C) integration has to be dropped. Note that hab commutes with Yjab,γ jab .
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In this expression, we have used labels a,b ∈ {0, . . . ,4} for the tetrahedra on the boundary
and the explicit expression of the vertex amplitude relies on the specific ordering from a to b with
a < b. This defines a choice of an orientation of the faces or, equivalently, of the boundary links.
Let us show that A (hl) does not depend on such a choice, provided we trade the corresponding link
variable hl for its inverse. Our argument relies on the existence of an antilinear map J : Vj,ρ →Vj,ρ

acting on unitary irreducible representations of the principal series of SL(2,C) that commutes with
the group action and preserves the scalar product 〈Jψ|Jχ〉 = 〈χ|ψ〉, whose explicit form is given
in (A.6). Therefore, if ψi is an orthornormal basis of Vj,ρ , so is Jψi and we have

TrVj,ρ (g) = ∑
i
〈Jψi|gJψi〉= ∑

i
〈Jψi|Jgψi〉= ∑

i
〈gψi|ψi〉= ∑

i
〈ψi|g−1

ψi〉= TrVj,ρ (g
−1) (4.52)

It is also interesting to notice that this amplitude differs from the BF amplitude with gauge group
SU(2) (4.6) only through the range of the integration over the variables ga, BF theory being recov-
ered if we integrate over SU(2) instead of SL(2,C).

Gluing together all the 4-simplexes, the amplitude for an arbitrary 2-complex can be written
as

AC (hl) =
∫

SL(2,C)4V
∏
e,v

d′gv,e

{
∏

f
A f (gv,e,hl)

}
(4.53)

where an SL(2,C) has been assigned to each pair of a vertex v which is not a node and an edge e
incident to v. For a face f that does not meet the boundary of C , the face amplitude is defined by

A f (gv,e) = ∑
j

d j TrVj

[ −→
∏

v∈∂ f
Y †

j,γ j gv,e+(v)(gv,e−(v))
−1Yj,γ j

]
(4.54)

with e+(v) (resp. e−(v)) the edge entering (resp. leaving) v according to the orientation chosen for
the face. If f meets the boundary, an extra SU(2) variable hl has to be inserted on the link between
two vertices. This amplitude does not depend on the choice of the face orientation provided we
invert the link variable hl . Moreover, for a complex without boundary, it is real thanks to the
unitary of the representation,

The boundary of a 2-complex is a graph Γ = ∂C and the spin foam amplitude AC (hl) defines
a wave function in

AC (hl) ∈H = L2(SU(2)L/SU(2)N) (4.55)

where the node gauge transformations gn ∈ SU(2) act on the link variables as hl→ gs(l)hl g−1
t(l). This

may be extended to gauge transformations with values in SL(2,C) provided we use projected spin
networks [54].

The sums over spins in the EPRL/FK model are in general divergent and require some regular-
ization. Trading the Lorentz group for its quantum group deformation [55] leads to a finite model
[58] and [59], which is expected to correspond to a non vanishing cosmological constant.

There is also a euclidian version of the EPRL/FK model based on the group SU(2)×SU(2)
instead of SL(2,C). For 0 < γ < 1, it involves the representations Vj+⊗Vj− with j± = 1±γ

2 and the
subrepresentation Vj of highest spin j = j++ j− of the diagonal SU(2) subgroup.

Finally, let us conclude this section by emphasizing that the EPRL/FK model corrects two
drawbacks of the older Barrett-Crane model, defined for Lorentzian geometries in [60]. First, its
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asymptotic expansion in the large spin limit reproduces Regge calculus, as shown in [61] for a
single 4-simplex and in [62] for an entire 2-complex, using the stationary phase method. Second,
its relation to the kinematical loop quantum gravity Hilbert space is transparent since it involves
the Immirzi parameter and SU(2) boundary states [7].

4.6 Group field theory formulation of the lorentzian EPRL/FK model

Once the vertex amlitude of a spin foam model is known, the general techniques presented in
section 3.5 can be applied to construct the associated group field theory. In the case of the EPRL/FK
vertex, this leads to the interaction

V (Φ) =
λ

5

∫
SU(2)20 ∏

0≤a6=b≤4
dga,b

∫
SL(2,C)4

∏
0≤a≤4

d′ga{
∏

0≤a<b≤4

{
∑
jab

d jabTrVjab

[
g−1

ab Y †
jab,γ jab

gag−1
b Yjab,γ jabgba

]}
×

× ∏
0≤a≤4

Φ
(
ga(a+1), . . . ,ga4,ga,0 . . . ,ga(a−1)

)}
(4.56)

This interaction is adapted to colored models by adding a color index Φa
(
ga(a+1), . . . ,ga4,ga,0 . . . ,ga(a−1)

)
.

It is also invariant under gauge transformations (3.38) and global translations (3.37) since Yj,ρ com-
mutes with the SU(2) action. The propagator can be chosen to be either the trivial one (3.30) or the
projector onto SU(2) gauge invariant states (3.50). Then, an arbitrary Feynman graph is evaluated
by performing the SU(2) integration using Schur’s orthogonality relations (A.12) and yields the
EPRL/FK spin foam amplitude (4.53) for the partition function as a sum over graphs without exter-
nal legs. The case of spin foams with non trivial boundary can be treated along the lines presented
in section 3.6.

Using the canonical basis (see appendix A), the interaction can be written in terms of coherent
states (see appendix B). Indeed,

∑
jab

d jabTrVjab

[
gbaY †

jab,γ jab
gag−1

b Yjab,γ jabg−1
ab

]
=

∑
jab

(d jab)
2
∫

S2
dnab

[
〈nab|(gbaga)

†gabgb|nab〉
]2 jab[

〈nab|g†
aga|nab〉

](iγ jab+1+ jab)
[
〈nab|g†

bgb|nab〉
](−iγ jab+1+ jab)

(4.57)

Replacing this in the expression of the vertex (4.56), we get

V (Φ) =
λ

5

∫
SU(2)20 ∏

0≤a6=b≤4
dga,b

∫
SL(2,C)4

∏
0≤a≤4

d′ga ∑
jab

(d jab)
2
∫

S2
dnab

{
∏

0≤a<b≤4

[
〈nab|(gbaga)

†gabgb|n〉
]2 jab[

〈nab|g†
aga|nab〉

](iγ jab+1+ jab)
[
〈nab|g†

bgb|nab〉
](−iγ jab+1+ jab)

∏
0≤a≤4

Φ
(
ga(a+1), . . . ,ga4,ga,0 . . . ,ga(a−1)

)}
(4.58)

P
o
S
(
Q
G
Q
G
S

2
0
1
1
)
0
0
5

005 / 45



P
o
S
(
Q
G
Q
G
S
 
2
0
1
1
)
0
0
5

Group field theories Thomas Krajewski

Using this representation of the vertex, the sum over spins can be performed explicitly. Indeed,
starting with a geometrical series, we get

∑
2 j∈N

(2 j+1)2
ξ

2 j =
(

ξ
d

dξ
+1
)2 1

1−ξ
=

1+ξ

(1−ξ )3 (4.59)

which is convergent for |ξ |< 1 and becomes singular at ξ = 1. Therefore, we set

ξab =
〈n|(gabga)

†gabgb|n〉[
〈n|(gbaga)†gbaga|n〉

] iγ+1
2
[
〈n|(gabgb)†gabgb|n〉

]−iγ+1
2

(4.60)

so that the sum over spins is expressed in terms of the previous function.
By the Cauchy-Schwartz inequality |〈χ|ψ〉|2 ≤ 〈χ|χ〉〈ψ|ψ〉, it turns out that we always have

|ξan| ≤ 1. Moreover, the equality |〈χ|ψ〉|2 = 〈χ|χ〉〈ψ|ψ〉 is reached only when the kets |χ〉 and
|ψ〉 are proportional. In our context, it amounts to

gabga|nab〉〈nab|g†
ag†

ba

〈nab|g†
aga|nab〉

=
gbagb|nab〉〈nab|g†

bg†
ab

〈nab|g†
bgb|nab〉

(4.61)

which is precisely the gluing condition found in the analysis of the asymptotic behavior of the
vertex [61]. Geometrically, it means that the bivectors defining the geometry of the triangles ab
and ba in the four simplex agree.

This leads us to an interesting analogy with the mass shell of ordinary quantum field theory, as
first noticed by Pereira in his PhD thesis [65]. From the viewpoint of group field theory, the vertex
becomes singular when the geometry is close to a real geometry. This is reminiscent of the mass
shell singularity in quantum field theory, whose propagator is singular when the particles are real.
It is particularly clear if we use Schwinger’s proper time, as introduced in section 2.4

1
k2 +m2 + iε

=
∫

∞

0
dα expi

{
α(k2 +m2 + iε)

}
(4.62)

In particular, we can also regulate the sum over spins by inserting a factor of (e−ε) jab , with ε > 0. In
this construction, the spins jab play in group field theory a role similar to the Schwinger parameter
in quantum field theory.

Note that a group field theory reproducing the EPRL/FK spin foam amplitude is by no means
unique. We have chosen to work with fields defined on SU(2)4 and put the vertex weight in the
interaction. It could also be possible to split this weight into two parts and put them on the propa-
gators, so that we would have a propagator of the type

K (g1, . . . ,g4; g̃1, . . . , g̃4) =
∫

SL(2,C)2
dgdg̃ ∏

0≤a≤4

{
∑
ja

d jaTrVja .γ ja

[
ga(g̃a)

−1 g̃Y †
ja,γ jab

Yja,γ jag−1]}
(4.63)

and an interaction of the SL(2,C) BF type. This requires us to work with a group field Φ(g1, . . . ,g4)

defined on SL(2,C)4 and use the SL(2,C) analogue of Schur’s orthogonality relations to recover
the spin foam amplitude. Because of the non compact nature of the group, this is slightly more
technical. Moreover, factoring out the gauge degrees of freedom by dropping one of the SL(2,C)
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integrations at each vertex is no longer possible and requires more work. In the euclidian version
of the model, SL(2,C) is replaced by SU(2)×SU(2) and does not create any difficulty. This is the
formulation intially proposed in [51] and further developed in [63] and [64].

The field Φ(g1, . . . ,g4) obeying the SU(2) invariance property Φ(gg1, . . . ,gg4) =Φ(g1, . . . ,g4)

is related to a quantum tetrahedron [32] embedded in three dimensional space, as shown by the dis-
cussion following (4.13). Therefore, the external legs of a group field theory Feynman graph define
the boundary tetrahedra. If we further include a boundary graph observable as defined in (3.55),
we recover the EPRL/FK spin foam amplitude for a 2-complex with boundary in terms of spin net-
works. In a four dimensional theory, it is more transparent to work with projective spin networks
since they yield a manifestly covariant formulation [54]. This is achieved by introducing an extra
variable x in the coset SL(2,C)/SU(2). It is represented by gx ∈ SL(2,C), up to a multiplication
on the right by h ∈ SU(2):gx and gxh represent the same x. Moreover, any x ∈ SL(2,C)/SU(2) can
be represented in a unique way as a positive definite matrix X = gxg†

x of determinant one. Writing
any such matrix as X = X IσI with σI the identity and the Pauli matrices, we can identify X with
a normalized future-pointing time-like vector in the hyperboloid H+. Then, we expand the field
describing a tetrahedron in three dimensional space as in (4.12)

Φ(h1, . . . ,h4) = ∑
j1 ,..., jD,m1 ,...,mD

intertwiner between j1 ,..., j4

M j1,..., j4; i
m1,...,mD

D j1
m1,m′1

(h1) · · ·D j4
m4,m′4

(h4) i∗m′1,,̇m′4 (4.64)

with hi ∈ SU(2). Its four dimensional cousin is expressed as

Φ̃(X ,g1, . . . ,g4) = ∑
j1 ,..., jD,m1 ,...,mD

intertwiner between j1 ,..., j4

M j1,..., j4; i
m1,...,mD

D j1,γ j1
j1,m1, j1,m′1

(g1gx) · · ·D j4,γ j4
j4,m4, j4,m′4

(g4gx) i∗m′1,,̇m′4 (4.65)

with gi ∈ SL(2,C), X ∈ H+ and

Dρ, j
k,m,k′m′(g) =ρ, j〈k,m|g|k′,m′〉ρ, j (4.66)

the matrix element of g ∈ SL(2,C) in the unitary representation Vj,ρ of the principal series (see
appendix A). Note that Φ̃ only depends on X = gxg†

x because of the SU(2) gauge invariance of Φ.
The field Φ̃ is invariant under the SL(2,C) transformation

Φ̃(g−1 .X ,g1g, . . . ,g4g) = Φ̃(X ,g1, . . . ,g4) (4.67)

with g.X = gXg† the standard Lorentz transformation of X . The field Φ(h1, . . . ,h4) is recovered
by assuming that X = X = (1,0,0,0) and restricting the argument of the field to SU(2). In order
not to introduce spurious degrees of freedom, we assume that the group elements in (4.65) are
such that X = g .X . Therefore, φ̃ does not contain more degrees of freedom than φ , it merely
provides a covariant version of the latter, with X the four dimensional normal to the tetrahedron
under consideration.

Finally, let us note that one can rewrite the interaction in terms of the new field Φ̃, trading the
integration over the group elements ga in (4.56) for an integration over the normals Xa, taking into
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account the properties of the SL(2,C) Haar measure recalled in Appendix A,

V (Φ̃) =
λ ′

5

∫
(H+)4

∏
0≤a≤4

d′Xa

∫
SL(2,C)20, Xa=gab.X

∏
0≤a6=b≤4

d′ga,b ∑
jab

(d jab)
2
∫

S2
dnab

{
∏

0≤a<b≤4

[
〈nab|g†

bagab|nab〉
]2 jab[

〈nab|Xa|nab〉
](iγ jab+1+ jab)

[
〈nab|Xb|nab〉

](−iγ jab+1+ jab)

∏
0≤a≤4

Φ̃
(
Xa,ga(a+1), . . . ,ga4,ga,0 . . . ,ga(a−1)

)}
(4.68)

λ ′ is a new coupling constant introduced in order to absorb normalization factors in the measure
over H+. Primed integration measures d′X and d′g signify that global SL(2,C) invariance has to
be factored, because of gauge invariance. This could be done, for instance, by imposing that one
of the normals is fixed.

5. Conclusion and outlook

In these lecture notes we have presented group field theory as a generalization of matrix models
of two dimensional quantum gravity in order to deal with higher dimensional quantum gravity.
We first generalized matrices Mi j to higher rank tensors Mi1...iD to generate a summation over D-
dimensional triangulations. Then, we promoted tensors to functions Φ(g1, . . . ,gD) to account for
the gravitational degrees of freedom as encoded in loop quantum gravity and spin foam models. In
this case, the perturbative expansion of the group field theory path integral may be written as

〈OΓ[Φ](hl)〉c = ∑
T possibly disconnected triangulations with

nboundary (D -1)-simplexes

1
CT

AT/Γ(hl) (5.1)

As shown in the last section, for a suitable choice of the action functional S[Φ], it reproduces
the spin foam amplitudes of the Lorentzian EPRL/FK model. Therefore, it can be considered as a
convenient generating functional for these amplitudes.

However, it is more than a mere generating functional: it provides a prescription to sum the
various amplitudes. Its relation to spin foam models is similar to the relation of quantum field
theory to particle physics, albeit in reverse logical order. Indeed, instead of starting with field
quantization, particle physicists could have devised the Feynman rules for evaluating scattering
processes between particles and only later realize that these follow from the perturbative expansion
of a field theory. Needless to say that the quantum field viewpoint has been instrumental to under-
stand various phenomena (for instance the relation to statistical physics through renormalization)
and is the only way to related elementary particles physics to everyday life classical field theory.

Something similar may take place in quantum gravity. Loop quantum gravity and spin foam
models provide a tentative description of the gravitational field at very short distances. The tran-
sition amplitudes they provide are the Feynman graph expansion of the group field theory path
integral. Therefore, group field theory may shed a new light on loop quantum gravity through the
use of quantum field theoretic techniques like semi-classical expansions, Schwinger-Dyson equa-
tions or Wilsonian renormalization.
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However, in order for group field theory to qualify as a bona fide physical theory, a few prob-
lems have to be circumvented. Let us end these lectures by listing some of them as well as tentative
solutions.

• Coupling to matter The group field theories we have presented only describe pure gravity,
Matter fields have to be included in order to provide a physically sensible theory. Inclusion
of matter can be performed in a variety of ways. For instance, one can add extra arguments
to the group field Φ, in analogy with the coupling of the Potts model to two dimensional
gravity (2.37). Such a construction could be used to reproduce the spin foam amplitude of
gravity coupled to Yang-Mills theory and fermions [68]. Alternatively, matter fields can also
arise as some excitations of the group field itself around a classical solution, as proposed
by Di Mare and Oriti [69]. The simplest form of matter is certainly the vacuum, in the
form of a non zero cosmological constant. It is known that the inclusion of a cosmological
constant can be achieved by trading SU(2) or SL(2,C) for their q-derformed counterpart.
Since quantum groups are Hopf algebras, it is natural to define group field theories based on
Hopf algebras. Such a framework has been developed by Krasnov in order to include matter
fields of various sorts [70]. For instance, in the case of the Boulatov-Ooguri models, the
basic field Φ(g1, . . . ,gD) is an element of A ⊗D where A is the Hopf algebra of functions
over SU(2). Then, the action can be expressed using the Haar measure, the coproduct and
the antipode.

• Continuum theory through the double scaling limit Spin foam models provide a proposal
for a quantum theory of gravity that relies on discretizations of space-time. It has to be re-
lated to a continuum, long distance, theory formulated in terms of fields living on a smooth
manifold. The double scaling limit is essential in establishing the link between matrix mod-
els and two dimensional gravity by enhancing the contribution of triangulations with many
simplexes. Since group field theories are generalizations of matrix models, it is reasonable to
attempt a similar construction proceeding as follows. To begin with, we restrict the summa-
tion to spins j ≤ N and identify various classes of graphs that correspond to a fixed topology
and share the same power law behavior Nα as N → ∞, possibly after a renormalization of
the coupling and/or the field. Next, let us assume that the summation over any such class of
graph is convergent with λ ∈ [0,λc], with λc a critical coupling and that it exhibits a power
law behavior of the type (λc− λ )β when λ → λc. Note that such an algebraic singularity
often results from the summation of tree-like graphs. Then, we can define the double scaling
limit by simultaneously taking N→ ∞ and λ → λc with Nα(λ −λc)

β held fixed. Although
this is far from being realized in the EPRL/FK model, two important steps in this direction
have already been taken in simpler models based on colored tensor models. First, Gurau
has identified the dominant terms in the large N behavior of the Boulatov-Ooguri models
in [16]. Second, in the case of tensor models without group arguments, Bonzom, Gurau,
Riello and Rivasseau [71] have been able to sum the dominant class of graphs and show that
it leads to a continuum limit. Alternatively, one could also consider two dimensional gravity
coupled Yang-Mills theory as proposed in [72]. This is an interesting playground because it
possesses a non trivial spin foam formulation and is technically simple since it only involves
ribbon graphs.
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• Schwinger-Dyson equations and constrains on boundary states In order to understand
various physically relevant situations, like early cosmology or black hole physics, it is neces-
sary to relate group field theories to more conventional formulations of quantum gravity like
loop quantum gravity. Since group field theory implements a prescription for the summation
on spin foam amplitude contributing to a fixed boundary graph, it is interesting to translate
such a prescription into an equation for the boundary state. This can be achieved through
the Schwinger-Dyson equations (2.17). Indeed, choosing an external leg in a non necessarily
connected n-point function, this leg can be either related to a vertex or to another external
leg. When implemented on the expectation value of a boundary graph, a given (D−1)-
simplex can either split into D (D−1)-simplexes or identified with another (D−1)-simplex
on the boundary, as noted by Freidel [19]. The resulting equations do not refer anymore to
spin foams but simply enforce constraints on the expectation values of boundary states, and
have been shown to provide a higher dimensional generalization of the Virasoro constraints
of two dimensional quantum gravity in the context of colored tensor models by Gurau [73]
and by Bonzom to study the large N limit of colored tensor models [74]. Schwinger-Dyson
equations have also been used by Ooguri to control the sum over topologies in the three di-
mensional case [75]. In the context of the EPRL/FK model, it would be interesting to study
the possible relation of these constraints to loop quantum gravity, especially to the hamil-
tonian constraint. Alternatively, group field theory can also be used to define a effective
hamiltonian constraint through a semi-classical expansion, as proposed by Livine, Oriti and
Ryan [76].

Obviously, all these topics are related: the divergences may be cured through a renormalization
procedure which may shed a new light on the low energy limit of the theory while the inclusion of
matter fields may alter the renormalization group equations.

A. Principal series of unitary irreducible repreentations of SL(2,C)

In order to give the construction of the Lorentzian EPL/FKγ model, it is necessary to list a few
facts concerning the unitary irreducible representations of SL(2,C) [77]. We work with the group
SL(2,C) of 2× 2 complex matrices of determinant 1 which is the universal cover of connected
component of the identity of the Lorentz group SO(3,1), just as SU(2) is the universal cover of the
rotation group SO(3). Unlike the latter, SL(2,C) is non compact so that its unitary representations
are necessary infinite dimensional. When decomposing a function over SL(2,C) using the matrix
elements of representations, only unitary irreducible representations of the principal series appear.
These representations Vj,ρ are labelled by a real number ρ ∈ R and a half-integer j ∈ Z

2 and admit
two equivalent descriptions.

In the spinorial formulation, let Vj,ρ be the space of (not necessarily holomorphic) functions
of z = (z1,z2) ∈ C2 obeying the homogeneity property

ψ(λ z) = λ
−1+iρ+ j

λ
−1+iρ− j

ψ(z) (A.1)

It is a Hilbert space for the scalar product

〈χ|ψ〉=
∫
CP1

Ω χψ (A.2)
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The two form
Ω =

i
2
(
z1dz2− z2dz1

)
∧
(
z1dz2− z2dz1

)
(A.3)

is such that χψ Ω is invariant under z→ λ z and may be integrated over the complex projective
space CP1. The action of g ∈ SL(2,C) on ψ is

g·ψ(z) = ψ(tgz) (A.4)

with tg the transpose of g.
This presentation of Vj,ρ allows us to define an antiunitary operator J commuting the action of

g ∈ SL(2,C) and generalizing to the principal unitary representations of SL(2,C) the map(
z1

z2

)
→

(
−z2

z1

)
=

(
0 −1
1 0

)(
z1

z2

)
(A.5)

commuting with the SU(2) action. On Vj,ρ , it is defined as

Jψ(z) =
√

j2+ρ2

π

∫
CP1

Ω (w0z1−w1z0)
−1+ j+iρ (w0z1−w1z0)

−1− j+iρ
ψ(w) (A.6)

This map obeys Jg = gJ and J2 = (−1)2k. As its SU(2) cousin, it is antiunitary in the sense that
〈Jχ|Jψ〉 = 〈ψ|χ〉. It is in fact the composition of an intertwiner between the representations Vj,ρ

and V− j,−ρ and complex conjugation. Since the representations Vj,ρ and V− j,−ρ are equivalent, we
assume that j is non negative.

Alternatively, it is convenient in actual computations to define Vj,ρ as the space of L2 functions
over SU(2) obeying the covariance property

ψ(eiφσ3u) = ψ(u)e2i jφ (A.7)

for all u ∈ SU(2) and φ ∈ R with σ3 the third Pauli matrix. To define the SL(2,C) action, recall
that any g ∈ SL(2,C) can be uniquely factorized as

g = kh with h ∈ SU(2) k =

(
λ−1 µ

0 λ

)
λ > 0 µ = u+ iv ∈ C (A.8)

Under this decomposition, the Haar measure on SL(2,C) factorizes as dg = C dk dh with dg the
Haar measure on SU(2), dk =C′λ dλ dudv an SL(2,C)-invariant measure on the SL(2,C)/SU(2).
C and C′ are two normalization constants that can be found in [77]. For our purposes, it is con-
venient to identify the coset SL(2,C)/SU(2) with the hyperboloid H+ =

{
X I|X IXI = 1 , X0 > 0

}
using the relation X = kk†. Using this identification, the measure on the coset turns out to be
proportional to the usual measure on the hyperboloid

dX =
dX1dX2dX3√

1+(X1)2 +(X2)2 +(X3)2
(A.9)

Taking u∈ SU(2) and g∈ SL(2,C), we factorize ug∈ SL(2,C) as ug = kg(u)hg(u) and define

g·ψ(u) = λg(u)2iρ−2
ψ(hg(u)) (A.10)
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The correspondence with the spinorial representation relies on the use of the homogeneity condition
(A.1) for positive real numbers to assume that |z1|2 + |z2|2 = 1 and define

u =

(
z1 z2

−z2 z1

)
(A.11)

Then, the covariance condition (A.7) is equivalent to the homogeneity condition for complex num-
bers of modulus 1.

Recall that the Peter-Weyl theorem theorem states that any L2 function on SU(2) can be ex-
panded over Wigner matrices Dk

m′m(u) with k ∈ N
2 , m,m′ ∈ {−k,−k+1, . . . ,k} and that the latter

obey the Schur orthogonality relations∫
SU(2)

dg D j
m,d(g)D

j′
m′,d(g) =

δ j, j′δm,m′δn,d

2 j+1
(A.12)

The covariance condition (A.7) imposes m′ = j so that an orthonormal basis of Vj,ρ , called the
canonical basis, is provided by the functions

|k,m〉 j,ρ =
√

2k+1Dk
jm(u) k− j ∈ N m ∈ {−k,−k+1, . . . ,k} (A.13)

Consequently, as a representation of SU(2)⊂ SL(2,C), it decomposes as

Vj,ρ = ⊕
k− j∈N

Vk (A.14)

Let us denote Yj,ρ : Vj→Vj,ρ the embedding as SU(2) representation, so that

Yj,ρ | j,m〉= | j,m〉ρ, j and Y †
j,ρ |k,m〉 j,ρ = δk, j| j,m〉 (A.15)

with | j,m〉 the standard basis of Vj.

B. SU(2) coherent states and their use in SL(2,C) representation theory

It is also useful to recall a few facts about SU(2) coherent states, see [78] for a complete survey.
Given a unit vector n, let gn ∈ SU(2) be any rotation that takes the unit vector n0 along the z axis
to n. The spin j coherent state is defined by acting with gn on the highest spin vector | j, j〉

| j,n〉= g| j, j〉= ∑
− j≤m≤ j

D j
m j(g)| j,m〉 (B.1)

The rotation gn is defined up to a rotation around the z axis so that the coherent state | j,n〉 is defined
up to a phase. This phase is irrelevant as soon as the coherent state appears as a ket | j,n〉 and a bra
〈 j,n|. To be definite, let us fix the rotation in such a way that its axis is n0×n with a angle in [0,π].
Coherent states satisfy the following properties, which are very useful in our context.

The scalar product of two coherent states is

〈 j,n1| j,n2〉= exp{i jϕ(n0,n1,n1)}
(1+n1 ·n2

2

) j
(B.2)
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where ϕ(n0,n1,n1 is the algebraic area of the geodesic triangle on the unit sphere with vertices at
n0, n1 and n2. Although not orthogonal, they form an over complete basis of Vj in the sense that

2 j+1
4π

∫
S2

dn | j,n〉〈 j,n|= 1Vj (B.3)

The action of g ∈ SU(2) on a coherent state is again a coherent state,

g| j,n〉= exp{i jϕ(n0,n,ng)}| j,ng〉 (B.4)

with ng the transformed of n0 under the rotation defined by g.
All these properties allow us to reduce any computation of matrix elements of g (by convention

g acts on the ket on its right) between two coherent states to the spin 1
2 representation

〈 j,n1|g| j,n2〉=
(
〈n1|g|n2〉

)2 j (B.5)

where we have dropped the label j = 1
2 to alleviate the notation.

All these relations prove to be useful in order to compute the following trace, with ga,gb ∈
SL(2,C), in terms of coherent states

TrVj

(
Y †

ρ, jg
−1
a gbYρ, j

)
= ∑
− j≤m≤ j

j,ρ〈 j,m|g−1
a gb| j,m〉 j,ρ (B.6)

= ∑
− j≤m≤ j

(2 j+1)
∫

SU(2)
duλga(u)

−2iρ−2
λgb(u)

2iρ−2D j
jm
(
hga(u)

)
D j

jm

(
hgb(u)

)
(B.7)

= ∑
− j≤m≤ j

(2 j+1)
∫

SU(2)
duλga(u)

−2iρ−2
λgb(u)

2iρ−2〈 j,m|h−1
ga
(u)| j, j〉〈 j, j|hgb(u)| j,m〉

(B.8)

= (2 j+1)
∫

SU(2)
duλga(u)

−2iρ−2
λgb(u)

2iρ−2〈 j, j|hgb(u)h
−1
ga
(u)| j, j〉 (B.9)

(B.10)

To express the face amplitude in terms of coherent states, we have to compute the matrix element

〈 j, j|hga(u)h
−1
gb
(u)| j, j〉= 〈1

2 ,
1
2 |hga(u)h

−1
gb
(u)|12 ,

1
2〉

2 j (B.11)

with all group elements considered as 2× 2 matrices evaluated in the fundamental representation

and |12 ,
1
2〉=

(
1
0

)
.

Since hg(u) = k−1
g (u)ug is defined by the decomposition ug = kg(u)hg(u), we have(

hg(u)
)−1

=
(
hg(u)

)†
= (g−1)u†kg(u) (B.12)

and
hg(u) = k†

g(u)u(g
−1)† (B.13)

Recall that

kg(u) =

(
λ−1

g (u) µg(u)
0 λg(u)

)
, (B.14)
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so that |12 ,
1
2〉 is an eigenvector of kg(u) with eigenvalue λ−1

g (u). Thus the matrix element reads

〈1
2 ,

1
2 |hga(u)h

−1
gb
(u)|12 ,

1
2〉= λ−1

ga
(u)λ−1

gb
(u)〈1

2 ,
1
2 |u(g

−1
a )†g−1

b u†|12 ,
1
2〉 (B.15)

Taking all terms into account, we have

TrVj

(
Y †

ρ, jg
−1
a gbYρ, j

)
= (2 j+1)

∫
SU(2)

duλga(u)
2(−iρ−1− j)

λgb(u)
2(iρ−1− j)[〈1

2 ,
1
2 |u(g

−1
a )†g−1

b u†|12 ,
1
2〉
]2 j

(B.16)

To compute explicitly λg(u) > 0, notice λ 2
g (u) is nothing but the upper left corner of the matrix

(kg(u)−1)†k−1
g (u) = u(g−1)†g−1u†,

λg(u) =
[
〈1

2 ,
1
2 |u(g

−1)†g−1u†|12 ,
1
2〉
] 1

2
(B.17)

Therefore,

TrVj

(
Y †

ρ, jg
−1
a gbYρ, j

)
= (2 j+1)

∫
SU(2)

du[
〈1

2 ,
1
2 |u(g

−1
a )†g−1

b u†|12 ,
1
2〉
]2 j[

〈1
2 ,

1
2 |u(g

−1
a )†g−1

a u†|12 ,
1
2〉
](+iρ+1+ j)[

〈1
2 ,

1
2 |u(g

−1
b )†g−1

b u†|12 ,
1
2〉
](−iρ+1+ j)

(B.18)

Finally, we identify u†|12 ,
1
2〉= |n〉 with a coherent state in the spin 1

2 repsentation. Therefore, up to
a factor of π , the integral can be written as an integral over S2

TrVj

(
Y †

ρ, jg
−1
a gbYρ, j

)
= (2 j+1)

∫
S2

dn

[
〈n|(g−1

a )†g−1
b |n〉

]2 j[
〈n|(g−1

a )†g−1
a |n〉

](iρ+1+ j)[
〈n|(g−1

b )†g−1
b |n〉

](−iρ+1+ j)

(B.19)
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