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1. Introduction

An important expectation from any theory of quantum graugywhether it provides insights
on the problem of classical singularities, which accordimghe theorems of Penrose, Hawking
and Geroch are the generic features of general relativiig) (&]. A simple example of such a
singularity, is the big bang singularity, which occurs ftirmatter satisfying weak energy condi-
tion (WEC) if we evolve an expanding branch of the Friedm&uiertson-Walker (FRW) universe
backward in time. As the singularity is approached, cumaainvariants diverge and geodesic evo-
lution breaks down. When spacetime curvature is in the Rlaggime, one expects that quantum
properties of spacetime would become significant leadimgésolution of space-like singularities.
New physics from such a theory of quantum spacetime or quagtavity is not only expected to
shed insights on the generic resolution of singularities,atso provides an invaluable opportunity
to answer various fundamental questions associated watiptigsics of the early universe, such
as: Is the spacetime beyond the big bang foamy or classical®hAt scales does the classical
spacetime emerges? What are the implications for the pilaipdbr inflation to occur? What are
the signature of new physics in the cosmic microwave backgi® and so on.

Loop quantum cosmology (LQC) is a background independemtpesturbative quantization
of homogeneous cosmological spacetimes, based on loopumuamnavity (LQG) [2, 3, 4, 5] (See
lectures by Giesel and Sahlmann for a detailed introdudtiothe methods of LQG in this pro-
ceedings [6]). LQC began with seminal works of Bojowald wvhindicated resolution of singu-
larities at a kinematical level of the quantum theory [7,8]rigorous development of these ideas
commenced with the work of Ashtekar, Bojowald and LewanddJg]. A first complete quan-
tization of a cosmological spacetime in LQC, in the sensevaflability of physical Hilbert, a
family of Dirac observables and detailed physical implmas, was performed for the quantiza-
tion of the flat k = 0) isotropic model sourced with a massless scalar field [10,12]. As in
LQG, the elementary variables in LQC are the holonomies qP$tbnnection and fluxes of triads
(which due to homogeneity assumption turn out to be promoati to triads). The resulting quan-
tum geometry in LQC, as in LQG, is discrete. This is in corittaghe Wheeler-DeWitt quantum
cosmology, based on continuum differentiable geometrylikenthe classical theory where all
the solutions in this model are singular, and the Wheela#ileguantum cosmology, which fails
to resolve the big bang singularity, in LQC, evolution via tipuantum Hamiltonian constraint is
non-singular, leading to a bounce of the universe when graggsity reaches a maximum value,
0 = Pmax ~ 0.410p1anck The robustness of bounce, first observed in various nuaiasiimulations
performed in Ref. [10, 11, 12], has been established by umngxactly soluble model (sLQC)
[13], where the bounce is proved to occur for a dense set ti#fssta the physical Hilbert space.
The energy density at which bounce occurs in numerical sitiauls with states which correspond
to macroscopic universes at late times, agrees with thesupn of the expectation values of the
Dirac observable corresponding to energy density, in thysiphal Hilbert space of sLQC. Further,
sLQC has also provided insights on the behavior of fluctaatacross the bounce, which turn out
to be tightly constrained, thus preserving semi-clas$ycand showing that a semi-classical state
before the bounce evolves to a semi-classical state akelpdhince and vice versa [14, 15, 16].
sLQC has also led to insights on spin foam models using pa&tigrial approach [17, 18, 19] and
on applications of consistent histories approach to qmatitin of spatially flat isotropic models
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[20, 21, 22]. These developments have been supplementbdheiimportant results on mathe-
matical aspects of these models [23, 24, 25, 26].

Using the simplifications due to the underlying symmetriethe homogeneous spacetimes,
the quantization program of LQG has been successfullyemhwiut in LQC for various cosmo-
logical spacetimes in recent years by various groups, apditant insights on answers to above
guestions have been obtained (for an up to date extensi@vuesee [27]). In particular, complete
guantization has been performed for spatially flat isotropbdels sourced with positive cosmo-
logical constant [29, 28], negative cosmological consfa@}, inflationary potential [31], spatially
closed [32, 33] and open [34, 35] models with a masslessrsfiald, and anisotropic models
[36, 37, 38, 39]. In all these models, initial singularitysisown to be resolved, which is a direct
ramification of the non-local nature of the field strength leé tonnection in the quantum the-
ory. Interestingly, for states which evolve to a macroscapiiverse at late times, the results of
singularity resolution and the new physics at the Planckestan be captured using an effective
spacetime description resulting from effective Hamilton{40, 41, 42]. The effective dynamics
captures the underlying quantum evolution to an excellentiracy for various models in LQC
[11, 12, 33, 28, 30, 43, 44], and has been used to study ditallgsical implications of loop
guantization of cosmological spacetimes. As an examplegueffective spacetime description,
singularity resolution in LQC can be understood occurring tb bounds on the growth of space-
time curvature, which plays a conjugate role to geometry §5 47], and insights on the generic
resolution of strong singularities and geodesic exteriithain flat isotropic [45, 48] and Bianchi-|
models [46] have been obtained. Effective equations haeelsen used to gain insights on con-
straining quantization ambiguities [49, 50], and have besed to explore the physics of Gowdy
models [51]. A lot of activity is devoted to applying effagiequations to understand the signatures
of quantum geometry in cosmological perturbations [52]ingdeyond the effective treatment, in
this direction, promising progress has been made to uraaetshe effects of quantum spacetime,
using the analysis of [53], on primordial perturbations][54

Due to space limitations, it is not possible here to discuasynof the above interesting results
obtained by various authors. For a detailed discussion wbws results, we refer the reader to
the following reviews which cover various developmentshe field [27, 55, 56, 57, 58]. The
goal of this article is not to review above results, but ratieedemonstrate basic techniques and
results for the simplest model in LQC, a spatially flat modrirsed with a massless scalar field
as first performed in Refs. [10, 11, 12], and the correspandiractly soluble model [13]. Since
techniques developed for this model, have been used fapusdther models, the analysis and
discussion in this manuscript provides a useful framewotkiderstand the way loop quantization
is performed for more general homogeneous cosmologicaleleodn Sec. I, we discuss the
classical theory and the loop quantization of the spatiddlymodel with a massless scalar field
and discuss some of the physical implications using thermeluepresentation. In Sec. Il we
discuss the the way, spatially flat isotropic model can beesbkexactly in theb representation
(conjugate to volume representation), and discuss therigaess of bounce and supremum of the
energy density [13]. We summarize the main results with eugision.
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2. Loop quantum cosmology: Spatially flat isotropic model

The goal of this section is to discuss the quantization ofreegical spacetimes in LQC
using spatially flat isotropic model with a massless scatdd fas an example. It is based on the
works in Ref. [12, 13]. This model provides a stage to unadeidtvarious subtleties with loop
guantization in detail, such as the way matter degree oflmeeis successfully used as an internal
clock, inner product and Dirac observables can be intradluged physics at the Planck scale can
be extracted. We start with the discussion of the classicat@ space in Ashtekar variables. We
then discuss the quantum kinematics and the way quantugratiife equation emerges from the
guantum constraint and summarize the main features of ngaigsh We conclude this section,
with a brief discussion of the effective spacetime desionipbbtained from this model.

2.1 Classical theory

We consider spatially flak = 0 Friedmann-Robertson-Walker (FRW) model with a non-
compact spatial manifold = R3, with a spatial metric:ap = a’6an, and the spacetime metric
given by

ds? = —N2dt2 + a(dx + dx3 + dx3) . (2.1)

Since the spatial manifold is non-compact, in order to defireesymplectic structure we need to
introduce a fiducial cel”’. This cell will be chosen as a cubical one, with voluxfewith respect
to the fiducial metricgs, on the spatial manifold. The physical volume of the cell igegi by

V =Vat.

In geometrodynamics, the gravitational phase space Vesiabye the scale factar and its
conjugatep, = —ad, where a ‘dot’ denotes derivative with respect to the prdpeet. These
variables satisfyfa, pa} = %. If the matter is considered as scalar fields, the phase spdebles
are @ and its momentunp,, which satisfy{¢, p,} = 1. On the other hand, in LQC, phase
space variables for the gravitational sector are obtairad the symmetry reduction of the phase
space variables in LQG: the SU(2) connectjfkg'\and the triace?. Given the symmetries of FRW
spacetime, it is possible to expreisandE? such that [9],

A=V @, EP=pVGw 8. (2.2)

Here € and @), are the fiducial triad and co-triad compatible witk,.” The symmetry reduced
connection and triad variables satisfy
8myG

fe.p) =3~ @3
Herey =~ 0.2375 denotes the Barbero-Immirzi parameter, whose valfigeid by the black hole
thermodynamics in LQG. The triad is related kinematicatiytie the metric variables ap| =
Voz/3 a?, where the modulus sign arises due to two possible orientf the triad. The relationship
of the connection with the metric variables is dynamical ead be derived from the Hamiltonian
constraint. If matter is chosen as a massless scalar fidd;l#issical Hamiltonian constraint is

given by
2

@ ~o (2.4)

2|p|>

3 L
Cclz—m|p|zcz+
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Using the Hamilton’s equation fgp, one obtains:.c = 01/33 on the physical solutions of the

classical theory. Substitutirgin terms of time derivative of the scale factor and using #ugishing
of the Hamiltonian constraint, along with the definition obegy densityp (equal top(Z(p)/(Z] p?)),
one obtains the classical Friedmann equation:
a  8nG
H2:= 5 = —— 2.5
2= 3 P (2.5)
whereH denotes the Hubble rate. In a similar way, using Hamiltogisagion forc, we are led to
the Raychaudhuri equation
a 411G
=3 (P+3P) (2.6)
whereP denotes the pressure of the matter field (in the case of nsasstalar it equalg). Fried-
mann and Raychaudhuri equation imply the following coreton law:

p+3H(p+P)=0. 2.7)

For matter with a fixed equation of state= P/p, such as a massless sc&lar= 1), this equation
can be easily integrated and one obtairis a—31*W). Thus, for the case of a massless scalar field,
energy density diverges agaf asa — 0, leading to a big bang singularity.

It turns out that by canonically transforming to anotherafgthase space variablg$, v), the
guantum theory and resulting physical implications becomech simpler to analyze. These are
defined as

3

c |p|2
=—F, V.= sgn 2.8
|p|% onG SIP (2.8)

which satisfy{b, v} = 2y. The variable v is related to the physical volume as ¢V /(2nG)

wheree = £1 depending on the orientation of the triad. In termgkof/) variables, the classical
Hamiltonian constraint, foN = 1, can be written as

Co = — b2V + —2— ~0. (2.9)

Hamilton’s equation for v results in the relationsbya/a. Thus, in the classical theory, b plays the
role of Hubble rate, and is a measure of spacetime curvature.

The variablegb, v) satisfy an important property — they are invariant underrédsealing of
the fiducial cell?.1 This can be seen as follows. Under the freedom of the fiduelgl ¢ — ¥’
such thaw} = a3V,. The connection and triad variablgs p) transform under this freedom as:

c—ac and p— a?p. (2.10)

It thus follow from (2.8), that under the rescaling of the figa cell: b— b and v— v. This is
important to note because physical predictions must remgariant under the choice of fiducial
cell. It turns out that for the isotropic model, the resugtiphysics is invariant under rescaling of
fiducial cell, only when loop quantization is based on b andnables [49]. Similar considerations
have been applied to the Bianchi models, which have led togights on the viability of different
allowed quantizations [43, 50].

1The phase space variabl@s v) as well ag(c, p) are invariant under another freedom — the freedom to restale
fiducial metric:ofyp, — 128ap. See, Ref. [27] for details.
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2.2 Quantum theory

The quantization of the classical theory proceeds as in L. elementary variables for
the quantization are the holonomies of the connectipand flux of the electric fiel&?. Due to
underlying symmetries, holonomies can be computed alangdies of the celt’. The holonomy
of the connectiort along an edgg:é? with Iengthuvol/3, becomes

h*) = cos(uc/2)T+2 sin(uc/2) T (2.11)

wheret, = —iok/2, andoy are the Pauli spin matrices. The flux of the electric field impated by
smearing by constant test function across a square taagrtiiee?. It turns out to be proportional

to p. The elementary variables for quantization, thus turn ouiep andN, = exp(iuc/2), the
elements of holonomies. The latter generate an algebrarafsalperiodic functions of. Using
Gel'fand, Naimark and Segal’s construction [59], a repnésigon of this algebra can be obtairfed.
The kinematical Hilbert space turns out to b#&;, = LZ(Rgohr,dugohr), whereRpggnr is the Bohr
compactification of the real line ardgon, is the Haar measure. The almost periodic functions,
N, := exp(iuc/2) provide an orthonormal basis i#fin, and satisfy(N, [Ny,) = Oy, 4. Action

of the elementary operators on the stat§s) constructed from the orthonormal basis éxz/2)

turns out to be,
. 8rryGh d¥

NyW = exp%:w, and pW = —i—— . (2.12)
This action becomes simpler in the representation, in wtkiehaction ofp’is diagonal. We label
this representation by. The action ofp’on the eigenstatest), can be written as
2
plu) = BWTEP'/J!M (2.13)

where/p; = (Gh)Y/2 is the Planck length. In this representation, the actiolgf is as a shift
operator:N|u) = |1+ a). Using this, we can find the action of the holonomy operatdrictv
turns out to be
1
2

We now turn to the Hamiltonian constraint. For a continuitgtmthe results in Sec. I, we
would choose to work with lapsi = a3. The reason for this choice is tied to the observation
that the flat, isotropic model sourced with a massless sfialdrin LQC with the choice of lapse
N = a® can be solved exactly by going to the b representation [18],rabustness of bounce can
be proved in a rigorous way for all the states in the physididdit space. Also, this choice of
lapse corresponds to the harmonic timg 6atisfyingClT = 0, which is naturally suited for the use
of massless scalar field as an internal clock, as considened Ifror the lapsdl = as, using the
elementary variables, the gravitational part of the Hamilin constraint,

A} = 5 (+-a) o)) L+ (@) — [~ ) T (2.14)

EaiEbj )
7_’ detE\ Fa'b (2.15)
2The procedure mimics the one in the full theory (see Ref.jéhis proceedings), where the algebra of holonomy

and flux operators leads to a unique representation [60,R&dently, the uniqueness of representation has been shown
in the context of the Bianchi-1 model in LQC [62].

Corav= —V_z/y/ d®xN, €ijk
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can be expressed as
~2y 73 ¢l gagh | 2. K
Corav=—Y Vo ° € kela i |p|“Fab (2.16)
whereFyy' is the field strength of the connectia¥,. It is expressed in terms of holonomies by
considering a square lodf; with sides of lengti Vs 2 in thei — j plane of the fiducial cell:

hH) _q _ B
k - Ui SN (1) _ ()R ()Y =1 ()Y -1
FX = —2A!|Dm0 Tr EZVOZ/S Thwy @y, hy = hh (™) (hi™) . (2.17)

However, the limitArg — 0 does not exist in the quantum theory. This is a direct caresce of
the underlying quantum geometry. The loop can be shrunktordyminimum area, which is given
by the minimum eigenvalue of the area operator. This turmsl;oobleME,I whereA = 4/3ny [63].
Equating this with the physical area of the logiViZ/*a? = [2|p|2, and using (2.13), we find that
[ is not a constant but satisfies the following relatign= (3v/3/|u|)*2. Due to this functional
dependence the action of expc/2) on states¥(u) is not a simple translation in the argument
of the wavefunction, but to drag/(u) a unit affine parameter along the vector figid/du [12].
The action simplifies if one works in volume representatido.see this, let us define a parameter
A = AY2¢p), such thatuc = Ab. One is then interested in the action of @Xf/2) on the states
in the volume representatiod(v) where we have defined = v/yh. Since,A is a constant, this
action turns out to be a simple translation: @xfp) W(v) = W(v —A). In this representation, the
volume operator acts by multiplication:

VW(v) = 2ryl3|v|W(v), (2.18)

and the action of the operator corresponding to the gramitak part of the Hamiltonian constraint
turns out to be

S'r/‘\)”c’|v|s”/‘\)‘IO W(v). (2.19)

Before we discuss the action of the above quantum constigiist important to note that
in the absence of fermions, a change in the orientation afl¢ricorresponds to a large gauge
transformation generated by a parity operat%bh?(u) = W(—u), which acts either in a symmetric
or anti-symmetric way on the physical states, leading topeeisaelection of symmetric and anti-
symmetric sectors. It turns out that the qualitative fezgwof physics are not affected by the choice
of the either sector. As is customary in LQC, we choose physiates should be symmetric under
the change of orientation of the triad¥(v, @) := W(—v, @) = W(v, @). For such states, the action
of total Hamiltonian constrain®y = Cyray+ 16MGCnat is given by

CorasW(v) = — 241G |v|

where®(v) is a positive definite quantum difference operatoviwith step size of 4, defined
as[12]?3

nG
oz [(V+20)W(v+4A) —2v¥(v,0) + (v —22)¥Y(v—4A)] . (2.21)

3SinceO is a difference operator, the space of physical statesigativin sectors, labeled ke which are preserved
under evolution. This leads to a super-selection. In tHeviohg, we restrict ourselves to the sectoe 0.

O¥(v,p) =
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The quantum constraint, for the massless scalar field méakels out to be of the form of the
massless Klein-Gordon equation in a static space-timereelays the role of spatial Laplace
operator andp plays the role of time. Due to this reason, it becomes usefuikaitg as an internal

clock or the emergent time in the quantum theory. The scadid §i allows us to use the notion
of relational dynamics, measuring the variation of volumed similarly energy density) in 'time’
@, via the operatof/|(,,. Apart from the volume observable, a natural choice for thiglel is the

momentum of the scale fielpl,) which is a constant in classical as well as the quantum theory

0

T
LQC +—+—
classical

-0.2
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Figure 1: Expectation values of the volume observable in LQC are @iottComparison with trajectory
obtained from GR shows that is an excellent approximatidr@Q@ till the quantum state approaches Planck
scale. The bounce of the volume occurs when expectatioe edlenergy density observable reachgsx~
O-Ar:l-pPlanck-

The physical Hilbert space can be found by the group aveganiethod [64, 65, 66] (see also
Ref. [26] in the context of LQC). This procedure group inveshfinding a rigging mapg : Q — Q*
whereQ is a dense subspace of the auxiliary Hilbert space. The qdiystiates can then be found
by evaluating/ d& (exp(—iEC)W| whereC is the self-adjoint quantum Hamiltonian constraint and
|¥) € Q. The physical Hilbert space which consists of the positiegjdiency solutions of the
guantum constraint:

—i0p¥(v,0) =/O(V)¥(v,0) . (2.22)
satisfies the physical inner product
— 1
(W1, Wa)phys= 5 Wi(v, @) VI Wa(v, @) - (2.23)
Vv

An alternative way to find the above physical inner produdiyisiemanding that the action
of the Dirac observableg) ) and\7|¢, be self-adjoint on the physical Hilbert space. The Dirac
observables of interest apg and V|, : given by

o¥(v,9)

BpW(v.9) = -IN—7 =, [PlgW(v,0) =€ @b @) (@224

which are self-adjoint with respect to the physical innerdurct (2.23).
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Using this structure we can extract predictions from themhe In the volume representa-
tion, one has to rely on numerical simulatichdn the numerical simulations, one considers a
semi-classical state peaked at a classical trajecpyys Py andv|q = V¥, in a large universe at
large @ (late time). The state is then evolved backwards in timegugirantum constraint equation
(2.22). One can them compare the expectation values of ttee Dbservables with the trajec-
tories obtained from GR. A similar analysis can be performasihg quantum constraint in the
Wheeler-DeWitt theory. It turns out that the states in Wle8leWitt theory remain peaked on
the classical trajectory through out the evolution and tiigal singularity is not resolved. On the
other hand, results in LQC, turns out to be strikingly digfiel. Numerical simulations with states
which are semi-classical at late times, reveal that the bigglsingularity is avoided (see Fig. 1
for an illustrative example of such a simulation). Insteaguantum bounce occurs when energy
density reaches a maximum value, givendyx ~ 0.41ppjanck Unlike the classical GR, and the
Wheeler-DeWitt theory, the loop quantum evolution turnsg twube non-singular with quantum
bounce joining expanding branch of the universe with a eatitng branch (with the same value of
P(g))- The ultra-violet problem of GR is solved by the underlymgntum geometric effects which
manifest themselves in the quantum difference equati@2)2ia the non-local nature of the field
strength operator (2.17). Now let us consider the infralirad. At small spacetime curvature, (i.e.
large volume for a fixed value gfy)) the quantum difference equation, can be approximated by a
differential operator

05W(v, ) = 121G va, va,W(v, ). (2.25)

This corresponds to the Wheeler-DeWitt equation for thiglehoThus, not surprisingly, states in
LQC are peaked on classical trajectories at small spaceimature and loop quantum evolution
agrees with the predictions of GR when gravity is weak.

We now briefly discuss extensions of these results to otheletao Results of Ref.[12], have
been generalized to include spatial curvature. A rigoraitentjzation and analysis of physics for
the closed model with a massless scalar field was performBéfin [32, 33] and the open model
with a massless scalar field was considered in Ref. [34, 36t.thek = 1 model, evolution of
states with the quantum constraint has been performed @si@msive numerics and as in the
case of the flat model, it was found that bounce occurs vwhenomax fluctuations remain small
through out the evolution and effective dynamics is an d&nelpproximation to the underlying
quantum dynamic®.It is interesting to note that in the closed model, where tiwugion is cyclic,
the change in relative fluctuations over a large number desyemains negligible [33]. A similar
conclusion holds for another cyclic model — the flat, isaitopodel with a negative cosmological
constant — which was quantized in Ref. [30]. More recenthardization of isotropic model has
been performed for the positive cosmological constantZ8pand thep? inflationary scenario [31]
where numerical simulations reveal that the bounce andguleess properties of the semi-classical
states are robust features in LQC. These results have bppleswented with the analytical studies
in Refs. [14, 15, 16].

4In the next section, we will show that by going to the b repnéstion, the model can be solved exactly.

5t is to be pointed out that in comparison to the spatially fiatdel sourced with a massless scalar, the closed
model provides a much rigorous test of the infra-red limdr &n earlier quantization of LQC, Green and Unruh found
certain difficulties with the behavior of eigenfunctiondage volumes [67]. These difficulties were resolved in the
quantization [12].
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We conclude this subsection by noting that though the praeedutlined above has been
widely applied to different isotropic models, it is neveaganteed to be straightforward and some-
time subtle difficulties need to be overcome. As an exampke gkisting quantization df= —1
model, relies on holonomies of extrinsic curvature, rathan the connection, and quantum Hamil-
tonian constraint is not self-adjoint. One can however fingsical states using FFT method [34].
Similarly, for the case of the positive cosmological constéhe quantum difference equation turns
out to be not essentially self-adjoint. However, one caroska self-adjoint extension to obtain
guantum evolution, and the choice of the extension doesffett ajualitative features of physics.

2.3 Effective dynamics

We conclude this section with a brief discussion of the ¢iffecdynamics for this model in
LQC. Using the geometrical formulation of quantum mechafd@], where one treats the Hilbert
space as an infinite dimensional phase space, it is possilgetain an effective Hamiltonian up
to well controlled approximations. This has been accorhplisusing two strategies in LQC. In
the embedding method [40, 41, 42], one seeks a faithful edbgddf the infinite dimensional
guantum phase space in to finite dimensional classical ptzsee with a a judicious choice of
states, and the truncation method [69, 70], which requiresraful and systematic truncation of
terms arising in an order by order expansion to obtain acsmikistent set of dynamical equations
without which reliable physical predictions can not be ai#d. The embedding approach, from
a physicist's perspective, serves as a useful tool becaussks extremely well for states such as
coherent states which lead to a macroscopic classicalnseied the late times. The evidence of the
reliability of the effective Hamiltonian derived using eeduling approach comes from comparing
the effective dynamics with the analytical models [13] adl@s several numerical simulations
performed in Refs. [10, 11, 12, 28, 30, 31, 33, 34, 43, 44].tRigrreason, it has been widely used
in literature to extract physical predictions (see Sec. YRef. [27] for a review).

The effective Hamiltonian constraint féar= 0 isotropic model, with lapsB = 1, is given by
[41, 42]

3 sirf(Ab
- W %V + 8nG Hmatt ~ 07 (226)
which using Hamilton’s equation for volume, leads to the ified Friedmann equation [71, 12]
& 8nG P
H?= = = — (1— ) 2.27
a2 3 p pmax ( )

Using the Hamilton’s equations for connection and matteiatdes, modified Raychaudhuri and
conservation laws can also be obtained. These equatiorly, ithat at the maximum of energy
density, Hubble rate vanishes, aad-'0, causing the universe to bounce. It is rather remarkable
that the density at which bounce occurs and the effectiyedi@ry agrees to an excellent precision
with the underlying quantum theory. For< pmax the modified Friedman equations reduce to the
classical Friedman equation (2.5). Modified dynamical &équa give important insights on the
new physics at the Planck scale. To cite a few examples, theepbf super—inflation(lH > 0) near
bounce [71], has important implications for the probaifitr inflation to occur. For a quadratic
potential, it has been shown that if initial conditions arevided at the bounce surfa¢e = Pmax)

and probability for inflation to occur is evaluated using Widle measure on the phase space, a

10
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phase of inflation with more than 65 e-foldings is almost gageed in LQC [72, 73, 78] Another
important implication results in the form of bounds on plgsuantities which appear in geodesic
and Raychaudhuri equations. It has been shown that enengitydand expansion and shear scalars
are bounded for isotropic [45] and anisotropic models [5) which has important implications to
understand general resolution of singularities. Thisduut to be true for isotropic models where it
has been demonstrated that there is indeed a generic fesafistrong singularities [45, 48]. The
analysis have been recently extended for Bianchi-I moddihie case of matter with a vanishing
anisotropic stress [46]. These results are expected toisipattant insights on a non-singularity
theorem in LQC/LQG.

3. Exactly soluble LQC

In the previous section, we discussed the quantization afiagly flat homogeneous and
isotropic model sourced with a massless scalar field in LQtBénvolume representation. In this
section, we consider the same model in the conjugate b esgeg®N. As remarked earlier, with
the lapseN = a3, this model becomes exactly soluble in the b representaitowing the analysis
of results on bounce at a purely analytical level. In paléicut allows to establish genericness of
bounce for arbitrary states in the physical Hilbert spacgtHer, a notable merit of sSLQC is that the
underlying quantum theory shares similar features withttieeeler-DeWitt quantization, yet due
to an interplay of volume observable with physical staths, ghysical predictions are strikingly
different. In the following, we summarize and contrast theinrfeatures of the quantization for
both frameworks. (For details, we refer the reader to R&X, 277).

In the b representation, the classical Hamiltonian comgtfar lapseN = a2 can be written as

— 3GV’ + pf, ~ 0. (3.1)

In this representation, we consider the action of the cpmeding Wheeler-DeWitt and sLQC
quantum constraints on statgsgb, @) and x (b, @) respectively. In the Wheeler-DeWitt theory,
b € (—,), and due to the s?mmetry under the change of orientationeofrtds, states satisfy
X(b,9) = —x(—b,9). Imposing this symmetry, we restrict to the states whichehswpport on
the positive_b—half line. On these states, the quantum rainsin Wheeler-DeWitt theory has the
following action:

94X (b,¢) = 121G (bdh)* X (b, ¢) (3.2)

On the other hand, in sLQC,® (0, 17/A) and the action of the quantum constraint is given by
sinAb _ \?

%3x(b.9) = 1216 (5200,) x(0.0). 33)

Interestingly, the quantum constraints (3.2) and (3.3 loa written in a simple form of a 2-
dimensional Klein-Gordon equation by a simple change ofatéas. To see this, we introduce

variabley for the Wheeler-DeWitt theory:
1 b
=————In— 3.4
Y= 2572 "y (34)

6The attractor properties for inflationary trajectories @G [75, 73, 74], play an important role in these results.
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where I is constant. The resulting quantum constraint (3.2), temoimes

02X (Y, @) = —OX(Y,9), where @ :=—47. (3.5)

Similarly, for sLQC, we introduce variable:

X =

1 Ab
——In{tan— | . 3.6
" (=) @9
Due to this change of variable, the resulting action of thendqum constraint (3.3) takes the similar
form as (3.5):

Solutions of both the constraints (3.5) and (3.7)) are sgbdected in to the positive and negative
frequency sub-spaces, and as in the previous section, arrestaict to the positive frequency sub-
space. The physical inner product can be found using thepgreeraging procedure [64, 65, 66].
In the Wheeler-DeWitt theory, the inner product take théofeing Klein-Gordon forni:

(X, X, oty =2 /_ Z kK| £, (0, (K) (3.8)

Herey is the Fourier transform of the Wheeler-DeWitt stateThe action of the Dirac observables,

Pio) and\7|¢,, is self-adjoint with respect to the inner product. It isagivby

PoX(¥, ) =V/OX(Y, ) . (3.9)
and _
Vg X (¥, @) = €VOWO=®) 2myed|0]) X (v, ) . (3.10)

where @, is the slice at which initial datum is specified, ands defined asv := v/h, whose
corresponding operator is given by,

) 2 . .
i (PR(evlz"Gyu 8,)Pr+ P (eV17 ay)a) . (3.11)

whereP_ andPr are projectors on the left and right moving sectors of the&tihger Hilbert space.
The left moving states correspond to expanding universetraright moving states correspond to
the contracting universe. The Dirac observabm,saﬁdvy%, which form a complete set, preserve
these sectors. Hence, one can restrict to just one of thekeséo analyze physical implications.
In the following analysis of the Wheeler-DeWitt theory, welwonsider only left moving modes.
Despite similarities with the Wheeler-DeWitt theory, thtuation in sLQC turns out to be
sharply different. The first difference is rooted in the syatim requirement of the orientation of
triads. It turns out thak (—x, @) = —x(x, @) [13]. Thus, a generic state(x, @) has support on
both left and right moving sectors and unlike the WDW thetgré is no super-selection of these

"Note that a general initial datum for the physical state igec at tme ¢ = @ is
of the form x(y,@) = \/%Tffwdke*ikyg(k), and under time evolution one obtaing(y,p) =

= (/% dke k(@Y EkB 5 (k) + [ dkékW*y)e*ik%X(k)) . As in the Klein-Gordon casep+y and ¢ —y can be
identified as the left and right moving components respelstiv
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sectors. In particular, any solution of the quantum coigt@.7), satisfies the following relation
in terms of right moving<,. or left moving parts<_: x(x, @) = %(F(XJF) —F(x.)). Using this, the

inner product (3.8), can then be expressed in terms of ti mgving or left moving solutions,
and in terms of the latter it becomes

(aXos = —2 | FLX)BF(%,) (3.12)

The second difference between Wheeler-DeWitt theory ai@ihrises, in the action of the vol-
ume operator, which is given by

D= —\/% (PR(cosk(\/lZHGx)i d,)Pr -+ PL(cosh(v/127Gx)i aX)PL) . (3.13)

Due to the differences in the action of the volume observdidhavior of the corresponding expec-
tation values in Wheeler-DeWitt theory and sLQC is qualiatistinct. In the Wheeler-DeWitt
theory, for the left moving states, they are given by

(X, VI pX Jphy = 271081 (X, - VX Dphy = Vi€V 279 (3.14)

whereV, is a positive definite constant determined by the initiabd#&h contrast, the expectation
values(V|,) in SLQC become,

(X: VX )phy = 2myt3, (XJV’pr)phy =V, eV1Ze0 Ly g VIZGe (3.15)

whereV.. are positive constants determined by the initial data [13].

Let us compare the behavior of expectation values of thenwelobservable in Wheeler-
DeWitt theory and sLQC. From (3.11), we find that in the Whe8leWitt theory, for any given
left-moving state (which corresponds to an expanding us@e the expectation values of the vol-
ume observable becomes infinite@s+ « and becomes zero whem— —. That is, in the past
evolution, an expanding Wheeler-DeWitt universe encasraeig bang singularity irrespective of
the choice of state. Similar, conclusion arises for thetrigbving states in Wheeler-DeWitt the-
ory, which correspond to a contracting universe. The eqpiect values<\7|(,,> become infinite as
@ — —oo and vanish whemp — co. Thus, a flat isotropic Wheeler-DeWitt universe sourcedh\ait
massless scalar field, inevitably encounters a singulamiependent of the choice of state. Going
beyond the analysis of expectation values, above condlsialso reached using the consistent
histories framework [76, 77], by computing the consistaabpbilities for the singularity to occur
[20, 21]. Interestingly, a careful analysis of consistestdries leads to even a stronger result, that
arbitrary superpositions of left and right moving modes @b lead to avoidance of singularity,
whose probability remains unity (for details, we refer thader to [20, 21]).

Let us now consider the case of sSLQC. From (3.15), we find tleekpectation value<s7]¢>
become infinite wherp — 400 , attaining a minimum volum¥min = 2,/V.V_/||X||? at @hounce=
(217% log(V_/V, ). Further, the expectation valuég|,) are symmetric across the bounce time
Mhounce Thus, in contrast to the Wheeler-DeWitt evolution, theestation value of the volume
observable never vanishes in sL&Gtarting from the expanding branch, a backward evolution

8Computation of consistent probabilities shows that thédabdity for an sSLQC universe to bounce is unity [22].
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of an arbitrary state in sLQC leads to a bounce at the minimalmev Thus, generic states in
sLQC lead to the resolution of the big bang/crunch singtigeriof the classical theory. Defining
the energy density observable, one can compute the valubiel Wwounce occurs. This provides
a strong analytical test of results obtained from the nucaésimulations. Let us define the Dirac
observable for energy density as,

" 1A ~ N A
p|(,,:§A|g where Al, = (V]p) Y2 pp(V|y) V2. (3.16)

The expectation values «)}N@ are given by

Al = X PeXophy ( 3 )1/2 1 S X0 (3.17)
PE (X @ X )phy 4my?G A [ dx|oxF|2cosHv/12nGx) | '
It turns out that these are bounded, with a maximum givén by
> VS ~o4ipn, (3.18)

Psw= 8m2GA2 ~ 3212y3G%h

which agrees with the value of energy density at which bowaeers in the numerical simulations
for spatially flat isotropic model with a massless scaladfj@R]. Note that if quantum discreteness
vanishes, i.e. ifA is set to zero, there is no maximum value of the energy deasitjthe minimum
allowed value of volume observable vanishes. The classiogllarity is recovered in the absence
of qguantum discreteness.

4. Summary

Loop quantization of cosmological models provides us a nasagigm of the very early uni-
verse in which initial singularity of the classical theosyreplaced by a quantum bounce when the
spacetime curvature reaches Planck regime [27]. Non-ginguolution resulting from non-local
properties of the field strength of connection, has turnedt@ipe a general feature of various
models, in isotropic and anisotropic spacetimes. We ithtistl key aspects of quantization for the
spatially flat isotropic universe sourced with a massleakasfield. We discussed the way physical
Hilbert space is found, the role of scalar field as internatk] the action of Dirac observables, and
the way physics can be extracted using sophisticated noaheimulations [10, 11, 12]. Unlike
the Wheeler-DeWitt quantization, the quantum constraihtQ C turns out to be discrete. The dif-
ferential geometry of GR is replaced by quantum geometateStwhich are semi-classical at late
times, when evolved backward towards the big bang usingtgoanonstraint, remain peaked at
classical trajectories for small spacetime curvatureydsilt in a big bounce where energy density
reaches a maximum value. Analysis of fluctuations show tit &re tightly constrained in the
evolution across the bounce [12, 33, 14, 15, 78]. In a sgikiontrast to Wheeler-DeWitt theory,

9Another way to obtain this bound is by considering the enefegysity observable for the states in the physical

Hilbert space. For such states, using quantum Hamiltorsastcaint, one findg|, = sinz()\ b), which results

in the same maximum of the energy density as in eq.(3.18).

3
8nGy2A2
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big bang singularity is shown to be absent for a dense subsgiastates using an exactly soluble
model [13]. Effective dynamics, which captures the keydesg of underlying quantum geometry,
provides an excellent approximation of the quantum evatuéind has been extensively used to ex-
tract novel physical predictions, such as, on bounds orggrdansity, expansion and shear scalars
[45, 47, 50], resolution of strong singularities [45, 46daurobability for inflation [72, 73, 74].
These have been also used to probe the physics beyond hositggapproximation such as in
Gowdy models [51] and imprint of quantum geometry on coswgickl perturbations [52], which
have also been derived using detailed properties of quasparetime [54]. Itis hoped that the on-
going investigations on primordial perturbations will pide potential tests for LQC in near future
astronomical experiments.
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