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1. Introduction

An important expectation from any theory of quantum gravity, is whether it provides insights
on the problem of classical singularities, which accordingto the theorems of Penrose, Hawking
and Geroch are the generic features of general relativity (GR) [1]. A simple example of such a
singularity, is the big bang singularity, which occurs for all matter satisfying weak energy condi-
tion (WEC) if we evolve an expanding branch of the Friedmann-Robertson-Walker (FRW) universe
backward in time. As the singularity is approached, curvature invariants diverge and geodesic evo-
lution breaks down. When spacetime curvature is in the Planck regime, one expects that quantum
properties of spacetime would become significant leading toa resolution of space-like singularities.
New physics from such a theory of quantum spacetime or quantum gravity is not only expected to
shed insights on the generic resolution of singularities, but also provides an invaluable opportunity
to answer various fundamental questions associated with the physics of the early universe, such
as: Is the spacetime beyond the big bang foamy or classical? At what scales does the classical
spacetime emerges? What are the implications for the probability for inflation to occur? What are
the signature of new physics in the cosmic microwave background? and so on.

Loop quantum cosmology (LQC) is a background independent non-perturbative quantization
of homogeneous cosmological spacetimes, based on loop quantum gravity (LQG) [2, 3, 4, 5] (See
lectures by Giesel and Sahlmann for a detailed introductionto the methods of LQG in this pro-
ceedings [6]). LQC began with seminal works of Bojowald which indicated resolution of singu-
larities at a kinematical level of the quantum theory [7, 8].A rigorous development of these ideas
commenced with the work of Ashtekar, Bojowald and Lewandowski [9]. A first complete quan-
tization of a cosmological spacetime in LQC, in the sense of availability of physical Hilbert, a
family of Dirac observables and detailed physical implications, was performed for the quantiza-
tion of the flat (k = 0) isotropic model sourced with a massless scalar field [10, 11, 12]. As in
LQG, the elementary variables in LQC are the holonomies of SU(2) connection and fluxes of triads
(which due to homogeneity assumption turn out to be proportional to triads). The resulting quan-
tum geometry in LQC, as in LQG, is discrete. This is in contrast to the Wheeler-DeWitt quantum
cosmology, based on continuum differentiable geometry. Unlike, the classical theory where all
the solutions in this model are singular, and the Wheeler-DeWitt quantum cosmology, which fails
to resolve the big bang singularity, in LQC, evolution via the quantum Hamiltonian constraint is
non-singular, leading to a bounce of the universe when energy density reaches a maximum value,
ρ = ρmax≈ 0.41ρPlanck. The robustness of bounce, first observed in various numerical simulations
performed in Ref. [10, 11, 12], has been established by usingan exactly soluble model (sLQC)
[13], where the bounce is proved to occur for a dense set of states in the physical Hilbert space.
The energy density at which bounce occurs in numerical simulations with states which correspond
to macroscopic universes at late times, agrees with the supremum of the expectation values of the
Dirac observable corresponding to energy density, in the physical Hilbert space of sLQC. Further,
sLQC has also provided insights on the behavior of fluctuations across the bounce, which turn out
to be tightly constrained, thus preserving semi-classicality, and showing that a semi-classical state
before the bounce evolves to a semi-classical state after the bounce and vice versa [14, 15, 16].
sLQC has also led to insights on spin foam models using path integral approach [17, 18, 19] and
on applications of consistent histories approach to quantization of spatially flat isotropic models
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[20, 21, 22]. These developments have been supplemented with the important results on mathe-
matical aspects of these models [23, 24, 25, 26].

Using the simplifications due to the underlying symmetries of the homogeneous spacetimes,
the quantization program of LQG has been successfully carried out in LQC for various cosmo-
logical spacetimes in recent years by various groups, and important insights on answers to above
questions have been obtained (for an up to date extensive review, see [27]). In particular, complete
quantization has been performed for spatially flat isotropic models sourced with positive cosmo-
logical constant [29, 28], negative cosmological constant[30], inflationary potential [31], spatially
closed [32, 33] and open [34, 35] models with a massless scalar field, and anisotropic models
[36, 37, 38, 39]. In all these models, initial singularity isshown to be resolved, which is a direct
ramification of the non-local nature of the field strength of the connection in the quantum the-
ory. Interestingly, for states which evolve to a macroscopic universe at late times, the results of
singularity resolution and the new physics at the Planck scale can be captured using an effective
spacetime description resulting from effective Hamiltonian [40, 41, 42]. The effective dynamics
captures the underlying quantum evolution to an excellent accuracy for various models in LQC
[11, 12, 33, 28, 30, 43, 44], and has been used to study detailed physical implications of loop
quantization of cosmological spacetimes. As an example, using effective spacetime description,
singularity resolution in LQC can be understood occurring due to bounds on the growth of space-
time curvature, which plays a conjugate role to geometry [45, 46, 47], and insights on the generic
resolution of strong singularities and geodesic extendability in flat isotropic [45, 48] and Bianchi-I
models [46] have been obtained. Effective equations have also been used to gain insights on con-
straining quantization ambiguities [49, 50], and have beenused to explore the physics of Gowdy
models [51]. A lot of activity is devoted to applying effective equations to understand the signatures
of quantum geometry in cosmological perturbations [52]. Going beyond the effective treatment, in
this direction, promising progress has been made to understand the effects of quantum spacetime,
using the analysis of [53], on primordial perturbations [54].

Due to space limitations, it is not possible here to discuss many of the above interesting results
obtained by various authors. For a detailed discussion of various results, we refer the reader to
the following reviews which cover various developments in the field [27, 55, 56, 57, 58]. The
goal of this article is not to review above results, but rather to demonstrate basic techniques and
results for the simplest model in LQC, a spatially flat model sourced with a massless scalar field
as first performed in Refs. [10, 11, 12], and the corresponding exactly soluble model [13]. Since
techniques developed for this model, have been used for various other models, the analysis and
discussion in this manuscript provides a useful framework to understand the way loop quantization
is performed for more general homogeneous cosmological models. In Sec. II, we discuss the
classical theory and the loop quantization of the spatiallyflat model with a massless scalar field
and discuss some of the physical implications using the volume representation. In Sec. III we
discuss the the way, spatially flat isotropic model can be solved exactly in theb representation
(conjugate to volume representation), and discuss the genericness of bounce and supremum of the
energy density [13]. We summarize the main results with a discussion.
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2. Loop quantum cosmology: Spatially flat isotropic model

The goal of this section is to discuss the quantization of cosmological spacetimes in LQC
using spatially flat isotropic model with a massless scalar field as an example. It is based on the
works in Ref. [12, 13]. This model provides a stage to understand various subtleties with loop
quantization in detail, such as the way matter degree of freedom is successfully used as an internal
clock, inner product and Dirac observables can be introduced, and physics at the Planck scale can
be extracted. We start with the discussion of the classical phase space in Ashtekar variables. We
then discuss the quantum kinematics and the way quantum difference equation emerges from the
quantum constraint and summarize the main features of new physics. We conclude this section,
with a brief discussion of the effective spacetime description obtained from this model.

2.1 Classical theory

We consider spatially flatk = 0 Friedmann-Robertson-Walker (FRW) model with a non-
compact spatial manifoldΣ = R3, with a spatial metric:qab = a2q̊ab, and the spacetime metric
given by

ds2 =−N2dt2+a2(dx2
1+dx2

2+dx2
3) . (2.1)

Since the spatial manifold is non-compact, in order to definethe symplectic structure we need to
introduce a fiducial cellV . This cell will be chosen as a cubical one, with volumeVo with respect
to the fiducial metric ˚qab on the spatial manifold. The physical volume of the cell is given by
V =Voa3.

In geometrodynamics, the gravitational phase space variables are the scale factora and its
conjugatepa = −aȧ, where a ‘dot’ denotes derivative with respect to the propertime t. These
variables satisfy{a, pa}= 4πG

3Vo
. If the matter is considered as scalar fields, the phase spacevariables

are φ and its momentumpφ , which satisfy{φ , p(φ)} = 1. On the other hand, in LQC, phase
space variables for the gravitational sector are obtained from the symmetry reduction of the phase
space variables in LQG: the SU(2) connectionAi

a and the triadEa
i . Given the symmetries of FRW

spacetime, it is possible to expressAi
a andEa

i such that [9],

Ai
a = cV−1/3

o ω̊ i
a, Ea

i = p
√

q̊ V−2/3
o e̊a

i . (2.2)

Here e̊a
i and ω̊ i

a are the fiducial triad and co-triad compatible with ˚qab. The symmetry reduced
connection and triad variables satisfy

{c, p}= 8πγG
3

. (2.3)

Hereγ ≈ 0.2375 denotes the Barbero-Immirzi parameter, whose value isfixed by the black hole
thermodynamics in LQG. The triad is related kinematically to the the metric variables as|p| =
V2/3

o a2, where the modulus sign arises due to two possible orientations of the triad. The relationship
of the connection with the metric variables is dynamical andcan be derived from the Hamiltonian
constraint. If matter is chosen as a massless scalar field, the classical Hamiltonian constraint is
given by

Ccl =− 3
8πGγ2 |p|

1
2 c2 +

p2
(φ)

2|p| 3
2

≈ 0 (2.4)
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Using the Hamilton’s equation forp, one obtains:c = γV1/3
o ȧ on the physical solutions of the

classical theory. Substitutingc in terms of time derivative of the scale factor and using the vanishing
of the Hamiltonian constraint, along with the definition of energy densityρ (equal top2

(φ)/(2|p|3)),
one obtains the classical Friedmann equation:

H2 :=
ȧ2

a2 =
8πG

3
ρ , (2.5)

whereH denotes the Hubble rate. In a similar way, using Hamilton’s equation forc, we are led to
the Raychaudhuri equation

ä
a
=−4πG

3
(ρ +3P) (2.6)

whereP denotes the pressure of the matter field (in the case of massless scalar it equalsρ). Fried-
mann and Raychaudhuri equation imply the following conservation law:

ρ̇ +3H(ρ +P) = 0 . (2.7)

For matter with a fixed equation of statew= P/ρ , such as a massless scalar(w= 1), this equation
can be easily integrated and one obtainsρ ∝ a−3(1+w). Thus, for the case of a massless scalar field,
energy density diverges as 1/a6 asa→ 0, leading to a big bang singularity.

It turns out that by canonically transforming to another setof phase space variables,(b,v), the
quantum theory and resulting physical implications becomes much simpler to analyze. These are
defined as

b :=
c

|p| 1
2

, v :=
|p| 3

2

2πG
sgnp (2.8)

which satisfy{b, v} = 2γ . The variable v is related to the physical volume as v= εV/(2πG)

whereε = ±1 depending on the orientation of the triad. In terms of(b,v) variables, the classical
Hamiltonian constraint, forN = 1, can be written as

Ccl =− 3
4γ2 b2|v| +

p2
(φ)

4πG|v| ≈ 0. (2.9)

Hamilton’s equation for v results in the relation b= γ ȧ/a. Thus, in the classical theory, b plays the
role of Hubble rate, and is a measure of spacetime curvature.

The variables(b, v) satisfy an important property – they are invariant under therescaling of
the fiducial cellV .1 This can be seen as follows. Under the freedom of the fiducial cell, V → V ′

such thatV ′
o = α3Vo. The connection and triad variables(c, p) transform under this freedom as:

c→ αc and p→ α2p. (2.10)

It thus follow from (2.8), that under the rescaling of the fiducial cell: b→ b and v→ v. This is
important to note because physical predictions must remaininvariant under the choice of fiducial
cell. It turns out that for the isotropic model, the resulting physics is invariant under rescaling of
fiducial cell, only when loop quantization is based on b and v variables [49]. Similar considerations
have been applied to the Bianchi models, which have led to theinsights on the viability of different
allowed quantizations [43, 50].

1The phase space variables(b, v) as well as(c, p) are invariant under another freedom – the freedom to rescalethe
fiducial metric:q̊ab → l2q̊ab. See, Ref. [27] for details.
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2.2 Quantum theory

The quantization of the classical theory proceeds as in LQG.The elementary variables for
the quantization are the holonomies of the connectionAi

a and flux of the electric fieldEa
i . Due to

underlying symmetries, holonomies can be computed along the edges of the cellV . The holonomy
of the connectionc along an edgeµ e̊a

k with lengthµV1/3
o , becomes

h(µ)k = cos(µ c/2)I+2 sin(µ c/2)τk (2.11)

whereτk =−iσk/2, andσk are the Pauli spin matrices. The flux of the electric field is computed by
smearing by constant test function across a square tangential to thee̊a

i . It turns out to be proportional
to p. The elementary variables for quantization, thus turn out to be p andNµ := exp(iµc/2), the
elements of holonomies. The latter generate an algebra of almost periodic functions ofc. Using
Gel’fand, Naimark and Segal’s construction [59], a representation of this algebra can be obtained.2

The kinematical Hilbert space turns out to beHKin = L2(RBohr,dµBohr), whereRBohr is the Bohr
compactification of the real line anddµBohr is the Haar measure. The almost periodic functions,
Nµ := exp(iµc/2) provide an orthonormal basis inHKin , and satisfy〈Nµ1|Nµ2〉 = δµ1,µ2. Action
of the elementary operators on the statesΨ(c) constructed from the orthonormal basis exp(iµc/2)
turns out to be,

N̂(α)Ψ = exp
iαc
2

Ψ, and p̂Ψ = −i
8πγGh̄

3
dΨ
dc

. (2.12)

This action becomes simpler in the representation, in whichthe action of ˆp is diagonal. We label
this representation byµ . The action of ˆp on the eigenstates|µ〉, can be written as

p̂|µ〉= 8πγℓ2
Pl

6
µ |µ〉 (2.13)

whereℓPl = (Gh̄)1/2 is the Planck length. In this representation, the action ofN(α) is as a shift
operator:N̂(α)|µ〉 = |µ +α〉. Using this, we can find the action of the holonomy operator, which
turns out to be

ĥ(α)
k |µ〉= 1

2
(|µ +α〉+ |µ −α〉)I+ 1

i
(|µ +α〉− |µ −α〉)τk . (2.14)

We now turn to the Hamiltonian constraint. For a continuity with the results in Sec. III, we
would choose to work with lapseN = a3. The reason for this choice is tied to the observation
that the flat, isotropic model sourced with a massless scalarfield in LQC with the choice of lapse
N = a3 can be solved exactly by going to the b representation [13], and robustness of bounce can
be proved in a rigorous way for all the states in the physical Hilbert space. Also, this choice of
lapse corresponds to the harmonic time (τ), satisfying�τ = 0, which is naturally suited for the use
of massless scalar field as an internal clock, as considered here. For the lapseN = a3, using the
elementary variables, the gravitational part of the Hamiltonian constraint,

Cgrav=−γ−2
∫

V

d3xN,εi jk
EaiEb j

√
|detE|

F i
ab (2.15)

2The procedure mimics the one in the full theory (see Ref. [6] in this proceedings), where the algebra of holonomy
and flux operators leads to a unique representation [60, 61].Recently, the uniqueness of representation has been shown
in the context of the Bianchi-I model in LQC [62].
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can be expressed as

Cgrav=−γ−2V
− 1

3
o ε i j

k e̊a
i e̊b

j |p|2Fab
k (2.16)

whereFab
i is the field strength of the connectionAi

a. It is expressed in terms of holonomies by
considering a square loop�i j with sides of lengthλV1/3

o in the i − j plane of the fiducial cell:

Fk
ab = −2 lim

Ar�→0
Tr


h(µ̄)

�i j
−1

µ̄2V2/3
o


 τk ω̊ i

a ω̊ j
b, h(µ̄)

�i j
= h(µ̄)i h(µ̄)j (h(µ̄)i )−1(h(µ̄)j )−1 . (2.17)

However, the limitAr� → 0 does not exist in the quantum theory. This is a direct consequence of
the underlying quantum geometry. The loop can be shrunk onlyto a minimum area, which is given
by the minimum eigenvalue of the area operator. This turns out to be∆ℓ2

Pl where∆ = 4
√

3πγ [63].

Equating this with the physical area of the loop:µ̄2V2/3
o a2 = µ̄2|p|2, and using (2.13), we find that

µ̄ is not a constant but satisfies the following relation:µ̄ = (3
√

3/|µ |)1/2. Due to this functional
dependence the action of expi(µ̄c/2) on statesΨ(µ) is not a simple translation in the argument
of the wavefunction, but to dragΨ(µ) a unit affine parameter along the vector fieldµ̄d/dµ [12].
The action simplifies if one works in volume representation.To see this, let us define a parameter
λ := ∆1/2ℓPl, such thatµ̄c= λb. One is then interested in the action of exp(iλb/2) on the states
in the volume representationΨ(ν) where we have definedν = v/γ h̄. Since,λ is a constant, this
action turns out to be a simple translation: exp(iλb)Ψ(ν) = Ψ(ν −λ ). In this representation, the
volume operator acts by multiplication:

V̂Ψ(ν) = 2πγℓ2
Pl|ν |Ψ(ν) , (2.18)

and the action of the operator corresponding to the gravitational part of the Hamiltonian constraint
turns out to be

ĈgravΨ(ν) =−24π2G2γ2h̄2 |ν |sinλb
λ

|ν |sinλb
λ

Ψ(ν). (2.19)

Before we discuss the action of the above quantum constraint, it is important to note that
in the absence of fermions, a change in the orientation of triads corresponds to a large gauge
transformation generated by a parity operator:Π̂Ψ(µ) = Ψ(−µ), which acts either in a symmetric
or anti-symmetric way on the physical states, leading to a super-selection of symmetric and anti-
symmetric sectors. It turns out that the qualitative features of physics are not affected by the choice
of the either sector. As is customary in LQC, we choose physical states should be symmetric under
the change of orientation of the triad:ΠΨ(ν ,φ) :=Ψ(−ν ,φ) =Ψ(ν ,φ). For such states, the action
of total Hamiltonian constraintCH =Cgrav+16πGCmatt is given by

∂ 2
φ Ψ(ν ,φ) =−ΘΨ(ν ,φ) , (2.20)

whereΘ(ν) is a positive definite quantum difference operator inν with step size of 4λ , defined
as[12]:3

ΘΨ(ν ,φ) :=−3πG
4λ 2 ν

[
(ν +2λ )Ψ(ν +4λ )−2νΨ(ν ,φ)+ (ν −2λ )Ψ(ν −4λ )

]
. (2.21)

3SinceΘ is a difference operator, the space of physical states is divided in sectors, labeled byε, which are preserved
under evolution. This leads to a super-selection. In the following, we restrict ourselves to the sectorε = 0.
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The quantum constraint, for the massless scalar field model,turns out to be of the form of the
massless Klein-Gordon equation in a static space-time, where Θ plays the role of spatial Laplace
operator andφ plays the role of time. Due to this reason, it becomes useful to treatφ as an internal
clock or the emergent time in the quantum theory. The scalar field φ allows us to use the notion
of relational dynamics, measuring the variation of volume (and similarly energy density) in ’time’
φ , via the operator̂V|φ . Apart from the volume observable, a natural choice for thismodel is the
momentum of the scale fieldp(φ) which is a constant in classical as well as the quantum theory.

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

0 1*104 2*104 3*104 4*104 5*104

v

φ

LQC
classical

Figure 1: Expectation values of the volume observable in LQC are plotted. Comparison with trajectory
obtained from GR shows that is an excellent approximation toLQC till the quantum state approaches Planck
scale. The bounce of the volume occurs when expectation value of energy density observable reachesρmax≈
0.41ρPlanck.

The physical Hilbert space can be found by the group averaging method [64, 65, 66] (see also
Ref. [26] in the context of LQC). This procedure group involves finding a rigging mapη : Ω → Ω∗

whereΩ is a dense subspace of the auxiliary Hilbert space. The physical states can then be found
by evaluating

∫
dξ 〈exp(−iξĈ)Ψ′| whereĈ is the self-adjoint quantum Hamiltonian constraint and

|Ψ〉 ∈ Ω. The physical Hilbert space which consists of the positive frequency solutions of the
quantum constraint:

− i ∂φ Ψ(ν ,φ) =
√

Θ(ν)Ψ(ν ,φ) . (2.22)

satisfies the physical inner product

(Ψ1,Ψ2)phys=∑
ν

Ψ̄1(ν ,φo)
1
|ν | Ψ2(ν ,φo) . (2.23)

An alternative way to find the above physical inner product isby demanding that the action
of the Dirac observables, ˆp(φ) andV̂|φ be self-adjoint on the physical Hilbert space. The Dirac
observables of interest are ˆpφ andν̂ |φo: given by

p̂(φ)Ψ(ν ,φ) =−ih̄
∂Ψ(ν ,φ)

∂φ
, |ν̂ |φoΨ(ν ,φ) = ei

√
Θ(φ−φo)|ν |Ψ(ν ,φo) . (2.24)

which are self-adjoint with respect to the physical inner product (2.23).

8
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Using this structure we can extract predictions from the theory. In the volume representa-
tion, one has to rely on numerical simulations.4 In the numerical simulations, one considers a
semi-classical state peaked at a classical trajectory,pφ = p∗φ andν |φo = ν∗, in a large universe at
largeφ (late time). The state is then evolved backwards in time using quantum constraint equation
(2.22). One can them compare the expectation values of the Dirac observables with the trajec-
tories obtained from GR. A similar analysis can be performedusing quantum constraint in the
Wheeler-DeWitt theory. It turns out that the states in Wheeler-DeWitt theory remain peaked on
the classical trajectory through out the evolution and the initial singularity is not resolved. On the
other hand, results in LQC, turns out to be strikingly different. Numerical simulations with states
which are semi-classical at late times, reveal that the big bang singularity is avoided (see Fig. 1
for an illustrative example of such a simulation). Instead aquantum bounce occurs when energy
density reaches a maximum value, given byρmax≈ 0.41ρPlanck. Unlike the classical GR, and the
Wheeler-DeWitt theory, the loop quantum evolution turns out to be non-singular with quantum
bounce joining expanding branch of the universe with a contracting branch (with the same value of
p(φ)). The ultra-violet problem of GR is solved by the underlyingquantum geometric effects which
manifest themselves in the quantum difference equation (2.22) via the non-local nature of the field
strength operator (2.17). Now let us consider the infra-redlimit. At small spacetime curvature, (i.e.
large volume for a fixed value ofp(φ)) the quantum difference equation, can be approximated by a
differential operator

∂ 2
φ Ψ(ν ,φ) = 12πG ν∂ν ν∂νΨ(ν ,φ) . (2.25)

This corresponds to the Wheeler-DeWitt equation for this model. Thus, not surprisingly, states in
LQC are peaked on classical trajectories at small spacetimecurvature and loop quantum evolution
agrees with the predictions of GR when gravity is weak.

We now briefly discuss extensions of these results to other models. Results of Ref.[12], have
been generalized to include spatial curvature. A rigorous quantization and analysis of physics for
the closed model with a massless scalar field was performed inRefs. [32, 33] and the open model
with a massless scalar field was considered in Ref. [34, 35]. For thek = 1 model, evolution of
states with the quantum constraint has been performed usingextensive numerics and as in the
case of the flat model, it was found that bounce occurs whenρ = ρmax, fluctuations remain small
through out the evolution and effective dynamics is an excellent approximation to the underlying
quantum dynamics.5 It is interesting to note that in the closed model, where the evolution is cyclic,
the change in relative fluctuations over a large number of cycles remains negligible [33]. A similar
conclusion holds for another cyclic model – the flat, isotropic model with a negative cosmological
constant – which was quantized in Ref. [30]. More recently, quantization of isotropic model has
been performed for the positive cosmological constant [29,28] and theφ2 inflationary scenario [31]
where numerical simulations reveal that the bounce and peakedness properties of the semi-classical
states are robust features in LQC. These results have been supplemented with the analytical studies
in Refs. [14, 15, 16].

4In the next section, we will show that by going to the b representation, the model can be solved exactly.
5It is to be pointed out that in comparison to the spatially flatmodel sourced with a massless scalar, the closed

model provides a much rigorous test of the infra-red limit. For an earlier quantization of LQC, Green and Unruh found
certain difficulties with the behavior of eigenfunctions atlarge volumes [67]. These difficulties were resolved in theµ̄
quantization [12].
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We conclude this subsection by noting that though the procedure outlined above has been
widely applied to different isotropic models, it is never guaranteed to be straightforward and some-
time subtle difficulties need to be overcome. As an example, the existing quantization ofk = −1
model, relies on holonomies of extrinsic curvature, ratherthan the connection, and quantum Hamil-
tonian constraint is not self-adjoint. One can however find physical states using FFT method [34].
Similarly, for the case of the positive cosmological constant, the quantum difference equation turns
out to be not essentially self-adjoint. However, one can choose a self-adjoint extension to obtain
quantum evolution, and the choice of the extension does not affect qualitative features of physics.

2.3 Effective dynamics

We conclude this section with a brief discussion of the effective dynamics for this model in
LQC. Using the geometrical formulation of quantum mechanics [68], where one treats the Hilbert
space as an infinite dimensional phase space, it is possible to obtain an effective Hamiltonian up
to well controlled approximations. This has been accomplished using two strategies in LQC. In
the embedding method [40, 41, 42], one seeks a faithful embedding of the infinite dimensional
quantum phase space in to finite dimensional classical phasespace with a a judicious choice of
states, and the truncation method [69, 70], which requires acareful and systematic truncation of
terms arising in an order by order expansion to obtain a self-consistent set of dynamical equations
without which reliable physical predictions can not be obtained. The embedding approach, from
a physicist’s perspective, serves as a useful tool because it works extremely well for states such as
coherent states which lead to a macroscopic classical universe at the late times. The evidence of the
reliability of the effective Hamiltonian derived using embedding approach comes from comparing
the effective dynamics with the analytical models [13] as well as several numerical simulations
performed in Refs. [10, 11, 12, 28, 30, 31, 33, 34, 43, 44]. Forthis reason, it has been widely used
in literature to extract physical predictions (see Sec. V ofRef. [27] for a review).

The effective Hamiltonian constraint fork= 0 isotropic model, with lapseN = 1, is given by
[41, 42]

− 3
γ2

sin2(λb)
λ 2 V +8πGHmatt ≈ 0, (2.26)

which using Hamilton’s equation for volume, leads to the modified Friedmann equation [71, 12]

H2 =
ȧ2

a2 =
8πG

3
ρ
(

1− ρ
ρmax

)
, (2.27)

Using the Hamilton’s equations for connection and matter variables, modified Raychaudhuri and
conservation laws can also be obtained. These equations imply, that at the maximum of energy
density, Hubble rate vanishes, and ¨a> 0, causing the universe to bounce. It is rather remarkable
that the density at which bounce occurs and the effective trajectory agrees to an excellent precision
with the underlying quantum theory. Forρ ≪ ρmax, the modified Friedman equations reduce to the
classical Friedman equation (2.5). Modified dynamical equations give important insights on the
new physics at the Planck scale. To cite a few examples, the phase of super-inflation(Ḣ > 0) near
bounce [71], has important implications for the probability for inflation to occur. For a quadratic
potential, it has been shown that if initial conditions are provided at the bounce surface(ρ = ρmax)

and probability for inflation to occur is evaluated using Liouville measure on the phase space, a
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phase of inflation with more than 65 e-foldings is almost guaranteed in LQC [72, 73, 74]6. Another
important implication results in the form of bounds on physical quantities which appear in geodesic
and Raychaudhuri equations. It has been shown that energy density and expansion and shear scalars
are bounded for isotropic [45] and anisotropic models [50, 47] which has important implications to
understand general resolution of singularities. This turns out to be true for isotropic models where it
has been demonstrated that there is indeed a generic resolution of strong singularities [45, 48]. The
analysis have been recently extended for Bianchi-I model for the case of matter with a vanishing
anisotropic stress [46]. These results are expected to shedimportant insights on a non-singularity
theorem in LQC/LQG.

3. Exactly soluble LQC

In the previous section, we discussed the quantization of spatially flat homogeneous and
isotropic model sourced with a massless scalar field in LQC inthe volume representation. In this
section, we consider the same model in the conjugate b representation. As remarked earlier, with
the lapseN = a3, this model becomes exactly soluble in the b representation, allowing the analysis
of results on bounce at a purely analytical level. In particular, it allows to establish genericness of
bounce for arbitrary states in the physical Hilbert space. Further, a notable merit of sLQC is that the
underlying quantum theory shares similar features with theWheeler-DeWitt quantization, yet due
to an interplay of volume observable with physical states, the physical predictions are strikingly
different. In the following, we summarize and contrast the main features of the quantization for
both frameworks. (For details, we refer the reader to Ref. [13, 27]).

In the b representation, the classical Hamiltonian constraint for lapseN = a3 can be written as

−3πGv2b2+ p2
(φ) ≈ 0 . (3.1)

In this representation, we consider the action of the corresponding Wheeler-DeWitt and sLQC
quantum constraints on statesχ(b,φ) and χ(b,φ) respectively. In the Wheeler-DeWitt theory,
b∈ (−∞,∞), and due to the symmetry under the change of orientation of the triads, states satisfy
χ(b,φ) = −χ(−b,φ). Imposing this symmetry, we restrict to the states which have support on
the positive b-half line. On these states, the quantum constraint in Wheeler-DeWitt theory has the
following action:

∂ 2
φ χ(b,φ) = 12πG(b∂b)

2 χ(b,φ) . (3.2)

On the other hand, in sLQC, b∈ (0,π/λ ) and the action of the quantum constraint is given by

∂ 2
φ χ(b,φ) = 12πG

(
sinλb

λ
∂b

)2

χ(b,φ) . (3.3)

Interestingly, the quantum constraints (3.2) and (3.3), can be written in a simple form of a 2-
dimensional Klein-Gordon equation by a simple change of variables. To see this, we introduce
variabley for the Wheeler-DeWitt theory:

y :=
1

(12πG)1/2
ln

b
bo

(3.4)

6The attractor properties for inflationary trajectories in LQC [75, 73, 74], play an important role in these results.
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where bo is constant. The resulting quantum constraint (3.2), then becomes

∂ 2
φ χ(y,φ) =−Θ χ(y,φ), where Θ :=−∂ 2

y . (3.5)

Similarly, for sLQC, we introducex variable:

x=
1√

12πG
ln

(
tan

λb
2

)
. (3.6)

Due to this change of variable, the resulting action of the quantum constraint (3.3) takes the similar
form as (3.5):

∂ 2
φ χ(x,φ) =−Θ χ(x,φ), Θ := −∂ 2

x . (3.7)

Solutions of both the constraints (3.5) and (3.7)) are superselected in to the positive and negative
frequency sub-spaces, and as in the previous section, one can restrict to the positive frequency sub-
space. The physical inner product can be found using the group averaging procedure [64, 65, 66].
In the Wheeler-DeWitt theory, the inner product take the following Klein-Gordon form7:

(χ
1
,χ

2
)phy = 2

∫ ∞

−∞
dk|k| ¯̃χ

1
(k)χ̃

2
(k) . (3.8)

Hereχ̃ is the Fourier transform of the Wheeler-DeWitt stateχ̄ . The action of the Dirac observables,
p̂(φ) andV̂|φ , is self-adjoint with respect to the inner product. It is given by

p̂φ χ(y,φ) = h̄
√

Θ χ(y,φ) . (3.9)

and

V̂|φo χ(y,φ) = ei
√

Θ(φ−φo) (2πγℓ2
Pl|ν̂ |)χ(y,φ) . (3.10)

whereφo is the slice at which initial datum is specified, andν is defined asν := v/h̄, whose
corresponding operator is given by,

ν̂ =− 2√
12πGbo

(
PR(e

√
12πGyi ∂y)PR+PL(e

√
12πGyi ∂y)PL

)
. (3.11)

wherePL andPR are projectors on the left and right moving sectors of the Schrödinger Hilbert space.
The left moving states correspond to expanding universe, and the right moving states correspond to
the contracting universe. The Dirac observables, ˆpφ andV̂|φo, which form a complete set, preserve
these sectors. Hence, one can restrict to just one of these sectors to analyze physical implications.
In the following analysis of the Wheeler-DeWitt theory, we will consider only left moving modes.

Despite similarities with the Wheeler-DeWitt theory, the situation in sLQC turns out to be
sharply different. The first difference is rooted in the symmetry requirement of the orientation of
triads. It turns out thatχ(−x,φ) = −χ(x,φ) [13]. Thus, a generic stateχ(x,φ) has support on
both left and right moving sectors and unlike the WDW theory there is no super-selection of these

7Note that a general initial datum for the physical state specified at time φ = φo is
of the form χ(y,φo) = 1√

2π
∫ ∞
−∞ dke−ikyχ̃(k), and under time evolution one obtainsχ(y,φ) =

1√
2π

(∫ 0
−∞ dke−ik(φ+y)eikφo χ̃(k)+

∫ ∞
0 dkeik(φ−y)e−ikφo χ̃(k)

)
. As in the Klein-Gordon caseφ + y and φ − y can be

identified as the left and right moving components respectively.
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sectors. In particular, any solution of the quantum constraint (3.7), satisfies the following relation
in terms of right movingx+ or left moving partsx−: χ(x,φ) = 1√

2
(F(x+)−F(x−)). Using this, the

inner product (3.8), can then be expressed in terms of the right moving or left moving solutions,
and in terms of the latter it becomes

(χ1,χ2)phys=−2i
∫ ∞

−∞
dxF̄1(x+)∂xF2(x+) . (3.12)

The second difference between Wheeler-DeWitt theory and sLQC arises, in the action of the vol-
ume operator, which is given by

ν̂ =− 2λ√
12πG

(
PR(cosh(

√
12πGx)i ∂x)PR+PL(cosh(

√
12πGx)i ∂x)PL

)
. (3.13)

Due to the differences in the action of the volume observable, behavior of the corresponding expec-
tation values in Wheeler-DeWitt theory and sLQC is qualitative distinct. In the Wheeler-DeWitt
theory, for the left moving states, they are given by

(χ
L
,V̂|φ χ

L
)phy = 2πγℓ2

Pl (χL
, |̂ν |φ χ

L
)phy =V∗e

√
12πGφ (3.14)

whereV∗ is a positive definite constant determined by the initial data. In contrast, the expectation
values〈V̂|φ 〉 in sLQC become,

(χ , V̂|φ χ)phy = 2πγℓ2
Pl (χ , |̂ν |φ χ)phy = V+e

√
12πGφ +V−e−

√
12πGφ (3.15)

whereV± are positive constants determined by the initial data [13].
Let us compare the behavior of expectation values of the volume observable in Wheeler-

DeWitt theory and sLQC. From (3.11), we find that in the Wheeler-DeWitt theory, for any given
left-moving state (which corresponds to an expanding universe), the expectation values of the vol-
ume observable becomes infinite asφ → ∞ and becomes zero whenφ →−∞. That is, in the past
evolution, an expanding Wheeler-DeWitt universe encounters a big bang singularity irrespective of
the choice of state. Similar, conclusion arises for the right-moving states in Wheeler-DeWitt the-
ory, which correspond to a contracting universe. The expectation values〈V̂|φ 〉 become infinite as
φ →−∞ and vanish whenφ → ∞. Thus, a flat isotropic Wheeler-DeWitt universe sourced with a
massless scalar field, inevitably encounters a singularity, independent of the choice of state. Going
beyond the analysis of expectation values, above conclusion is also reached using the consistent
histories framework [76, 77], by computing the consistent probabilities for the singularity to occur
[20, 21]. Interestingly, a careful analysis of consistent histories leads to even a stronger result, that
arbitrary superpositions of left and right moving modes do not lead to avoidance of singularity,
whose probability remains unity (for details, we refer the reader to [20, 21]).

Let us now consider the case of sLQC. From (3.15), we find that the expectation values〈V̂|φ 〉
become infinite whenφ →±∞ , attaining a minimum volumeVmin = 2

√
V+V−/||χ ||2 at φbounce=

1
(2
√

12πG)
log(V−/V+). Further, the expectation values〈V̂|φ 〉 are symmetric across the bounce time

φbounce. Thus, in contrast to the Wheeler-DeWitt evolution, the expectation value of the volume
observable never vanishes in sLQC.8 Starting from the expanding branch, a backward evolution

8Computation of consistent probabilities shows that the probability for an sLQC universe to bounce is unity [22].
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of an arbitrary state in sLQC leads to a bounce at the minimum value. Thus, generic states in
sLQC lead to the resolution of the big bang/crunch singularities of the classical theory. Defining
the energy density observable, one can compute the value at which bounce occurs. This provides
a strong analytical test of results obtained from the numerical simulations. Let us define the Dirac
observable for energy density as,

ρ̂|φ =
1
2

Â|2φ where Â|φ = (V̂|φ )−1/2 p̂φ (V̂|φ )−1/2 . (3.16)

The expectation values of〈Â|φ 〉 are given by

〈Â|φo〉 =
(χ , p̂φ χ)phy

(χ ,V̂|φoχ)phy
=

(
3

4πγ2G

)1/2 1
λ

∫ ∞
−∞ dx|∂xF|2∫ ∞

−∞ dx|∂xF |2cosh(
√

12πGx)
. (3.17)

It turns out that these are bounded, with a maximum given by9

ρsup=
3

8πγ2Gλ 2 =

√
3

32π2γ3G2h̄
≈ 0.41ρPl , (3.18)

which agrees with the value of energy density at which bounceoccurs in the numerical simulations
for spatially flat isotropic model with a massless scalar field [12]. Note that if quantum discreteness
vanishes, i.e. ifλ is set to zero, there is no maximum value of the energy densityand the minimum
allowed value of volume observable vanishes. The classicalsingularity is recovered in the absence
of quantum discreteness.

4. Summary

Loop quantization of cosmological models provides us a new paradigm of the very early uni-
verse in which initial singularity of the classical theory is replaced by a quantum bounce when the
spacetime curvature reaches Planck regime [27]. Non-singular evolution resulting from non-local
properties of the field strength of connection, has turned out to be a general feature of various
models, in isotropic and anisotropic spacetimes. We illustrated key aspects of quantization for the
spatially flat isotropic universe sourced with a massless scalar field. We discussed the way physical
Hilbert space is found, the role of scalar field as internal clock, the action of Dirac observables, and
the way physics can be extracted using sophisticated numerical simulations [10, 11, 12]. Unlike
the Wheeler-DeWitt quantization, the quantum constraint in LQC turns out to be discrete. The dif-
ferential geometry of GR is replaced by quantum geometry. States which are semi-classical at late
times, when evolved backward towards the big bang using quantum constraint, remain peaked at
classical trajectories for small spacetime curvature, butresult in a big bounce where energy density
reaches a maximum value. Analysis of fluctuations show that they are tightly constrained in the
evolution across the bounce [12, 33, 14, 15, 78]. In a striking contrast to Wheeler-DeWitt theory,

9Another way to obtain this bound is by considering the energydensity observable for the states in the physical

Hilbert space. For such states, using quantum Hamiltonian constraint, one findŝρ|φ = 3
8πGγ2λ 2

̂sin2(λb), which results
in the same maximum of the energy density as in eq.(3.18).
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big bang singularity is shown to be absent for a dense subspace of states using an exactly soluble
model [13]. Effective dynamics, which captures the key features of underlying quantum geometry,
provides an excellent approximation of the quantum evolution and has been extensively used to ex-
tract novel physical predictions, such as, on bounds on energy density, expansion and shear scalars
[45, 47, 50], resolution of strong singularities [45, 46] and probability for inflation [72, 73, 74].
These have been also used to probe the physics beyond homogeneity approximation such as in
Gowdy models [51] and imprint of quantum geometry on cosmological perturbations [52], which
have also been derived using detailed properties of quantumspacetime [54]. It is hoped that the on-
going investigations on primordial perturbations will provide potential tests for LQC in near future
astronomical experiments.
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cosmology of the Bianchi I model: complete quantization, arXiv:1110.1941.

[38] A. Ashtekar and E. Wilson-Ewing, Loop quantum cosmology of Bianchi type II models, Phys. Rev.
D80123532 (2009)

[39] E. Wilson-Ewing, Loop quantum cosmology of Bianchi type IX models, Phys. Rev. D82043508
(2010)

[40] J. Willis, On the low energy ramifications and a mathematical extension of loop quantum gravity.
Ph.D. Dissertation, The Pennsylvaina State University (2004)

[41] V. Taveras, LQC corrections to the Friedmann equationsfor a universe with a free scalar field, Phys.
Rev.D78064072 (2008)

[42] P. Singh, V. Taveras, Effective equations for arbitrary matter in loop quantum cosmology, (In
preparation).

[43] L. Szulc, Loop quantum cosmology of diagonal Bianchi type I model: Simplifications and scaling
problems, Phys. Rev. D78, 064035 (2008)

[44] M. Martin-Benito, G. A. Mena Marugan and T. Pawlowski, Physical evolution in Loop Quantum
Cosmology: The example of vacuum Bianchi I, Phys. Rev. D80084038 (2009).

[45] P. Singh, Are loop quantum cosmologies never singular?Class. Quant. Grav.26125005 (2009)

[46] P. Singh, Curvature invariants, geodesics and the strength of singularities in Bianchi-I loop quantum
cosmology, Phys.Rev. D85 (2012) 104011

[47] B. Gupt, P. Singh, Contrasting features of anisotropicloop quantum cosmologies: the role of spatial
curvature, Phys.Rev. D85 (2012) 044011

[48] P. Singh, F. Vidotto, Exotic singularities and spatially curved loop quantum cosmology, Phys. Rev. D
83064027 (2011).

[49] A. Corichi and P. Singh, Is loop quantization in cosmology unique? Phys. Rev. D78024034 (2008)

[50] A. Corichi, P. Singh, A geometric perspective on singularity resolution and uniqueness in loop
quantum cosmology, Phys. Rev. D80, 044024 (2009).

[51] M. Martin-Benito, L. J. Garay and G. A. Mena Marugan, Hybrid quantum Gowdy cosmology:
combining loop and Fock quantizations, Phys. Rev. D78083516 (2008);
L. J. Garay, M. Martn-Benito, G. A. Mena Marugan, Inhomogeneous loop quantum cosmology:
Hybrid quantization of the Gowdy model, Phys. Rev. D82044048 (2010); D. Brizuela, G. A. Mena
Marugan and T. Pawlowski, Big bounce and inhomogeneities, Class. Quant. Grav.27052001 (2010);
M. Martin-Benito, G. A. Mena Marugan, E. Wilson-Ewing, Hybrid quantization: From Bianchi I to
the Gowdy model, Phys. Rev. D82084012 (2010); M. Martn-Benito, D. Martn-de Blas, G. A. Mena
Marugan, Matter in inhomogeneous loop quantum cosmology: the GowdyT3 model,
arXiv:1012.2324; D. Brizuela, G. A. Mena Marugan and T. Pawlowski, Effectivedynamics of
the hybrid quantization of the Gowdy T3 universe,arXiv:1106.3793

17



P
o
S
(
Q
G
Q
G
S
 
2
0
1
1
)
0
0
7

Loop quantum cosmology: a brief introduction Parampreet Singh

[52] See for eg., S. Tsujikawa, P. Singh, R. Maartens, Loop quantum gravity effects on inflation and the
CMB, Class. Quant. Grav.215767 (2004); S. Hofmann and O. Winkler, The Spectrum of fluctuations
in inflationary quantum cosmology, arXiv:astro-ph/0411124; G. M. Hossain, Primordial density
perturbation in effective loop quantum cosmology, Class. Quant. Grav.222511 (2005); E. J.
Copeland, D. J. Mulryne, N. J. Nunes and M. Shaeri, The gravitational wave background from
super-inflation in Loop Quantum Cosmology,arXiv:0810.0104; E. J. Copeland, D. J. Mulryne,
N. J. Nunes, and M. Shaeri, Superinflation in loop quantum cosmology, Phys. Rev. D77023510
(2008) J. Magueijo, P. Singh, Thermal fluctuations in loop cosmology, Phys. Rev. D76023510
(2007); M. Bojowald, H. H. Hernandez, M. Kagan, P. Singh, A. Skirzewski, Hamiltonian
cosmological perturbation theory with loop quantum gravity corrections, Phys. Rev. D74123512
(2006); M. Bojowald, H. H. Hernandez, M. Kagan, P. Singh, A. Skirzewski, Formation and Evolution
of Structure in Loop Cosmology, Phys. Rev. Lett.98031301 (2007); M. Artymowski, Z. Lalak, L.
Szulc, Loop quantum cosmology corrections to inflationary models, JCAP0901004 (2009);
M. Bojowald and G. M. Hossain, Loop quantum gravity corrections to gravitational wave dispersion,
Phys. Rev. D77023508 (2008); J. Mielczarek, Possible observational effects of loop quantum
cosmology, Phys. Rev.D81063503 (2010); J. Grain and A. Barrau, Cosmological footprints of loop
quantum gravity, Phys. Rev. Lett.102081301 (2009); J. Mielczarek, T. Cailleteau, J. Grain and
A. Barrau, Inflation in loop quantum cosmology: Dynamics andspectrum of gravitational waves,
Phys. Rev. D81104049 (2010); M. Shimano and T. Harada, Observational constraints on a power
spectrum from super-inflation in Loop Quantum Cosmology, Phys. Rev. D80063538 (2009); M.
Bojowald, G. M. Hossain, M. Kagan, S. Shankaranarayanan, Phys. Rev. D79043505 (2009); G.
Calcagni, G. M Hossain, Loop quantum cosmology and tensor perturbations in the early universe,
Adv. Sci. Lett.2 184 (2009); M. Bojowald and G. Calcagni, Inflationary observables in loop quantum
cosmology, JCAP1103032 (2011); M. Bojowald, G. Calcagni and S. Tsujikawa, Observational
constraints on loop quantum cosmology, arXiv:1101.5391 [astro-ph.CO].

[53] A. Ashtekar, W. Kaminski and J. Lewandowski, Quantum field theory on a cosmological, quantum
space-time, Physical Review D79064030 (2009), arXiv:0901.0933

[54] I. Agullo, A. Ashtekar and W. Nelson, Perturbations in loop quantum cosmology, arXiv:1204.1288

[55] M. Bojowald, Loop quantum cosmology, Liv. Rev. Rel.8, 11 (2005).

[56] K. Banerjee, G. Calgani, M. Martin-Benito, Introduction to loop quantum cosmology, SIGMA8, 016
(2012)

[57] D. Brizuela, D. Cartin and G. Khanna, Numerical techniques in loop quantum cosmology, SIGMA8,
001 (2012)

[58] P. Singh, Numerical loop quantum cosmology: an overview, arXiv:1208.5456 [gr-qc].

[59] I. M. Gel’fand and M. A. Naimark, On the embedding of normed rings into the ring of operators in
Hilbert space, Mat. Sobrn.12, [54]197-217 (1943)
I. E. Segal, Postulates of general quantum mechanics, Ann. Math.48930-948 (1947)

[60] J. Lewandowski, A. Okolow, H. Sahlmann, T. Thiemann, Uniqueness of the diffeomorphism invariant
state on the quantum holonomy-flux algebras, Comm. Math. Phys.267703 (2006)

[61] C. Fleishchack, Representations of the Weyl algebra inquantum geometry, Commun. Math. Phys.285
67 (2009)

[62] A. Ashtekar, M. Campiglia, On the Uniqueness of Kinematics of Loop Quantum Cosmology,”
arXiv:1209.4374 [gr-qc]

18



P
o
S
(
Q
G
Q
G
S
 
2
0
1
1
)
0
0
7

Loop quantum cosmology: a brief introduction Parampreet Singh

[63] A. Ashtekar and E. Wilson-Ewing, The covariant entropybound and loop quantum cosmology, Phys.
Rev.D7806407 (2008)

[64] D. Marolf, Refined algebraic quantization: Systems with a single constraint.arXive:
gr-qc/9508015;
Quantum observables and recollapsing dynamics. Class. Quant. Grav.121199–1220 (1994)

[65] A. Ashtekar, J. Lewandowski, D. Marolf, J. Mourão and T.Thiemann, Quantization of
diffeomorphism invariant theories of connections with local degrees of freedom. Jour. Math. Phys.36
6456–6493 (1995)

[66] A. Ashtekar, L. Bombelli and A. Corichi, Semiclassicalstates for constrained systems, Phys. Rev.
D72025008 (2005)

[67] D. Green and W. Unruh, Difficulties with recollapsing models in closed isotropic loop quantum
cosmology, Phys. Rev.D70103502 (2004)

[68] T. Schilling, Geomtery of quantum mechanics, Ph. D Dissertation, The Pennsylvania State University
(1996); A. Ashtekar and T. A. Schilling, Geometrical formulation of quantum mechanics. In:On
Einstein’s Path: Essays in Honor of Engelbert Schücking, Harvey, A. (ed.) (Springer, New York
(1999)), 23–65,arXiv:gr-qc/9706069

[69] M. Bojowald, A. Skirzewski, Effective theory for the cosmological generation of structure, Rev.
Math. Phys.18713 (2006);

[70] M. Bojowald, B. Sandhoefer, A. Skirzewski, A. Tsobanjan, Effective Constraints for Quantum
Systems, Rev. Math. Phys.21111 (2009)

[71] P. Singh, Loop cosmological dynamics and dualities with Randall-Sundrum braneworlds, Phys.Rev.
D73 (2006) 063508.

[72] A. Ashtekar and D. Sloan, Loop quantum cosmology and slow roll inflation, Phys. Lett. B694
108-112 (2010)

[73] A. Ashtekar and D. Sloan, Probability of inflation in loop quantum cosmology,arXiv:1103.2475

[74] A. Corichi and A. Karami, On the measure problem in slow roll inflation and loop quantum
cosmology,arXiv:1011.4249

[75] P. Singh, K. Vandersloot, and G. V. Vereshchagin, Non-singular bouncing universes in loop quantum
cosmology, Phys. Rev. D74043510, (2006)

[76] J. B. Hartle, Spacetime quantum mechanics and the quantum mechanics of space-time,Gravitation
and Quantizations: Proceedings of the 1992 Les Houches Summer School, ed. by B. Julia and J.
Zinn-Justin, North Holland, Amsterdam (1995); arXiv:gr-qc/9304006.

[77] See for example, J. J. Halliwell, Somewhere in the Universe: Where is the information stored when
histories decohere?, Phys. Rev. D60105031 (1999); D. A. Craig, J. B. Hartle, Generalized quantum
theory of recollapsing homogeneous cosmologies, Phys. Rev. D 69123525 (2004); J. J. Halliwell, P.
Wallden, Invariant class operators in the decoherent histories analysis of timeless quantum theories,
Phys. Rev. D73024011 (2006); J. J. Halliwell, Probabilities in quantum cosmological models: a
decoherent histories analysis using a complex potential, Phys. Rev. D80124032 (2009); M.
Gell-Mann, J. B. Hartle, Decoherent histories quantum mechanics with one ‘real’ fine-grained history,
arXiv:1106.0767

[78] A. Corichi, A. Karami, Loop quantum cosmology of k=1 FRW: A tale of two bounces,
arXiv:1105.3724

19


