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1. Introduction and overview

Lattice discretizations of field theories are a popular métto access non-perturbative quan-
tum physics, for instance very successfully in lattice quanchromodynamics. Similarly, many
approaches to quantum gravity are based on discretizgtiprsuch as (quantum) Regge calculus
[2] or spin foams [3]. There is however, an important differe between the status of discretiza-
tions available for Yang Mills theories and for (4D) genergliativity. Whereas for the former,
discretizations are available that do preserve the Yang¢sgduge symmetry also on the lattice
[4] this is not the case for gravity [5, 6], where the gauge matry in question is given by dif-
feomorphism symmetry. The reason is that diffeomorphismregtry acts on space time itself. If
this space time is discretized, we can expect that a diffephiem would deform in some way this
discretization.

Indeed, there are several examples where diffeomorphisnmjry is realized also for the
discretization (this includes 3D gravity [7, 8], repararizttion invariant 1D systems [9, 10] and
linearized 4D gravity [11]), both at the classical and quamievel. For all these examples, dif-
feomorphism symmetry acts by displacing the vertices ofldlttice in the space time in which
the lattice is embedded. (This kind of diffeomorphism syrtmnin the discrete was termed ditt—
invariance in [12].) That is this symmetry can change thengedcal distance between the vertices.
Here one can already see that such a discrete notion of iiffigzhism symmetry is enormously
powerful: a discrete system in which such a symmetry iszedlneeds to reproduce physics on
all length scales, also on the large ones. The exploratidgheofonsequences of such a symmetry
has been only recently started, see for instance [13, 10.412In this work we will see that on the
one hand it is very complicated (or might not be possible)aiestruct discretizations with such a
symmetry of a given system. We will therefore propose a peative approach. On the other hand
such a symmetry has a number of important advantages anadweonsould solve long standing
problems for discretizations, in particular of gravity:

e Consistent perturbative formalisnThe main body of this paper will discuss how to obtain a
consistent perturbative formalism for discretizatiomswihich a gauge symmetry is broken
at a certain order (as is the case for 4D gravity). For ingtdRegge gravity will not allow
a consistent perturbative framework around flat space, éf does not improve the action
appropriately. The problem is, that linearized Regge tyadisplays the linearized form
of diffeomorphism symmetry, i.e. one can identify longinal lattice modes, that do not
propagate as these are null modes of the Hessian of the &tfipd5]. The higher order
interactions will however involve these longitudinal med&hat is at higher order the gauge
freedom associated to these modes does get fixed. This rappamver in a non-linear
fashion. Basically, the perturbation assumption, namiedy the solution is analytical in a
small parameteg is not valid [6]. This means that for instance the computatibgraviton
scattering is not possible without changing the given discaction to have a perturbative
consistent form to the required order. As this problem iseddn having broken symmetries,
it will not appear if a discrete notion of diffeomorphism syratry is exactly realized. On
the other hand we will see that the requirement of pertuwrbatonsistency might help us to
construct discretizations with such a symmetry.
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e Canonical formalism with first class constraint&:long standing problem in discrete gravity
is the construction of a consistent canonical formalisnthéncontinuum the dynamics in the
canonical formalism is generated by arbitrary combinatiohthe Hamiltonian and (spatial)
diffeomorphism constraints. The arbitrariness of the faciehts — lapse and shift — reflects
the diffeomorphism symmetry of the covariant formalism ardked the constraints do fol-
low from the diffeomorphism symmetry of the theory. Dis@ations (in 4D) break this
symmetry. Hence in the discrete, we cannot expect conttraimd also not the related gauge
freedom of freely choosing lapse and shift. Indeed theseagker fixed to some discrete
values in the cases where the symmetries are broken. Tbigredans that time evolution
will proceed in discrete steps [16, 14].

This situation is not so much a problem in the classical realPme can define a canoni-
cal formalism that exactly reproduces the solutions of thadant one [16, 13, 5, 6, 17],
together with the exactly preserved and broken symmetiResently a canonical formal-
ism has been defined which can handle arbitrary trianguisitamd the associated issue of
changing phase space dimensions during time evolution [L#erefore can reproduce for
instance all Regge solutions.

One has however to realize that having constraints in thérearm which are not repro-
duced in the discrete does lead to repercussions. Indeedraions are just equations of
motions, which involve the data of one time slice only. If #esociated symmetry is broken
by the discretization, this equation of motion will be a pgopne, i.e. describing a coupling
between time slices, however this coupling will be very we@ikese equations are termed
pseudo constraints, and can be imagined as describingttédkout constraint hypersurfaces
[5]. The problem now is that selecting canonical data ‘faag\Wirom this hypersurface will
lead to unphysical solutions (not approximating a contmuwolution), resulting for instance
in complex lapse and shift parameters. Classically onedodedl with this problem by stay-
ing near this pseudo constraint hypersurface. In quant@orghhowever it is unclear how
to deal with such pseudo constraints. Proper (first clasgtaaints have to be imposed onto
the quantum states, this is however not possible for thedsseonstraints which are not first
class, i.e. do not form an algebra. This problem is addresstte uniform discretization
program [18, 14] in which all the (pseudo) constraints awgasgd and summed to one mas-
ter constraint [19] thus avoiding inconsistencies due ¢dbnstraint algebra. It is however
unclear whether in the continuum limit diffeomorphism syetrg can be regained or not
(this is related to the question whether the continuum lgait be performed or whether one
remains with some 'fundamental discreteness’ associatdket failure to fully satisfy the
(pseudo) constraints) [20].

Having a canonical formalism with proper constraints whsztisfy a first class algebra
would completely circumvent this problem. Also one woule tise diffeomorphism sym-
metry represented by the first class algebra to restrictihugmntization (and discretization)
ambiguities, see below. Such a formalism can be constrdobed a discrete action which
does display exact diffeomorphism invariance. Such ast{émr non—topological theories,
e.g. 4D gravity) will however be non—lodg[15]. This needs to be taken into account in the

11.e. the couplings are not restricted to nearest neigh@ne can however expect an exponential decay with the
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formulation of the canonical framework [21].

e Discretization ambiguitiesMany different discretizations may lead to the same contimu

limit. In other words, discretizations come usually with@rerwhelming amount of ambi-
guities. This is not so much a problem if one sees the digatan just as a regularization
of a continuum system. However, if one postulates discyettems as fundamental, as some
guantum gravity approaches do, one has to address theaqueStambiguities. l.e. exclu-
sion criteria should be formulated so that in the best casecqua theory can be found.
Requiring an exact realization of diffeomorphism invadarmight provide a unique dis-
cretization, even on the quantum level. This has been préoveiD reparametrization in-
variant (quantum) systems in [10]. The intuitive reasorhésfollowing: If there is a gauge
symmetry that allows vertex displacements we can imagirohamge the vertices such that
there is a region where the effective lattice scale is maogs. That is the discretization
has actually to reproduce the macroscopic (continuum)iphyithout any coarse graining
taking place) — all terms in the discrete action are theesfelevant.
Such a requirement can also be used to specify the pathahtegasure, as is shown in [22]
for (linearized) Regge calculus. There one does actuatjyire triangulation independence,
which is however deeply related to diffeomorphism symmetsywe will discuss in the next
point.

e Triangulation independenceA discretization for which diffeomorphism symmetry is real
ized should also lead to triangulation independent reskétsexpectation values or transition
amplitudes should not depend on the choice of (bulk) tritatgan or lattice. Note that this
means that one can go to the most coarse grained triangujatissible. Again, there is a
proof for 1D (quantum) systems [10] which also gives an tigniwhy this should also hold
in higher dimensions: If vertices of a triangulation can spthced without interfering with
predictions, we can also move vertices onto each other $uaththe triangulation is effec-
tively coarse grained.

Examples for triangulation invariant quantum systems agi kmown from topological field
theories, in particular 3D gravity with the Ponzano-Regg@] and the Tuarev-Viro model
[24]. Note however that it is the topological character.(het having propagating degrees
of freedom) of these theories that allows to have a triangulanvariant system with a par-
tition function with only local couplings. For interactirteories we have rather to expect
non-local terms [25, 15].

e Continuum or large scale limitA discretization is usually adopted to describe the system
on very small scales. To re-obtain physics on large scata®) a continuum manifold as we
know it, we have to take the continuum /large scale limit & ystem. This can be done,
for instance by coarse graining/renormalization, which giwe effective actions describing
physics on larger and larger scales. However from what hexs &&id in the previous points,
such a process is not really necessary for discretizatimmdagting diffeomorphism invari-
ance. In particular we mentioned in the last point that suttteary should be triangulation

lattice distance [25].
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independent, which would also include invariance undersegraining. In other words,
we are dealing with a system at a renormalization fixed paieg also the discussion in
[12]. As we will see constructing a diffeomorphism invatiascretization already includes
the process of taking the continuum limit. In this sense tisbatomy of discretization and
continuum symmetry is resolved.

In summary all advantages can be understood from the reneirefor the discrete system
to reproduce physics on all length scales, which entailsttiediscrete system already needs to
encode continuum physics. Hence all the disadvantagesgomiih a discretization (in particular
ambiguities, discretization dependence and consistaraype addressed.

On the other hand one needs to construct the discretizatimthat it can reproduce contin-
uum physics. This requires a certain control over the smiugpace of the system. Indeed, one way
to construct such a perfect discretization, is — turningdlsepoint of our list on its head —by coarse
graining and essentially finding the fixed point action [2B]. ZI'he process can be understood as
‘blocking from the continuum’ [25], i.e. defining a latticgstem which completely mirrors the
physics of the continuum. There are a number of works whaseafiproach has been successfully
applied [8, 9, 10, 15]. Concerning the question whetheedifiorphism symmetry can be regained
in this way, the examples however include only systems wtteeperfect discretization is still
local (i.e. topological systems or 1D). This is understéel@ue to the problem at hand: coarse
graining basically means to solve the dynamics of the sysiEmerefore a perturbative approach
is advisable. In [15] the zeroth order of (free) field thestims been discussed including systems
with gauge symmetries suchd$1) gauge theory and gravity. Here one needs to carefully choose
the coarse graining such that the linearized gauge freedohese systems is preserved.

In this work, using parametrized field theories as an exanwdewill discuss the challenges
of going to higher order. The main point will be that, evendsefcoarse graining, one has to
make sure that the discrete action satisfies certain censistrequirements that hugely restrict
the possible choices. These consistency requirementscertfte gauge symmetry to hold to the
given order. This can of course be understood as an obstaadl¢he other hand these conditions
might allow the construction of a perfect action withoutuedly going through the coarse graining
process completely. Furthermore an investigation of theassistency conditions might give us im-
portant information on the possible form of the perfectagtifor instance regarding the structure
of its non-local couplings. In particular the consistenopditions can be used to restrict possi-
ble discretization choices, with the option that there ify@ne unique solution possible. Thus
the consistency conditions allow the explorations of thdgut action without having it explicitly
constructed yet. From what has been said before the camsyst®nditions can be understood
as infinitesimal versions for the requirement of triangokatindependence of a given discretiza-
tion or model. Thus these conditions could serve as tharsigobint for a systematic search for
triangulation independent models.

We will discuss the issue of diffeomorphism symmetry in tligckte using as an example
discretizations of parametrized (free) field theoriesnahiis case the split into physical and gauge
variables is straightforward. In the next secion 2 we willaliss the general features of such
discrete theories and the basics of a perturbative expamsid coarse graining. We will discuss
the coarse graining procedure order by order and see thag &itst non-linear order consistency
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conditions arise. These have to be satisfied before coaaseirgr can be performed. Also the
second order will be explicitly discussed as there new tyjffeéserms for the coarse grained action
arise which do not appear in first order. We will give geneoafrfulas for the coarse graining of the
different perturbative objects appearing in the expana¢idm These results will be applied to the
parametrized harmonic oscillator, which can be undersas(® + 1) dimensional parametrized

field theory. Here we will see that the consistency condgtioray be either violated already at first
order or at second order. However a perturbative consislieotetization can be found and the
perfect action can be constructed via coarse graining. Weblse with a discussion and outlook
in section 4.

2. Discretized parametrized fields

Here we will discuss discretized parametrized (field) theor That is we assume a (here
regular) lattice with vertices labelled byy, .... Each of these verticeds described by embedding
variableg2 into RY, which is equipped with some (Euclidean or Minkowskian) meefurthermore
we assume a (here scalar) fidljdassociated to the vertices. The discrete theory is defingddoy
action

where we sum over repeated indices. We assume a quadradtic #cthe fields as we are dealing
with a free field theory. This quadratic form depends on tlirided lattice metric, which is re-
flected in the dependence 8% on the embedding variabl¢$ of the vertices. It is important to
note that both kind of variables, the fielisand the embedding variabl&ésare treated as dynam-
ical variables, i.e. we have to vary the action with respedidth fields. Changing the embedding
variables will change the matri8¥(t) defining the quadratic interaction. This matrix includes
metric information, i.e. the geometrical distance betwtenvertices (as the inverse defines the
two point function of the theory). That is varying the embieddvariables is actually a variation
of the geometrical properties of the underlying latticehl position of the vertices is fixed by the
equation of motions, it happens such that the action (24luated on the corresponding solutions
for fy is extremal. i.e. such that the dependence of Hamiltonfscjral function on the embedding
variablest (now treated as parameters) is vanishing [6]. In a sensattied! itself (i.e. the vertex
positions and therefore the geometric distances betwaéine® is determined by the equations of
motion for the embedding variables.

The discrete notion of diffeomorphism symmetry we are lagkiior would result in a gauge
freedom for the variablet, i.e. independence of Hamilton’s principal function frohe tvertex
positionstd. This entails an independence of physical predictions fteenvertex positions and
therefore the details of the lattice. Indeed such a featameatready be understood as discretization
independence.

Diffeomorphism invariance is realized if given a solutitﬁi" for the variablesfy

svfsol=0 (2.2)
the equation of motion associated to tfere automatically satisfied (for arbitrary values3)f
0S¥ sol ¢sol
I o7 =0 . (2.3)
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Here we basically have the derivative of the Lagrangian wadpect to the metric, which defines
the energy momentum. Indeed (2.3) can be understood asratdisonservation equation for the
energy momentum [28]. In case diffeomorphism symmetry &ethis conservation will hold for
arbitrary vertex position. As one can easily see this is #sdf the derivative o8Y is of the form

0¥ x
—— = yROSY(t) + YRSt (2.4)

ot3 ’
for some tensor fielg;3(t). In case the symmetry is broken, the requirement of energgese
vation, i.e. equation (2.3) will fix the vertex positions. tddowever that we can linearize this
theory around arbitrary vertex positiotfs and the field configuration§; = 0. In this case the
guadratic order of the action will be just given by the lirizad field variables, the perturbations
of the embedding variables will not appear. That is for thedirized theory we do have the gauge
symmetry, as the linearized embedding variables will rensgidetermined. This is analogous to
the situation in Regge calculus [11, 29], where linearizé#fdamorphism symmetry is realized
around the flat solutions (based on arbitrary lattices) h&nfollowing we will see that continuing
this gauge symmetry to higher order will require consisfaranditions which are basically derived
from (2.4).

The framework we are discussing here should also be apfgidabnon-linear theories in
particular Regge gravity. There all the variables are ofstimae form, namely given by the lengths
of the lattice edges. That is a division into fielland embedding variabléss not obvious. Asiitis
not possible to solve the full theory at once, we will attempterturbative approach. Since in Regge
calculus all variables are treated on an equal footing, weattempt the same for parametrized
field theory here, and expand both the fiefdsnd the embedding variablearound a solution. We
choose this solution to be the zero energy solufiaa 0 andt determined by some regular lattice.
That is we expand

f=0+¢0p
P =nPefd . (2.5)

HerenP is a vector inZ9, denoting the regular lattice coordinates. Using this asjmm in the
action (2.1) we obtain

e 25 = 2 (MY g+ erEi o + T 0p - ) (2.6)
The unusual point in this perturbative expansion is thavéi@ablesé do not appear in the quadratic
term, but only start to appear in the cubic and higher ordenge This signifies that at lowest,
zeroth, order, we will have gauge freedom as the lowest deder of the action does not depend
on the variable€. These variables do appear however at higher order and raghtindeed
generically) lead to a breaking of gauge invariance. Thié lead to severe conditions on the
consistency of the perturbative expansion.

The aim here is to improve the discretization, i.e. the digcaction, towards better displaying
the dynamics of the continuum theory. As in the continuunoth¢he (reparametrization) gauge
symmetry is not broken, we might hope that in this way we ab#ailiscrete theory, in which this
will be also the case.
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How can we obtain such an improvement? Here we will follow @orenalization/ coarse
graining approach, i.e. we construct a family of (effectigetions on a given ‘coarse’ lattice, that
can be obtained by integrating out fine degrees of freedom fheories living on very fine lattices.
These effective actions therefore display the dynamicsidéfon the finer lattice, and in an infinite
refinement lattice, continuum dynamics.

To this end we have to integrate out the fine grained degrdesaafom, i.e. solve the equations
of motion on the fine lattice. This has to be done under theiiondhat the ‘microscopic’ fields
give under coarse graining the ‘macroscopic fields’, whieh dn the coarse lattice. The solutions,
that now depend on the coarse lattice, have to be re—indettethe fine lattice action, which will
result in an effective action depending on the macroscogiddi

This assumes a definition of coarse graining. Here (and asause of geometric consider-
ations) we follow the simplest choice, equivalent to a detiom procedure. That is the coarse
grained fields on the coarse lattice sitdnave (modulo a common factor) to coincide with the fine
field at the lattice sit&x = LX whereL denotes the lengths of a coarse graining block, that is

0= Py - D x (2.7)
==x—&x - (2.8)

We will take care of these conditions by adding a Lagrangdiptigr term
A (@x — 8% @) + g (=X~ A% &) (2.9)

thus introducing as further fields the Lagrange multipligfsanda?.

This finally defines the complete dynamical problem we haveotwsider. The equations of
motion are obtained by varying the action (including Lagiamultiplier terms) with respect to the
fieldsg,&,A,a and are given by

0= MY, + eMVEW @ + 2T o VEWEZ @ — A& + ... (2.10)
1

0= Eergvxy@(g,+szrgvéxy P —al e, + ... (2.11)

0=y — D x (2.12)

==x—&x - (2.13)

where the dots signify higher order termsdn As the equations of motions come naturally in
orders ofe we will make a perturbative ansatz for the solutions

o =0 +elp+...
& = &+ e 8+
MAx = A+ ey + ...
al =%2+etad+... . (2.14)

(Here we will not expand the coarse grained fieflsand =, which are just parameters in the
equations of motion. An expansion would just lead to momagain the improved action which are

2We could include a global scaling of the coarse grained e this global scaling can however easily inserted
into the improved action terms at the end of the calculation.
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however determined by the lower order terms, i.e. by expandiand= in the improved action).
Note that behind this perturbative ansatz there is an agsammamely that the solutions can be
actually expanded into a power seriesinWe will see that this is generically not the case for an
action of the form (2.6).

2.1 Zeroth order improvement

Let us start with the zeroth order equation of motion whodetiem will lead to the lowest
order correction for the improved action.
The zeroth order terms of the equations of motions (2.10)3}2are given by

0 = MY, — AX&y (2.15)
0= —"a'aly (2.16)
0= dx — px (2.17)

==x—%x . (2.18)

Hence the®, with x # LX remain undetermined. Furthermore we h&a&’ = 0 which leaves as
with the coupled equations (2.15,2.17). Assuming inviitiloof M*Y we can solve (2.15) for the
fields %, and use this solution in (2.17) to determine the Lagrangéiptiets A X as functions of

the coarse field®. That is

% = (M ndy A" (2.19)
NX = Yy (2.20)

where.Z*Y is the inverse matrix t¢.# ~1)xy := (M~1)_x Ly, which we also assume to be invert-
ible. In this way we can write the solution as

% = (M Dyx) 27 Oy = Rldy . (2.21)

The mapPy := (M~ 1)y x).#*" provides us with the fine grained (zeroth order) solutiongor
given coarse grained configuratidy. As we will see it will also appear for the coarse graining of
the higher order terms.

These solutions (2.21) have to be inserted into the loweksraerm of the action to obtain the
effective actiorfS, i.e. (we rescale bg?)

1
osl - EMxyO(B(O%
_ ECDX OAX
(217,2.19) 2
1 1
(2:20) é.///XYq)chY = E(M/)XYCDXCDY (2.22)

This is the improved action to zeroth order. Note that therowged quadratic form can be written
as(M)*Y = .Y = BEMWR).

We will assume that the refinement limit of (2.22) exist ant @&ll the result the zeroth order
perfect action.
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2.2 First order improvement

We can now move on to the discussion of the next order. Two nkesrare in order. Firstly
we might use in the expanded action (2.6) the zeroth ordéegieaction, i.e. replachlyy by M{(y
there. In the following we will just denote both casesMy,. Secondly we will see that the first
order improvement of the action does not strictly need thetisms of the first order equations of
motion: to determine the first order term of the improvedarcinsert the ansatz (2.14) into the
action (2.6) and keep only terms up to first ordeeirNote that there are two types of terms in the
first order improved action: The first type is of the form

0S

v |v:0\/ (2.23)

for the variablesy = ¢,&,A,a. All these terms vanish, dw satisfy the equations of motion for
the zeroth order action and hence the first factor in (2.23giie. The second type of terms comes
from thee! term in the action (2.6) which gives for the first order coti@t of the improved action

'S = %rg{xv %2 %00, (2.24)

Here the zeroth order variabl@§2 appear, which remained however undeterminedafet LW.
We should therefore check the first order equations of mstion

0— Mxyl%_i_rwxyOEa 0%_ 1)\X5ﬁ<x (2_25)
0= rWXy o — "oy’ 3 (2.26)

fth (2.27)
0=Y%x . (2.28)

Equations (2.25) and (2.27) can be solved similarly to thietheorder equation and with the same
assumptions, i.e. that*¥ and furthermoré.# —1)xy := (M~1)_x Ly can be inverted:

o = — (M Dy — (M D002V (MY ] TRV 6% (2.29)

Equation (2.26) fow # W is rather a consistency conditib@s only the fields’g, appear,
which are already determined by the zeroth order equati@mcel we have to see this equation as
a condition on the discretization, namely B4 andM*. Here we mentioM as it determines
the zero order solutions that appear in the conditions §2.26

Also the condition (2.26) ensures that the improved firsepattion does not depend on the
choice of the undetermined variablé&? for w # LW, as it can now be written as

5 = =3V . (2.30)
Furthermore as (2.26) has to hold we can assumd thas the following form

[ = MY - M P (2.31)

3This condition can be interpreted as energy momentum ceaisen.

10
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If we consider the case of not having any coarse grainingitiond at all, i.e.L = o, the first order
correction would be given s

o= -y %:2%, . (2.32)

Requiring locality of the gauge action, that is a displacenuf a vertexw should only affect the
field at the vertexv we can conclude thathas to be of the form

Y= GNBMC sothat Y= BIKMWY 4 MWBH (2.33)

Note that we now may have indices appearing twice in uppétipies, which we do not sum over.
This form of " ensures that the consistency conditions (2.41) are sdtisfiav £ LW.
Using the zeroth order solutions

%= (M )y & 47 By = B &y (2.34)
in (2.24) we can write the coarse grained action as
=5 (BB " BERY ) dx
=t 5 S0 (B (W)X dxdy (2.35)

This form of the improved’ automatically ensures its consistency with resped’toin summary,
to find the coarse grained first order part of the action we taegenstruct

(B = BB = B MYy VX (2.36)

Note that compared to the second order tefigd? we started originally with the improved
tensor might undergo two kinds of modifications. The first amight arise if we have to change
I such that the consistency conditions are satisfied (andahénaum limit still agrees with the
continuum theory). The second modification is due to thescioarse graining.

Furthermore if we require that thie is of a consistent form and actually comes from the
derivative of the actior8Y(t) we will obtain rather strong conditions @¥(t). Later—on we will
discuss this issue for the 1D example.

2.3 Second order improvement

For the same reason for which we did not need the first ordatisné to obtain the first order
improvement of the action we will not need the second ordkitisns to obtain the second order
improvement.

We will however need to consider the first order solutions alsd have to check whether in
the second order equations of motion consistency condit@oise. Again we might assume that
the lower order tensongl™ andl"a™” are the ones coming from a perfect discretization.

4The higher order solutions can be given only modulo solstitg satisfyingM**%p, = 0. We assume that these
terms can be put to zero by requiring appropriate boundangitions.

11
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The second order terms of the improved action are given by
2q _ %(Mxy1@1%+rwxyofﬁ(o@1%+ 1o.%,) +
[wylgady O | W2Y0ga0 ZbO(B(O(B,>
= %<Mxy1@(l(ﬂ/+ Y082 (Op g + '@ Op) + o YOE2°0 f%%) . (2.37)

The first summand in the second line, which appears to depertéd does actually vanish due
to the consistency conditions (2.26) and the equation8)®aich require'é?,, = 0. There is still
the potential dependence on the varialfl&8, which appear in (2.37), but which have not been
determined so far by the zeroth and second order equatianstidn. Note that also the solutions
g, depend on the variable€¥2, see the equations (2.29).

Let us therefore investigate the second order part of thatemns of motion (2.10)—(2.13)

0= MxyZ(B,_’_rwxy(l (R'"i‘ OE ) wzxyo aOE ZAX(Y(X (2.38)
0= 1rwxy( B+ e R) + %80T 0 % — ZaXVqWW (2.39)
0= 2gx (2.40)
0=2x . (2.41)

Again equations (2.39) fow £ LW contain only variables of zeroth and first order. The em-
bedding variable$&2 only appear in zeroth order. If we want to have gauge freeddin respect
to these variables, we have to make sure that these comyistenditions are satisfied for arbitrary
choices of%2. Alternatively one can try to find solutions, which %2 and coarse grain in this
way. The hope however is that the resulting perfect actitowal for full gauge freedom. To first
find a discretization allowing for this gauge freedom to thaeo in question seems to be less cum-
bersome. This will also give the conditions that a discretea has to satisfy, in order to display
gauge freedom to second order.

We have to make some ansatz for the form of the teRi§P. Here we use that it should arise
as the second derivative 8f(t%) with respect to the embedding variabte$Ve know that the first
order derivative (evaluated on some background) has the {®133). Another derivative acting on
M*Y = SY will produce a term of the same form. We therefore require

wzxy _
r ab

B;WMZWBEX—{— B{Y{VXMZWBéy) +

BOMPBEY + BPMPBE) + 3 (BEMYIBY + BEMPIBY) +
1

M4 W) (MR ) +

5 (MPMPnIE + MPM™nZE) (2.42)

NIFEPNIFRPNIEFRNIPE

Here the terms in the first two lines arise through the devieadcting on the factoM in I' =

BM +Mp. The other terms should be given by derivativegBofwith the terms in the third line

12
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suggested by the symmetry of second derivatives. In thditastve just isolateti terms, which
might have two factors df1, from the terms in the fourth and fifth line. Note that thisnfoof .
does not constitute a further requirement once we assurhththéirst order condition (2.33) holds
for arbitrary background variablé® that is

asY(t)
ta

SR (1) + B (1)S™(L) . (2.43)
Consider the second order solutiofgg to (2.38) without coarse graining conditions, i.e. for
L # oo,
= OB R — &'Yay G (2.44)

Requiring again locality of the gauge action, namely thapldicing a vertex at # w should not
affect the field atv, we can conclude that

Vo) = 0"y (2.45)

It will turn out that the form (2.42) ensures that the corgisy conditions (2.39) are satisfied
for w# LW and arbitrary values fof€P. Furthermore the solution&x!¥ will not depend on%€?
with z# LZ. Indeed a straightforward calculation gives

%r\é\/xy(o@ 1%+ 1%0%) ofzbl—wzxyoq&o%
%(5 (B 4PV BVT 4 (X ) +
BN AP BORY + (X)) + 5 (BVRTAXBI 4 (X Y)) +

A M) Y+ (X X)) + :—2L<W ~Z)+

%WX%ZYB (LW)u (M l)uvB(LZ)V+ (W<—>Z)) +

NIERNENRERNERNIEREDN

(B
(
(.///WX.///ZYr;ab 2w e 2)) -
(
(

%WX%ZYB{;{LW ( )u(LU)%UV(M_l)(LV)VB(LZ>V + (W > Z)) )E%CDXCDY
(2.46)

Now we use for the first term in the improved action (2.37) tbkitions (2.25) forlg, and
find

MYig lg = —1g rewWoswoy, . (2.47)

Invoking the equations (2.39) the improved action can beitm as

2 — _:3V 20 (2.48)

5This splitting is not unique as the terms might be just reabsorbed into theerms. However we will derive the
conditiony"?¥0q, = 5W2"2¥0g, for the part ofy that does not vanish on solutions. This does not need to bokg'f*.

13
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where due to the consistency equations (2.39) the solutiri@)’ are given by (2.46).
Hence

1
S = 5 (Man " =H=Z Px Py (2.49)
wherel is of the same form aE in (2.42) with the replacementd,.y,n — M’,8’,y.n’ and

the latter two tensors are given by

()/)\é\{:)ZY: alt_JW)(LZW(M_l)y(LV)'///VY = alt;W)(LZ>yP))(
LW)(LZ
()37 = ng"" )+
1

5 (B M Y0 Y My — (MY B2+ (W - 2)) . (250)

Note that the ambiguity betwegi'?Y terms that include M"Y or M# factor and then"* term
does not matter, as both expressions will be coarse gramttisame way. Also note, that the
expression

Gy i= (M Yy = (M D" (MY Lyyy (2.51)

is the Green’s function associated to the mali¥ together with the coarse graining conditions.
That is, given the equations

= MY — FAC Ax = dx (2.52)
the solution is given by
&= P)Z{CDY + Gy’ . (2.53)

In summary, the coarse graining of the different objecteappg in the action will be determined
by the two map®) andGyy. This will be also the case at higher order.

The consistency requirements at higher order can be aédréss similar fashion. The form
of the higher ordeF tensors can be obtained by taking the derivatives of therlanger ones and
using the relations between the derivatived/ff3, etc..

3. Discrete parametrized harmonic oscillator

Let us consider a simple but popular example [9, 10, 12], iberete parametrized harmonic
oscillator. We will start from a general family of actiongstribing a parametrizg®+ 1) dimen-
sional free fieldyy

1
S= E % [D(tx+l — tx) (q)z( + q)2(+1) + 2E (tX+l - tX)quX+l:| . (31)
Xe

A possible choice for the functiori3(t) andE(t) is

D(t):%—mzat , E(t):—%—%mz(l—zfx)t (3.2)

14
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for instance withor = % ora= %1. Only the second choice will be perturbatively consisterfirst
order.
For this example the perfect action is well known as it can lmained from the continuum
Hamiltons principal function [28, 9, 10]. It is given by
cogmt) 1

D= msin(mt) ) E= —mm . (3.3)

Note that all these discrete actions lead to the same camtiriimit for the solutions. The
reason is that the coefficien&" andC~ in (3.1) in front of Qf = (gx + Gx;1)? and of Q; =
(ax — O 1)? respectively, coincide in their lowest order expansiot) asC* ~ —%1mzt andC ~ %
For solutions we will haveQ;, ~ t2, whereasQ? ~ t% which explains the different scaling of the
coefficients.

To apply our formalism of improving the action order by ordee expand the variables as

Ox = 0+ &

(herex € Z) which results in an action of the form

€28 = %(MXV@@+EI’WXVEW@@+£2 M2 E gy +...) . (3.5)
We will now discuss the improvement of the different orderg3.5).
3.1 Zeroth order
We start with the zeroth order improvement for which we nédwedsquare term described by
MY = 2D &Y + E (QV+D 4 5<0-1) (3.6)

whereD = D(a) andE = E(a).

The improved or perfect action to zeroth order can be caledlan many ways, one is as
fixed points of the coarse graining flow [10], the other is tplitly obtain the inverse matrices
(M~1),, and thenz*Y using Fourier transform as in [15]. Here we will follow anetiroute, by
constructing explicitly the zeroth order solutions as tiors of the coarse grained variables. Via
the general form of the solution in (2.21) we will obtain thepmssion(M‘l)x(Lx)///XY that will
also appear at higher order.

The homogeneous zeroth order equations of motion

0 = 2D+ E% 1+ E %1 (3.7)
can be easily solved with an ans&tg = exp(ivx) from which we obtain the condition
D
cosv = “E (3.8)

so thatv = mafor the perfect action (3.3). Choosing one of the roots f@r ¢élguation we can write
the general solution as

O(A_X—H’ — Axei(LX+r)v+BXe—i(LX+r)v (39)
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wherer =0,...,L — 1. Here, with making the coefficients, Bx dependent on the coarse grained
intervals we indicate that the homogeneous equations dbnetio not need to hold at the interval
boundaries. Using the conditiofg x = ®x and oq(XH) = Py, 1 we can determinéy, By and
obtain the solutions

0 1 - '

o sin(vL) [sin(v(L —r)) ®x +sin(vr) ®x.1]

-1 A%
(221) M wcsnaz A= (3.10)
We therefore have
1

-1 7Y ' y . y

(M™5) (xsryz)# :sin(vL) sin(v(L—r)) 8% +sin(vr) 8%, | - (3.11)

With this at hand we can actually find easily the zeroth orderoved action, as we just need to
multiply (3.11) with the matrixM ("W)(LX+1) to find the matrix.#WY which defines the zeroth order
improved action:

xy _ Esin(v)
~ sin(Lv)

[—2 cogLv) 8XY 4+ oXY-1 4 gX(v+1)| (3.12)

Here we also used the relation (3.8) between the frequenapd the parametel®,E. In the
continuum limita— 0,L — o such that.a=: a = const. we obtain for any of the choices (3.2,3.3)
the perfect action

xy _ ,mecogmd) oy M X(Y=1) | sX(Y+1)
A= sin(ma) 0 sin(ma) (5 +0 ) (3.13)

on the coarse grained lattice.

3.2 First order

To find the tensoF"* appearing in the expanded action (3.5) we take the derésafiv

with respect td,, (here a prime will denote the derivative of a function)

isxy — D/(tx+1 _ tx) Y |:5W(X+l) _ 5WXi| + D/(tx _ tX7l)5xy |:5WX _ 5w(x—1)] +
oty
E/ (te1 — t) 30 [5W<X+1> - 5WX] FE (b — t_g) 5O [5WX— 5W<H>] . (3.15)
Puttingty, 1 — ty = a for all x we can writel"*Y as
Wy — E/gwx [5w(y+1) _ 5w(y—l)} +E'5WY |:5W(X+l) _ 5w(x—1)} +
1p/gwixtD) [5w<y+1> _ 5w<y71>] + 1Dty [5w<x+1> _ 5w<x71>} 4
%D/ 5W(X71) [ 5W(y+1) _ 5w(y71)] + %D/ 5W(y71) [ 5W(X+l) _ 5w(xfl)}

I [5w(y+1) . 5W(y—l)] + MW [5W(X+1) _ 5W(X_1)] ) (3.16)
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Note that in the second line we just subtracted two terms lwhie added again in the third line.
HereMY is given by

MY — E' oY+ :_ZLD/5X(Y+1) + %D/5X(y—1) . 3.17)

Hence we can satisfy the consistency requirement (2.38)%= M. That is we obtain the
conditions

D'(a) = 2B(a)E(a) E'(a) = 2B(a)D(a) = DD’ = EE = 2BED . (3.18)

From the family of actions (3.2) only the choice with= ; satisfies (3.18) witl(a) = 5. For
the perfect action (3.3) the condition is also satisfied \@ith —%.
In general we can make a ansatz EoiD in (odd) powers of

1
D(a) = gl+d1a+d2a2+...
1
E(a) = —a+e1a+e2a2+... . (3.19)

Here the coefficients af~* are determined by the continuum limit. With this form we candude
thatB(a) = = +O(a).
A consistent form of W is therefore given by

FWXY = BWIMWY 4 MWXBWY (3.20)
where

B = B(a) [5W(X+1) _ 5W(X—1)] ) (3.21)

with B(a) = 5= +O(a).
Following (2.36) it is straightforward to determined thepiraved(B’)"W X to

(B/)WX _ B(LWW(M_:L)y(LZ)%ZX
w W(X+1) _ sW(X-1)
sin(Lv) [5 0 ]
M TsW(X+D) _ sW(X-1)
a—0,L—o Zsir(a/m) |:5 0 ] : (322)

Notice that for taking the continuum limit in the last lineié sufficient to know thai3(a) =
% + O(a). For all such choices we re-obtain the first order of the pedetion.
3.3 Second order
In (2.42) we determined a consistent form of the second deshesor =Y
1

wzxy
[cons =

(BwyMZWBZX+BWXMZWBzy) +
(BWyMZXBZW+ BWXszBZW) + %(Bzywasz+ BzxMwyBWZ) +

(M0 M) S (MY D)

NIERNIERNIERN

(MWMDWZ 4 M2MWn2W) (3.23)
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Note that we will assumg"¥?Y ~ "% as this ensures locality of the gauge action. On the othat han
the second order derivative of the second rank tensor (8itd3$

1 92 1
y _ =p/ - Xy | SW(X+1)  swx z(x+1) _ szX
st S = 50 (b1 108 s 5| [a | +

%D”(tx o tx—1)5xy |:5WX - 5W(X*l)i| [5zx_ 5z(x71)] +
%E// (tx+1 _ tx) 5x(y71) { 5W(X+l) _ 5WXi| { 5z(x+1) _ 5zx} +

} "mey o X(y+1) | swx _ sw(x—1) ZX _ x7(x—1)
SE/ (bt )3 o] [om— otV (3.24)

[Waxy _

We can compare these two expressions for different valudiseoindices(wzxy). This will
give a number of equations involvirg, D, its second derivatives, and the componentg§.of n
In addition we have the conditions (3.18) from our discussibthe first order.

For instance combining the equations fazxy = (0011) and(1120 on the one hand and for
(0101 and(1230 on the other, we find the conditions

8DB% =D" , and 4B%E?+4B°D?’=-EE" . (3.25)

Here, can be also expressed as a quotient betviléemdE or betweerE’ andD from (3.18), so
that
(E)? ., _ DD

D =D"=2——~ = ,
None of the actions (3.2) satisfies these requirementsisthane of these is perturbatively consis-
tent to second order. Of course the perfect action (3.3) sasfy (3.25). Hence we can regain the
perfect action by solving the system (3.26) via an ansatDf& as a power series ia (starting
with a=1).

From the equations fdwzxy = (1230, (1120, (1121),(1101), (1111) we can obtain condi-

tions for the components gfandn

2 and (D')*+4(E')?>=—-EE" . (3.26)

2
12 B 21
n=-= =
E
ylll _ 4D|; Dr;ll
yllO — BZD 1E 11 y112 (327)

This fixes the off-diagonal elements gpfbut Ieaves an ambiguity between the diagonal elements
of n and the components gf However this ambiguity is inherent in our definition (3.28)

the diagonal elements af can be reabsorbed into an additional term of yhiensor, which is
proportional toM. (This only applies to the diagonal elements)adis we requirg’'? ~ d"2) This
possibility of redefiningy allows to set the componengd'®, y1?to zero. With this convention we
obtain

YW = 2p° <1— D_2> — ﬁ(ng(gwy_i_o(az)

D B? 1/1 1 1 s
WZ _ 2 wz (z+1) W(z-1)\ _ = Zswz_ ZsW(zt+l) |~ sw(z-1)
= 2B 550" - I (5 +o ) a<25 +78" 428 >+O(a).(3.28)
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In the second and fourth line we have given the lowest ordeasaf the y andn tensor respec-

tively. These can be easily obtained from the informatioouglthe lowest orders @, E andf3 we

collected so far and will be sufficient for the purpose of seagraining from the continuum.
Following (2.50) let us now perform the coarse graining

A V(LW)(LZ)y(Mfl)y(Lw///VY _ V(LW)(LZ)yP;(
(n"WZ = nW(2) |

1 _ _ _
5 (B(LW)U (MDY (M Yy — (MHw] B+ (W - Z))
_ g _ }B(LW)UGUVB(LZ)V S We2) (3.29)

2

of these tensors. To this end we will need the Green’s fun@ig. It can be obtained for instance
by Fourier transform or by solving the system of equation53Rdirectly and by comparing the
solution to (2.53). Such a solution can be constructed byickimg the variation of constants
method from the continuum. One will obtain

B sin(vr)sin(vs) cogLv) sin(vr)sin(vs)
Suxinuvis = (TG el o Esy
sin(vr)cogvs) sin(vs)cogvr)
where
0 ifr<o,
o = {1 ifr > 0. (3.31)

We can now compute the coarse grained entifieg’ and obtain in the limia — 0,L — o with
L-a=a

1

wzy _ L oocwzswy
(v = JnPavZs
Wz _ m Wzt | swiz-1) , mecogam) oy
() 4sin(a'm) <5 +0 >+ 2 sin(a@'m) 0 ' (3.32)

As expected this result coincides with the tensgest, NNpert cOMing from the perfect action.

3.4 Summary

We have seen that from the family (3.2) of discrete actiorlg tive choicea = % is pertur-
batively consistent to first order. None of these choicesoisdver perturbatively consistent to
second order. Nevertheless we succeeded to find a pertlgationsistent second order term.
Note that here different strategies are possible: we ortlgradened the altered second order term
to the lowest order in the lattice constamas the perfect action could afterwards be constructed
through coarse graining. Alternatively one might demarat the second order term arises from
the second derivate of the action, that is that the diffembatuations (3.25,3.26) are satisfied. This
would also fix the higher order terms in the lattice constash that even without coarse graining,
the perfect action can be calculated from the solutionsesétdifferential equations.
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4. Discussion

The notion of diffeomorphism symmetry in the discrete ad¥ed here is a very powerful
one: it leads to discretization independence and to a rd@iitn between continuum space time
and discrete underlying lattice. Basically such a symmeguires that the discretization encodes
already continuum physics. It should therefore not be vergrising that there are no examples yet
where such a symmetry is realized for proper field theorid¢h miopagating degrees of freedom.
Generically discretizations will rather feature brokeffedtimorphism symmetry, in the sense that
there exist special background solutions for which the setmynis realized, but is violated if
considering other solutions. These special solutions fe& the most simple ones around which
a perturbative expansion would be natural.

A theory with broken gauge symmetries is however not peativbly consistent if expanded
around a background solution where the gauge symmetry ligada For Regge calculus this ap-
plies to the expansion around flat space (or for Regge caonlth cosmological constant and
curved tetrahedra [30] around homogeneous backgrountisay That is one should be aware
that, i.e. the scattering of gravitons on a lattice is a pmat well defined. However the com-
putation of such scattering amplitudes provides an impotst for the low energy behavior of
guantum gravity theories such as spin foams [31].

One possibility to allow for a perturbative treatment ofita action with broken gauge sym-
metries is to change the discretization to the appropriedero This change should ensure that
the gauge symmetry is realized to this order, allowing a ist&st perturbative treatment. That is
gauge modes will decouple to the given order and only phlysicales need to be considered.

The change of discretization is already an important stepitds constructing a perfect action,
i.e. a discretization where the gauge symmetry in questidiffeomorphism symmetry — is fully
realized. It might therefore be quite non-trivial to find fpebatively consistent discretizations for
field theories with propagating degrees of freedom. Futwrestigations will show, whether such
perturbatively consistent discretizations require nmal couplings. Such couplings have to be
expected for the perfect action as they do appear underecgeaming. In this case the consistency
requirements can give important informations on the siimectf the perfect action, without having
explicitly constructed it yet.

In 4D Regge calculus difffeomorphism symmetry is broken géneral to quadratic order [5].
This does not exclude the possibility that Regge calculyeiturbatively consistent to first non—
linear order on a regular lattice, which would make the ragldttice a preferred choice. This can
be checked explicitely, as the conditions for consisterreyamalogous to those for parametrized
field theory.

Here we discussed the classical theory, i.e. tree leveliardps. A much farther reaching
guestion is to generalize the considerations to quantumryhisee [10] for a discussion of the
guantum theory for the discrete anharmonic oscillator)er€hare a number of crucial questions
to consider. In particular the minimal distance on a latieeves usually as a regulator. However
if vertex translation symmetry is realized such a minimaktatice looses its meaning as vertices
can be moved on top of each other. That is, in such a latticetqoatheory with diffeomorphism
symmetry the lattice looses is function as a regulator aritefiass needs to be provided for by
other means. One possibility is through the discretenespeaxdtra of geometric operators, which
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is realized in loop quantum gravity [32]. Insight into thésile can be gained by finding the fixed
points under coarse graining of quantum gravity modeld) siscspin foams [33, 34]
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