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The volume operator is a central object in loop quantum ¢gyaliQG). It is part of all matter
Hamiltonians as well as the Hamilton constraint encodirgdynamics of the theory. Therefore
it is mandatory to understand its spectral properties. Tutire gives an introduction to basic
techniques necessary in order to perform such an analysisredver results on the volume
operator are presented which point towards a better uraaatisty of a presumably combinatorial
footing of LQG.

The plan of the lecture is as follows: After a short introdoict we outline the implementation
of the classical volume functional of a region in 3-spacerasgerator on the kinematic Hilbert
space of LQG. Then we introduce techniques crucial for cdmguhe matrix elements of
the volume operator: First, aspects of the representatieory of SU(2) are explained which
make it possible to use techniques from the recoupling thebangular momenta. Second,
the mathematical concept of an oriented matroid is intredwnd used in order to describe the
dependence of the matrix elements on non-diffeomorphipgmtaes at vertices of embedded
graphs. The according effect on spectral properties is showthe last section a short summary
is given combined with an outlook on future research. A skeliction of literature is presented
a the end of these notes, which is intended as a starting fovirdading.

We would like to stress, that the focus of these lectures ggue basic ideas and concepts to the
reader, it cannot replace a complete, mathematically sigmmtroduction [1]. However we aim
at giving the reader an initial competence for starting hisey own studies on the important topic
of quantized volume and its fascinating conceptual consecgs.

3rd Quantum Gravity and Quantum Geometry School,
February 28 - March 13, 2011
Zakopane, Poland

*Speaker.
TFormer affiliation: Paderborn University, Mathematics D&pmail: johannes.brunnemann@math.upb.de

(© Copyright owned by the author(s) under the terms of the @e&ommons Attribution-NonCommercial-ShareAlike Licen http://pos.sissa.it/



Volume Operator Johannes Brunnemann

1. Motivation — Why Quantized Volume?

The classical starting point for the construction of loomugtum gravity (LQG) is the initial
value formulation of general relativity. Four dimensiosphcetiméi is foliated into three dimen-
sional spatial Cauchy hypersurfacgsparametrized by the time parametet R. Then, on each
>, it can be shown that the validity of Einstein’s equation9%ins equivalent to imposing three so
called spatial diffeomorphism constrair@g(x) (herea,...,d = 1,2,3 denote spatial coordinates,
i,...,n=12 3 denote coordinates on the Lie algebré2?)) and the Hamilton constrail@(x) at
eachx € ;. The formulation of the theory in terms of Ashtekar variablerthermore introduces
the Gauss constraint(x). According to this procedure the 3-mett@nd the extrinsic curvature
K on Z; are induced from the 4-metrg on 1. In order to construct a quantum theory of grav-
ity, classical differential geometric objects have to bmédl into operators. For this, the quantum
version of the volume function& of a regionrR C Z;

Vi = / /detq(x)d® (1.1)
R

is a central object: It associates a volume to spatial regs occurs in all matter Hamiltonians
[1]. Even more, the Hamilton constraint encoding the dymanef LQG crucially depends on it.
In de-parametrized models the volume expression itselfiines part of physical quantities [10].

In this lecture, | will only discuss the original approaclthe volume operator as proposed by
[4, 5, 6]. However due to its importance there are also altéra approaches: see the lectures on
spinfoams and loop quantum cosmology as well as for exardg@lel3, 11].

2. Regularization and Implementation on the Kinematic Hilbert Space. /g

Choosing a coordinate chart oR;, one gets for everyx € Z; the components
Qab(X) = e'é(x)e[j)(x)d j of the 3-metric andap(X) = Kg(x)etj)(x)d j of the extrinsic curvature. Here
é,(x) is a local triad K1 (x) = B~(AL(x) — I',(x)) and§; is the Cartan-Killing metric osu2). In
the latter expressiofi is the Barbero Immirzi parameter, which is chosen to be ramyitreal, but
non zero. We will set it to 1 for convenience here and use Eim'stsum convention. Also we will
drop the x- and t-dependenc, is the Ashtekar connectiofi’, the spin connection resulting from
the 3-metricg. Introducing densitized triads® = \/detq €* (e denotes the inverse triad) (1.1) can

be rewritten as
Vi = / d3x\/ %‘gabcgiik ER(X)EP()ES(x)| = / /|| . @.1)
R R

wheree' X g, are the total antisymmetric tensoes 3 = 1,213 = —1 etc.). We have already seen
in the the introductory lectures on LQG, how the densitizetisE? can be regularized and turned
into flux operatorsl?iS as illustrated in figure 1.

A similar regularization procedure can be applied in ordgsrbmote (2.1) to an operator act-
ing on a spin network functiom,(A) (y a graph embedded ink A € <7 a generalized connection)
contained in the kinematic Hilbert spacéy. Starting point for the regularization is a choice of
coordinate charts covering. Then one introduces a cell decompositionointo cubescI(L) of
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coordinate edge length, such that inside each cube there is at most one vertéy. Then the
integral [z decomposes into a sum over cube mteg@lg ©- At each vertexv we can w.l.0.g.
choose all edges to be outgoing frambecause reorientation of edges corresponds to a unitary
transformation ory%, which leaves the spectrum of any operator invariant. Ircmer of cubes

cI(L) containing a vertex we have for every edge tripk, e;, ¢ intersecting at the configuration
shown in figure 2.
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Figure 1: Action of EL = [5d?s ré(s) EL(s) Figure 2: Regularization scheme

on a single edge spin network functio: ~ Of the classical volume expression
ELfo = £(&ng)Rufe. R, is the right invariant vec- PY & cubic cell decomposition (Ef;
i . . due to [5]: The center of a cuhn{a-
tor field acting on the copy @U(2) associated te. . .
. . i contains a vertex v. The figure only
Moreovere(€,ns) = sgn(ngé,) denotes the relative ¢y s one octant of the cub%)
orientation of surface normak and edge tangei&t

This results in an action

( /;L)/\V'q(XN)Tv(A) = 2 VIZ-Gl(v) Ty(A) 2.2)

aneex=v

whereZ is a constant given b¥ = i Creg/p 633. Here the Planck lengthp, the Immirzi parameter
B € R andCeq, a regularization constant (from averaging over all cubentations) occur. The
latter was found in [9] to b%%- In the sequel we will seZ = 1 for simplicity. Moreover

G) Ty(A) = (Eancsiic (8.1, £(&0,1s,) £(&ns.) Ry RL RS ) T(A)

= (e £03K) Ry RL RS ) Ty(A)
(£03K) Gk ) Ty(A) - (2.3)

Heree(1JK) = sgndet(&,e;,6«)), denotes the relative orientation of the edge tangents By

the Peter-Weyl theorem, evely(A) can be written in terms of products of representation matrix
element functionsrg (he)|mn (herej =0, %, 1,... denotes the weight of thg 2- 1 dimensional irre-
ducible representation(-) of SU(2), he = he(A) € SU(2). is the parallel transport of the Ashtekar
connectionAl, along an edge C =, mn= —j,—j+1,...,j —1,j are matrix indices). The right
invariant vector field&, only act non-trivially on the copBU(2)e, labelled by the edge Conse-
quently Leibnitz’ rule for derivatives gives the total Idemlume action as a sum over all possible
triples. The fact that inside a cub{é‘) the action offj;k is non trivial at the vertex only follows
from its antisymmetry: It only acts as a derivation nonigily at a point, if all edge labels are
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mutually different. This condition is only fulfilled in a pat, where at least 3 edges intersect, that
is a vertex. Hence in the regularization procedure abovértieL — 0 can be taken without prob-
lems, because in the sum over all cubes only a finite numbermwistgives a non zero contribution.
Moreover the choice of cell decomposition and coordinaddgrélevant for the result. Finally we
can write the total action of the volume operator on a spiwagk function as

VRT,(A) = [Veg(y) \/|ame;%vs(u|<) aUK|J T,(A) . (2.4)

As can be shown [6}7R is compatible to the projective structure of the kinematibétt spaces7g,
that isVg is cylindrically consistent. The square root in (2.4) has/ho be understood in terms of
operators: one has to find an eigenbasis in which the op&ragef, e —v £(1JK) Gk | is diagonal
and then to take the square root in the sense of a matrix mciiVe see, that the action ﬁiﬁ
decays into local actions at single vertices. Hence in otol@nalyze its action on a cylindrical
function T,(A) supported on an arbitrary embedded grgphis sufficient to restrict our analysis
to single vertices.

Alternative regularization. By a slightly different procedure [4] one obtains an expi@Ess
dV)Ty 0 Y e neynec—v v/ 1813k |- The two operators are structurally similar, but their @ntigs differ
for (gauge invariant) vertices with more than (4) 3 edgeser&his no dependence on the signs
£(1JK): the volume in the regularization of [4] scales with the vake. This may lead to difficulties
if one wants to consider vertices with infinitely many edgeéke absence of sign factors was also
found to lead to inconsistencies, if one wants the volumeaipeto be consistent with the flux
operator in the sense of [9]: Regarding the volume as fundtaheone can use the the classical
expressionsg, 0 {Al, Vr}, E? = \/delqe? = L&ixe22%] ek, in order to define an alternative flux
operator. It was found in [9], that only the sign dependentioa of Vg leads to a consistent
(in the sense that the flux operators coincide) constructi@lso in the implementation of the
Hamilton constraint as an operator the sign dependencessiedne crucial [1], in order to cancel
contributions from planar 3-valent vertices in the regaktion procedure [1].

For these reasons we will consider the sign dependent wepsithe volume due to Ashtekar
and Lewandowski [5] in this lecture.

3. Evaluation of Matrix Elements

In order to perform the spectral analysis\?rzqc in (2.4) one has to find an explicit formula
for the matrix elements of the operatdajgk as well as to handle the sign facta@dJK) in full
generality.

3.1 Matrix Elements for G x: Representation Theory

In order to analyzj;x one can use the correspondence matrix element functig(ise)|mn
of irreducible representations 8tJ(2) to stategj, m; n> of an abstract angular momentum system
[6]. We havey/2] +1[mj(he)]mn = (he|j,m ;n)_ and the action of right invariant vectorfieldR
on spin network functions then corresponds to the actiomgtiar momentum operatod on
the angular momentum states well known from quantum mechahi this correspondence, a spin
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network function at a giveil,-valent vertexv can be written a3, ;;4(A) = k1 (Al ks M 1),
which is also called the tensor basis of the kinematic Hilbpaces7 atv. As is well known, the
tensor product of tw@®U(2) irreducible representations of weight j» can be decomposed into
a direct sum of irreducible representations with weights= |j1 — j2|,..., j1+ j2. In this way a
tensor basis function containirdy irreducible representations can be successively decadmss
shown in figure 3.

J1 J1

N — L
J3 3
ja e
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Figure 3: Tensor basis (left) and recoupling basis (right) as eqeiadescription.

The result is called a recoupling schefg;(A) = (A|&12J M; ] i) at the vertew and can
be explicitly computed using Clebsch Gordan coefficientsnfthe recoupling theory of angular
momentum. Her@i» = (a,as,...,an,—1) IS a vector of intermediate recoupling weighiss the
total angular momentum and the subscript 12 denotes th&higt , j» are coupled first. Moreover
M = 3, mc andfiis as before and used in order to connggty(A) at different vertices of the
graphy. In this formalism the gauge invariant subspa#@é,,ssC 7% can be easily computed:
by construction the recoupling schemes witk: O fulfill the Gauss constraintg;(v). Notice that
the labelling of edges is arbitrary. Indeed, different tgaling orders, that is different labellings of
edges, are connected by unitary transformations due tariipiof the Clebsch Gordan coefficients.
In the recoupling basis, the opera@iv) of (2.3) can be explicitly evaluated using the fact that
Giak = &Ky I&IE = £[(30)2 (k)?], whereJ); := Ji + 3} and (J3)|d; IM; 1) = a(ay +
1)|5UJ M; ﬁ> is diagonal on a recoupling scheme, in which the repredentaj;, j; are coupled
first [8]. As a consequence, the matrix elements of (2.3) aexplicitly evaluated. For a fixed
choice of recoupling scheme basis for the gauge invarialtierispace#saussthe operatoq(v)
can be represented as a sum of Hermitian matrices with \gapyie-factors.

§(v) D‘ ZNVG(IJK) Giok| (3.1)

whereo (1JK) = €(1IK) — e (JKN,) + € (IKNy) — €(1INy), with —4 < g(1JK) < 4. For the 4-vertex
a formula for the matrix elements was published in [7]. A gah®ormula for the elements of the
matricesqjx can be found in [8].

Gauge invariant 4 vertex. Equation (3.1) already suffices to analyze the volume spectt 4-
valent gauge invariant vertices: Hdy = 4 only a single matrixj;23 heeds to be computed, the sign
factoro(123) only gives an overall scaling of the spectrum. Beside a nisaleanalysis [8, 14] one

can analytically compute the subspaeen(V) C #&aussfor the eigenvalue 0. Moreover one finds
that for a given vertex the spectrum o¥ is non degenerate. The spectrum possesses a smallest
non zero eigenvaludmin > £3+/|Z 0(123)|jmax, Where jmax= max-1._n,{jk}. For the largest
eigenvalue one finddmax 0 (jmax)¥/2.

LIn case of gauge invariance we hale 0 and hencd(;Vv =— ZEV:New
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3.2 Arbitrary Valence: Sign Factor Combinatorics in Terms of Oriented Matroids

For a general valenéé\, > 4 an explicit computation of (3.1) is much more involved. Vied
already seen, that edge relabellings and analytic diffepmems act unitarily orwg and thus on
Hauss HENce we need to classify all diffeomorphism equivaledasses of embeddings of aky-
valent vertexv into X. Each such class is described by adeif sign factorsd := {0k }1 s k<N,
which is diffeomorphism invariant by construction. Howetee signso (I1JK) are not invariant
under edge-relabelling=( permutation of edge labels): each orbit @funder the permutation
group &y, overN, elements gives one presumably distinct volume spectrunwewill show in
this section, the classification of all such permutationnegence classes of sign factors is a highly
non-trivial combinatorial task. As it turns out [15], thelgiion corresponds to a classification of
all oriented matroids [2] of rank 3.

Linear Dependence of Vector Configurations. Inorder to describe the sign factor properties, we
now give an abstract combinatorial description of linegratelencies among vector configurations
in R3. Given a sortetlsetE = (ey,...,en) C R of N vectors, we define its family? of oriented
basedy # = {B= (g, €,&)1-3<k C E : B spansR3}. For every seSC E a basis orientatiog :
S — {0,£1} is defined as x%(S = lor — 1 iff S e€ £ and 0 Iif
S¢ %. The mapyy is also called chirotope in the literature. The notion ofifde or neg-
ative sign of a basis orientation is subject to a choice. Nref 5 on the left in figure 4 we have
# = {(123),(124),(134),(135),(145),(234),(235),(245}, and x»(B) = +sgndetB), with
Xz = £(+,+,—,—,—,+,+,+). To fix the sign in front corresponds to our choice of positive
orientation (right or left handed) of a dreibein.

Equivalently we may characterize the vector configuratiofigure 4 in terms of its se¥’
of signed circuits where% = {C C E : C is minimum linear dependen}se Given aseC CE
with cardinality Nc, we say thaC = {a<1,...,e|<NC} is a linear dependence if there exists a set
(A1, ANe) € RNe, such that 0= Zrltl)‘ne&n- C is a minimum linear dependenceAf A0V n
and if C does not contain dependent subsets. Then we can @riteterms of its signed sub-
sets: C = {C*,C™}, whereC* := {e, : An = 0}. Moreover we define the suppbrsuppC =
C:=CtuUC~. Now given a signed circui€ € ¥ we define for eve'S§C E a map sgp: S—
{0,+1} as sgp(ex) = 1 iff ex € C* and 0 else. This classification is again defined only up
to a global sign: Indeed it must hold thatC)* = CF. Hence ifC = {C*,C~} € ¢ then also
—C:={-C",—C } ={C~,C*} € ¢. For the example of figure 4 one finds= {+C;, +C,, +C3}
with C; = {{123},{4}},C, = {{12},{5} } andCs = {{35},{4}}.

As it turns out, the two descriptions of the vector configioratin terms of oriented bases
2 and signed circuitg” are equivalent: For evef € 8 and for everye € E\B there is aunique
+C € ¥ such thaBu{e} CC. Giventwo baseB;,B; € Z with B; = (g,ev,en), B2 = (eL,ew,ex)
there exists &C € ¥ with BiU{e } =By U{a} C C. Then the following identity holds [2]:

sgre(&) sgre(eL) = X#(B1) X#(B2) (3.2)

2Which is essential in order to describe graph changing eperauch as the Hamilton constraint operator.
3With respect to an arbitrarily chosen label set.
4By constructiorC = —C.
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Figure 4: Oriented matroid combinatorial framework. Left: vectopmesentation of#. Right: graph
representation of#. Throughout the text we use the shorth&net ex.

Using (3.2) one can convert between the two descriptionsvettor configuration. Notice that the
formalism described here can be easily generalized to veottfigurations ifRN with arbitrary
N > 0.

Definition of an Oriented Matroid. The definition outlined so far gives rise to the definition of
an oriented matroid: A familyg’ of signed subset€ of a finite ground seE is called the set of
signed circuits of an oriented matroid’ = (E, %) if the circuit axioms(CO0)... (C3) hold:

(CO) Non emptiness: & ¢

(C1) Symmetry: C=—-¢ & xCe¥

(C2) Incomparability:C; =C, & Ci==+C, VC1,C €@

(C3) Elimination: VCy,C; €C with C; #+Cy: VeeC/NC; 3IC3e¥:
CF C{CFuCEN\{e}

A similar definition.# = (E, %) of .# can be given in terms of its oriented bas&s[2, 15].
Notice that the definition of an oriented matroid is purelynténatorial. In particular it does not
refer to a vector configuration any more. Indeed, a vectofigoration can be understood as a
realization of an abstract combinatorial oriented matrefdn terms of vectors [2]. However as it
turns out there there are far more realizations, all of wisetnbe commonly described by oriented
matroids. This aspect will be further discussed in section 5

Results forV. Using the oriented matroid framework one can compare nwalerésults [15]
on possible sign factor configuratiomsto results in the oriented matroids literature [16, 17]. A
summary is given in table 1. Column 3 shows the number of plessi:= {&k }i 3x<n, CON-

Ny | #triples #€ (Ny) sprinkled #E perm. # 0 configs | # realizable reor,
equiv. classes equiv. classes

3 1 2 1 1 1

4 4 16 3 3 1

5 10 384 4 4 1

6 20 23808 41 39 4

7 35 3486 720 706 673 11

Table 1: Sign factor combinatorics for 3—7-valent non-coplanatiges, corresponding to the classification
of uniform rank 3 oriented matroids.

figurations obtained from sprinkling points on the unit sghasing Monte Carlo methods [14].
Column 4 shows the number of equivalence classes if\thelement permutation groug?y, is
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factored out. Column 5 shows the corresponding number:ef {013k }1 3k <n,- configuration for

a gauge invariani,-valent vertex. Column 6 gives results from [16]: there therfentation of
single elements is additionally factored out from the paation equivalence classes. For a vector
configuration, this can be understood as the flipping of otovat the origin to its negative direc-
tion. By factoring out this additional symmetry, one obtagolumn 6 from column 4. However,
for the case of &\,-valent vertexv reorientation does not mean reorientation of an edge. Rathe
it means [15] that the tangent of an edgadjacent tov is replaced by the tangent of a different
edge€’. Hence the spectrum of;, 0f equation (3.1) isot invariantunder reorientations. It is only
invariant under label permutations. Therefore the numbdistinct spectra oy, at a given vertex

v is given by the number of permutation equivalence class#seaign factorss.

4. Spectral Properties

Having both at hand, matrix elements from recoupling theorg sign factors from oriented
matroid theory it is possible to numerically compute thawmaoé spectrum for all non diffeomorphi-
cally embedded verticeswith arbitrary valenceN,. As an example, results from [14] fof, =5
are given in figures 5 and 6. Notice that we only have 3 nomatrapectra (labelled by thé-index
0,1,2), because ong sign configuration at a vertex (the one where all tangentovediave the
same relative orientation) is always trivial.
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700000 -
600000 - |/

500000 ||
|

frequency

|
400000 |/

|
300000 |

|
200000 - ||

100000 | |/

0

L
200 250

eigenvalue

Figure 5: Histograms for each sigma configura- Figure 6: Smallest non-zero eigenvalugg;, at
tion & at the generic (gauge invariant) 5-vertex up the (gauge invariant) 5-vertex
tO jmaX: 25/2

Figure 5 shows the volume spectrum for the generic gaugeiamieb-vertex. Here ‘generic’
means excluding co-planar edges. We use the not@atica (0123, 0124, 0134, 0234). The green
color is fordp = (2,2,2,0), the blue is forg; = (2,0,0,0) and the purple fod, = (2,2,4,0). Each
histogram has 512 bins. As it is obvious from the figures, thenpitation equivalence class of
the sign factorss determines the overall shape of the spectrum at a givenxvdrtearticular the
presence of a smallest non-zero eigenvalyg (volume gap) depends on the sign factors. This
can be already seen fo, = 5 in figure 6, where we find i increasing, decreasing or constant as
the maximum spinmax at the vertex is increased.
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5. Conclusions & Outlook

Although technically involved, the spectrum of the volunperator of LQG is accessible for
a complete numerical study. As it turns out, embedding pt@seof vertices determine the spec-
tral properties, in particular the presence of a volume ggedds of the permutation equivalence
class of signs. Taking the volume spectrum as fundamerisaintiplies that the volume spectrum
contains (spatially diffeomorphism invariant) geometniformation of the tangent space at a ver-
texv. First steps towards a numerical study of the volume spectrave already been performed
in [14, 15] for non co-planar (all triples of edge tangenehlnly independent uniform under-
lying oriented matroid) vertices. However in the orientedtroid literature [16, 17] sign data is
also available for non uniform oriented matroids, that igiges with several co-planar triples of
edge tangents. Hence the spectral analysis of the voluntratop@eeds to be extended to these
cases. Having this at hand semiclassical results for then@lspectrum [11, 18], which had been
restricted to only a few vertex embeddings, can now be chieickill generality.

As we have mentioned above, the abstract concept of an edianatroid.# has distinct
realizations apart from a vector configuration. From the L{)&v point the most interesting case
is the realization of# in terms of a directed graph instead of a vector configuration iRN.
The ground seE of . is then given by the sdf(y) of edges, the se&t’ of signed circuits (min.
linear dependencies) is identified with the set of cyclehengraph. The se¥ of oriented bases
(spanning subsets) is identified with the set of spannirestaéy. The dimensiorN of RN in the
vector representation gives the cardinality of elem&nts%, called the rank ofZ . In the case of a
directed grapiN + 1 is the number of vertices of the corresponding directedhlgras an example,
the vector realization of an oriented matroid of rank 3 ad a®its corresponding realization as a
directed graph with 4 vertices are given in figure 4 .

As it has been explained in the introductory lectures for L@@ construction of the kine-
matical Hilbert space’g rests on the projective limit among a label set consistingrobedded
directed graphs. Here a completely new perspective towarigprous combinatorial formulation
of LQG is opened by the oriented matroid framework, if we canatibe this projective limit in
terms of a projective limit among oriented matroids. Gelwations of the matroid framework to
infinite ground (edge-) sets have already been investigattte mathematics literature [19].

This analysis has the potential to shed light on the questfahe duality between graphs
(topology) and vertices (local embedding) has deeper taptins for quantum gravity. This will
be subject to future research.
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