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Supergravity was originally introduced in the hope of finding a theory of gravity without the
shortcoming of perturbative non-renormalisability. Although this goal does not seem to have
been reached today (with the possible exception of d = 4, N = 8 Supergravity [1]), Superstring
theories are argued to reproduce 10d Supergravities as their low energy limits and thus provide a
UV-completion of those theories. Loop Quantum Gravity (LQG) on the other hand is a manifestly
background independent and non-perturbative approach to the quantisation of General Relativ-
ity, however presently limited to four spacetime dimensions. In order to make contact between
these two approaches to quantum gravity, we extend the techniques of LQG to higher dimen-
sions and new matter fields appearing in Supergravity theories. The immediate applications of
our framework for further research are comparisons between symmetry reduced sectors of those
two theories, namely cosmology and black holes.
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New Variables for Classical and Quantum (Super)-Gravity in all Dimensions

The programme of Loop Quantum Gravity was initiated by Ashtekar’s discovery of his new
variables [2] in 1986. During the next 10 years, the technical foundations of the programme were
developed and it transpired that LQG naturally provides a quantum theory of geometry with dis-
crete eigenvalues of geometric operators such as area or volume, see [3, 4, 5, 6] and references
therein. More importantly, for the first time it was possible to make mathematical sense out of the
famous Wheeler-DeWitt-equation and construct a well defined Hilbert space. In the period from
1996 until today, the focus of research has shifted towards applications of the framework, most no-
tably Loop Quantum Cosmology, the quantisation of cosmological models using LQG techniques
[7], and the derivation of the Bekenstein-Hawking entropy from a microscopic analysis [8].
While todays measurements indicate the dimensionality of spacetime to be 3+ 1 and supersym-
metry has not been found yet, the ideas of extra dimensions and supersymmetry are still attracting
a lot of interest, most notably in the context of String Theory, a mainly perturbative approach to
quantum gravity which aims at providing the framework for a unified quantum theory of all forces
[9, 10]. Since the cosmological sector of String Theory has been addressed in the context of String
cosmology [12] and also a microscopic derivation of the black hole entropy is available [13], it
sounds natural to try to compare these two approaches to quantum gravity, starting with their re-
sults in these symmetry-reduced situations. Presently, the best one could do is to compare these
results in 3+1 spacetime dimensions by dimensionally reducing String Theory. The problem how-
ever, also known as the landscape, is that many choices have to be made in order to arrive at a
3+1 dimensional reduction of String Theory and it is not clear which one should be preferred. In
10/11 dimensions, the fundamental dimensions of Superstring/ M-Theory, much less choices have
to be made in order to describe the theories. Therefore, applying the techniques of LQG to higher
dimensional Supergravities [14], which by symmetry arguments are expected to be the low energy
effective field theory limits of Superstring/M-Theory, seems more favourable in order to build a
bridge between these approaches to Quantum Gravity and we will follow this route in this letter.
Despite its obvious applications, the literature on generalisations of LQG to higher dimensional
Supergravities is rather scarce [15]. The reason for this can be traced back the very foundation of
the LQG programme, namely the possibility of rewriting General Relativity in 3+ 1 dimensions
classically as an SO(3) gauge theory. From a Lagrangian point of view, the group SO(3) appears
after gauge fixing the time-like part of the Lorentz group SO(1,3) in a vierbein formulation of Gen-
eral Relativity. It thus sounds plausible that the derivation can simply be repeated in any dimension,
which however is not possible [16]. In order to understand the problem, it is more instructive to
look at a Hamiltonian derivation of the connection formulation. Here, one starts from the ADM
formulation of Hamiltonian General Relativity [17], in which a globally hyperbolic spacetime of
dimension D+ 1 is foliated into D-dimensional constant time hypersurfaces with Euclidean sig-
nature endowed with a metric qab, where a,b, .. = 1, ..,D are spatial indices on the leaves of the
spacetime foliation. The remaining information of the spacetime metric, more precisely the em-
bedding information of the constant time hypersurfaces into the spacetime manifold, are encoded
in the extrinsic curvature Kab which in turn enters the definition of Pab, the momentum conjugate to
qab. To obtain an SO(3) gauge symmetry in the 3+1-dimensional case, an extended phase space
is introduced, coordinatised by a co-dreibein defined by qab = ei

ae j
bδi j and its conjugate momentum

Ki
a = Kabebi, where i, j, ..= 1, ..,3 are so(3) indices in the fundamental representation. Finally, one

adds Ki
a to the spin connection Γai j annihilating the co-dreibein ei

a to form the Ashtekar-Barbero
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connection
Aai j = Γai j + γεi jkKk

a ,

where γ ∈ R is a free parameter called the Immirzi parameter. Since we are adding the extrinsic
curvature, transforming in the fundamental representation of SO(3), to the spin connection, trans-
forming in the adjoint representation, it becomes clear that this construction can only work for very
special groups and a scan of the classical Lie groups reveals that SO(3) is singled out.
At the quantum level however, the restriction to a special dimension or gauge group is not neces-
sary. In fact, the quantisation methods are formulated for any dimension and compact gauge group
G , the only restrictions being that:

I. The connection A j
a and its canonically conjugate momentum are real valued, where a =

1, ..,D and j = 1, ..,dim G .

II. The Poisson algebra is of the usual, simple form

{A j
a(x),A

k
b(y)} = {Ea

j (x),E
b
k (y)} = 0,

{Ea
j (x),A

k
b(y)} = −γδ

a
b δ

k
j δ (x,y).

III. The gauge group G is compact.

It follows that if one is able to rewrite higher dimensional Supergravities as Yang-Mills theories
with the above properties, one basically gets the quantisation thereof for free.
The intuition on how to construct a connection formulation with the above listed properties in
higher dimensions can be obtained from the procedure of gauge unfixing [18]. By performing
the canonical analysis of the D+ 1-dimensional Palatini formulation of General Relativity [19],
on arrives at an SO(1,D) Yang-Mills theory phase space, however, it is subject to second class
constraints, the simplicity constraint S (which will be explained below) and a second class partner,
which in particular implies that the connection is not self-commuting with respect to the corre-
sponding Dirac bracket [20] and properties II. and III. listed above are therefore not satisfied.
Instead of using the Dirac bracket or choosing time gauge, it was shown in [19] that the second
class partner of the simplicity constraint can be removed without changing the physical content
of the theory by the machinery of gauge unfixing. One is left with a connection formulation with
only first class constraints and a Poisson-commuting connection. The drawback however is that
property III. is still not satisfied because of the non-compact gauge group SO(1,D).
The Lagrangian derivation of this connection formulation now suggests the existence of a dual
Hamiltonian derivation, i.e. an extension of the ADM phase space of General Relativity, the details
of which can be deduced by performing the symplectic reduction with respect to the simplicity con-
straint [21] of the formulation obtained by gauge unfixing. The idea is to decompose the SO(1,D)

connection AaIJ , with I,J, ..= 0, ..D being SO(1,D) Lie algebra indices, as

AaIJ = Γ
HYB
aIJ +KaIJ, (1)

where ΓHYB
aIJ [21], called the hybrid spin connection, is a generalisation of the usual spin connec-

tion Γai j to the case where the internal space is one dimension bigger than the spatial hypersurface.
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The boost part of KaIJ can be shown to be related to the extrinsic curvature Kab while the remain-
ing part turns out to be pure gauge. Starting from the ADM phase space, one can now reverse
the process and rewrite the ADM variables, the spatial metric qab and its conjugate momentum
Pab(qcd ,Kcd) as functions of an SO(1,D) connection and its conjugate momentum πaIJ inspired
by (1) and show that the ADM Poisson brackets are reproduced [22]. The simplicity constraint S
enters the construction as a bridge between the proposed Yang-Mills version of General Relativity
and the vielbein formulation. In fact, on the constraint surface S = 0, πaIJ ∝ n[Iea|J], where eaJ is
the pullback of the spacetime vielbein to the spatial hypersurfaces and nI is the (up to sign) unique
unit normal on eaI , i.e. nIea

I = 0. The spatial metric qab can thus be written as a function of πaIJ .
In this sense, the connection AaIJ is canonically conjugate to the spatial metric whose quantisation
can be obtained, in simplified terms, by representing πaIJ as a derivative operator [23].
As a next step, one realises that nothing in the calculations actually depends on whether the internal
space is of Lorentzian or Euclidean signature, the reason of which can be traced back to the fact
that the Hamiltonian formulations of Lorentzian and Euclidean General Relativity lead to the same
phase space, while the signature of spacetime appears as a relative sign in the Hamiltonian con-
straint. Lorentzian General Relativity can thus be expressed as an SO(D+ 1) Yang-Mills theory,
and a loop quantisation can be performed [23].
As compared to the SO(3) based standard LQG, the Hamiltonian constraint is modified by a new
term, which can be interpreted as a gauge invariant extension of the original Hamiltonian with re-
spect to the simplicity constraint which is an integral part of the new connection formulation. The
gauge transformations generated by the simplicity constraint can be shown to change a certain part
of the torsion of AaIJ . While this torsion symmetry and the switch of internal signature can be
understood from a Hamiltonian point of view, it is unclear if they can be translated to a manifestly
covariant Lagrangian framework. The simplicity constraint, which is already well known from
spin foam models [24, 25], can be quantised and has to be treated at the quantum level. It restricts
irreducible representations of SO(D+1) appearing in the quantum theory to be spherical [26] and
furthermore imposes constraints on the intertwining maps between them, see [27] for first steps in
the canonical theory.
The following remark is due at this point for the case of D = 3: In the usual formulation, the
connection ALQG is an SO(3) connection and is related to the extrinsic curvature by

ALQG
a jk −Γ

SPIN
a jk [e] = γε jklKl

a; ALQG
a0 j = Γ

SPIN
a0 j [e]≡ 0,

where Kab =K j
ae j

b and where ΓSPIN
a jk [e] is the spin connection of the co-dreibein e j

a. Neither ALQG nor
ΓSPIN have a “boost” part, the information about the extrinsic curvature is encoded in the rotational
part of ALQG and depends on the Immirzi parameter γ . On the other hand, in the “time gauge”
nI = δ I

0
ANEW

a jk −Γ
HYB
a jk [π]≈ S−gauge, ANEW

a0 j −Γ
HYB
a0 j [π] = βK j

a ,

where ΓHYB[π] is the hybrid connection built from π and β ∈ R is a free parameter. Therefore the
information about the extrinsic curvature is encoded in the boost part of the new connection and
depends on the parameter β . It transpires that the Immirzi parameter γ and β have nothing to do
with each other and that the new formulation is a rather different extension of the ADM phase space
as compared to the LQG formulation even in D = 3 which nevertheless have the same symplectic
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reduction, namely the ADM phase space. In [19] we show that for D = 3 one can generalise the
exposition given so far by considering a 2 parameter family of connection formulations depending
on both γ,β . The essential features remain the same, the connection remains Poisson commuting.
Ultimately, for D = 3, both, the quantisation using Ashtekar Barbero variables and the one em-
ploying the new variables proposed here, should at least yield the same semiclassical physics.
Although not strictly forced on us, the stronger requirement that the joint kernel of the simplicity
and SO(4) Gauß constraint in the quantum theory built from the new variables and the SU(2) in-
variant kinematical Hilbert space when using Ashtekar-Barbero variables are unitarily equivalent
gives a tentative guideline for the implementation of the quantum simplicity constraints, and a sim-
ilar requirement is usually posed in spin foams.
It should be noted that the new variables presented in this letter also provide a new starting point
for comparing the canonical approach of LQG to the spin foam models which use a path integral
formulation. More precisely, the quantum simplicity constraint is a cornerstone in the spin foam
models, however it is solved classically in the usual LQG formulation and a relation between the
two approaches could be established only on a kinematical level. In order to establish a dynamical
relation, e.g. by showing that the spin foam path integral projects onto the kernel of the Hamilto-
nian constraint, it seems favourable to start from the canonical formulation presented in this letter
since it is closer to the starting point of the spin foam quantisation, a constrained BF-theory. Also,
the appearance of second class constraints (second class partners to the simplicity constraints) in
the canonical analysis has been argued to be a problem for the spin foam quantisation [28]. On
the one hand, we have shown that the second class partners can be removed by gauge unfixing and
the simplicity constraint can be classically treated as a first class constraint, on the other hand, the
price to pay was a new term in the Hamiltonian constraint which does not naturally appear in the
canonical analysis of the action on which the spin foam models are based. Further research in this
direction thus has to be conducted, however the new variables seem to be a good starting point to
make progress with these important questions.
In order to be able to treat Supergravities, the new connection formulation has to be extended to
matter fields. Scalar fields as well as gauge bosons can be treated in the usual manner [29]. Dirac
Fermions however are a bit more involved, since they transform under the spinor representation of
SO(1,D). During the canonical analysis of the corresponding action, one uses the time gauge and
thus reduces the effective gauge symmetry to SO(D). The idea is now to act with SO(D+ 1) on
the (complex) spinorial representation space of SO(1,D) and to rewrite the Hamiltonian constraint
in an SO(D+1) invariant way such that it reduces to the SO(D) invariant version derived from the
canonical analysis upon choosing the time gauge and solving the simplicity constraint [30]. The
possibility of doing so heavily relies on the strong similarity of the representations of the Clifford
algebras of SO(1,D) and SO(D+1), Dirac’s γ-matrices, which differ only by a factor of i in γ0.
The situation is however more complicated as soon as one turns to Rarita-Schwinger fields, which
obey a Majorana condition. In the interesting dimensions D+1 = 4,10,11, there exist real repre-
sentations of the Lorentz group SO(1,D) and thus real fermions can be used, however, due to the
above factor of i, the action SO(D+1) on spinor space is necessarily complex in those dimensions.
The problem can be resolved by observing that the complex “directions” of SO(D+1) are along a
real normal NI , transforming in the fundamental (real) representation of SO(D+1). It is possible
to write a compound object of this normal and the Rarita-Schwinger field on which the action of
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SO(D+1) can be defined in such a way that it respects the reality condition of the Majorana spinor
[31]. In a precise sense, the normal field NI keeps track of the deviation of the components of
the Rarita-Schwinger field from the real axis and compensates in the compound (physical) object
for the complex (gauge) rotations away from the initial, real values. Consequently, NI has to be
introduced as a new canonical variable and included in the quantisation procedure. Interestingly,
the normal field can be interwoven in the gravitational degrees of freedom by using a linearised
version of the simplicity constraint [31] already familiar from the new spin foam models [25].
On top of fields already discussed, Abelian p-form fields are a natural ingredient to higher dimen-
sional Supergravities, most notably the 3-index photon of 11d Supergravity and the 2-form Kalb-
Ramond field from the 10d Supergravities. As an example, we studied the 3-index photon which
is subject to a complication coming from the Chern-Simons term in the 11d Supergravity action
[32]. More precisely, the gauge constraint is altered by a term which transforms the momentum
conjugate to the 3-index photon in a non-trivial way. One can however perform a reduced phase
space quantisation by using only gauge invariant quantities and find a Hilbert space representation
of the Weyl elements by using a state of the Narnhofer-Thirring type [33]. Interestingly, due to the
non-trivial gauge invariant functions, the Weyl algebra is twisted by a contribution proportional to
the level of the Chern-Simons theory.
Thus, we believe to have provided the tools for an LQG type of quantisation of at least a subset of
Supergravity theories in higher dimensions, notably 11d Supergravity and 4d N = 8 Supergravity
which can be obtained from the 11d theory by dimensional reduction as well as some Supergrav-
ity theories in 10d and 4d. This by far does not exhaust all of them. Some Supergravity theories
contain non Abelian p-form fields for whose quantisation most probably requires techniques from
higher gauge theory [34]. Other Supergravity theories only have an on shell formulation, that is,
the algebra of local supersymmetry constraints closes only modulo the equations of motion making
them second class off shell. We do not have yet any concrete proposal for how to deal with these
kinds of Supergravity Theories, possibly ideas from gauge unfixing may be applied in order to turn
such a system first class.
Many questions are not answered by our work, for instance:
The precise relation with String Theory/M Theory is not provided. Our formulation works but is
most certainly not the most elegant one. The treatment of the simplicity constraint remains unsat-
isfactory. A formulation in terms of superfields is maybe more desirable. We hope to be able to
improve on this in future publications and have many other applications in mind such as revisiting
the AdS/CFT correspondence [35] and its integrability structure [36] in the light of the proposed
quantisation of Supergravity.
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