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1. Introduction

Nuclear reactions determine the nucleosynthesis in stars, and produseetigy released to
compensate their gravitational contraction [1, 2, 3, 4, 5]. Stellar model® ayeneral based on
large reaction networks, involving many reaction rates. In the Big Bantgasynthesis, only
a few reactions are important, producing elements up t0 8. In stellar nucleosynthesis, the
reaction networks depend on the physical conditions of the star (massregome, density, etc.).
At low temperatures, the stellar evolution is mainly determined by the pp chainyatiae CNO
cycle. Both processes convert hydrogen in Helium. Advanced stageslar evolution involve He
burning, followed by reactions involving heavier elements. At high temperaheutron capture
(sandp processes), as well as explosive burning determine the star evolutioh [6

The calculation of the reaction rates relies on the cross sections. Tleenegameral two main
problems in nuclear astrophysics: (i) the stellar energies being much smaltethida Coulomb
barrier, the relevant cross sections between charged particles asm#dido be measured in the
laboratory; (ii) explosive burning involves short-live nuclei whichemnif they can be produced
with modern technologies, are available with weak intensities only. Consty@etheoretical
support is necessary, either to extrapolate the cross sections dowrogghgisical energies, or to
predict unknown cross sections.

The important processes in nuclear astrophysics are essentially cegdigtions (where a
nucleon or anx particle fuses with an heavier nucleus by the electromagnetic interactiah), an
transfer reactions (where the projectile and the target exchange nslebypical examples are
the 12C(a, y)*®0 and'3C(a,n)!0 reactions, respectively. In both processes, a distinction should
be made between non-resonant reactions, where the cross sectionadgeesent maxima, and
resonant reactions, where the reaction rate is mainly determined by trertpesmf one (or more)
resonance. This large variety of different situations is one of the diffésof nuclear astrophysics,
since no systematics can be used. Particularly in low-mass nuclei, eatbmgaesents its own
specificities, and must be treated individually [8].

Theoretical models used in nuclear astrophysics can be roughly cldssifieree categories
[8, 9]

(i) Models involving adjustable parameters, such asR#meatrix method [10, 11]; parameters are
fitted to the available experimental data and the cross sections are extrdplolateto astrophysi-
cal energies. These fitting procedures of course require the kngavtddiata, which are sometimes
too scarce for a reliable extrapolation.

(i) “Non fitting" models, where the cross sections are determined from the faaggons of the
system. The potential model [12], the Distorted Wave Born ApproximationBBY13], and mi-
croscopic models [14, 15] are, in principle, independent of experirhdata. More realistically,
these models depend on some physical parameters, such as a nucleus-aua nucleon-nucleon
interaction which can be reasonably determined from experiment onlymidrescopic Generator
Coordinate Method (GCM) provides a “basic" description @é-aucleon system, since the whole
information is obtained from a nucleon-nucleon interaction. Since this intenais nearly the
same for all light nuclei, the predictive power of the GCM is important.

(iii ) Models(i) and(ii) can be used for low level-density nuclei only. This condition is fulfilled
in most of the reactions involving light nucleA (< 20). However when the level density near
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threshold is large (i.e. more than a few levels per MeV), statistical modelsy asgraged opti-
cal transmission coefficients, are in general more suitable [16, 17pne specific applications,
shell-model theories can provide the gamma widths of relevant states [18].

Our goal here is to discuss the importance of nuclear reactions in assiophwe essentially
focus on reaction cross sections, and on resonance propertiesctlars2, we present the general
definitions of cross sections and reaction rates. A clear distinction is madedyreresonant and
non-resonant reactions. Section 3 is devoted to a brief descriptionmiofiganodels used in low-
energy nuclear physics. In particular tRematrix method (extrapolation) and cluster models are
briefly reviewed. Recent examples are presented in Section 4, anldidimgcremarks in Section
5.

2. Cross sections and reaction rates

2.1 Cross sections

Reactions relevant in nuclear astrophysics are essentially transfeadiative capture reac-
tions [8]. They arise from the nuclear and electromagnetic interactiosecavely. As a conse-
guence, transfer cross sections are much larger than capture ectiseis, which are negligible
unless the transfer channel is closed. For the sake of completenass nbention that two elec-
troweak reactions also play a role [19f(p,e*v)d is the first stage of hydrogen burning, and
3He(p, et v)*He produces high-energy neutrinos. Both reactions arise from thie wesiaction,
and therefore present tiny cross sections at stellar energies, inébeds current experiments.

Let us first discuss capture cross sections. A radiative transition ieetn@magnetic process
where two colliding nuclei at enerdy fuse to a final statéJ; 1) of the unified nucleus at energy
E¢. The capture cross section is given, in the first-order perturbatiomythepa matrix element
of the electromagnetic Hamiltonian. This operator is expanded in eleotrc [E) and magnetic
(0 = M) multipole operators%lfu. The cross section between nuclei with spinsndl,, integrated
over all photon directions, then reads

211 1 8nA+1) o,y
0o(BINT) = G, D) oA 26 F IR (2A + D2
x| < W47 ||WiTHE) > %, (2.1)

wherek, = (E — E¢)/hcis the photon wave number aNd,?:F(E) is a partial wave of a unit-flux
scattering wave function [8]. The wave function of the final bound statiei®ted ask’ ™. In
practice, owing to the electromagnetic selection rules and to the low energlgsa ew terms
contribute.

The transfer cross section from an initial chann® a final channeff is derived from the
collision (or scattering) matrik) '™ as

. m 2J+1 3
G(E,i— f)=— Um0 (E)|?, 2.2
t( ) kzgr(2|l+l)(2|2+l)é%/| If|,ff| ( )| ( )

wherek is the wave number of the relative motion, affd) are the orbital momentum and the
channel spin, respectively. These definitions are common to all modetlse following we will

be more specific and consider various theoretical approaches.
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As stellar energies are much lower than the Coulomb barrier, the crossnsestiongly de-
pend on energy. The fast energy dependence of the cross saaidn@oulomb energies is partly
removed in thes-factor, defined as

S(E) = o(E)Eexp(2mn), (2.3)

wheren = Z;Z,€?/hv is the Sommerfeld parameter. For non-resonant reactionsS-fhetor
smoothly depends on energy and contains the nuclear information on thmmneaNhereas the
cross section varies by several orders of magnitude in the experimeetalyeange, th& factor
weakly depends on energy.

2.2 Reaction rates

The main nuclear inputs in stellar models are the reaction rat@g >, wherev is the relative
velocity between the colliding nuclei [2]. Production and destruction ofeaucspecies are given
by a set of coupled differential equations involving the reaction ratespeoviding abundances of
each element at given time and temperature. The reaction rate is knownttorgysdependent
on the presence or absence of resonances. In both situations, ahappcoximations can be
derived.

Let us consider a reaction between two nuclei with masgges, andA,my and chargeZie
andZ,e (we express here the masses in units of the nuclear mgssThe reaction rate at temper-
atureT is defined as [1, 2]

8kBT)3>2 /G(E)E exp(—E /keT) dE, (2.4)

N =Na| —————=
A << OV > A(”Hm\j(

where we assume that the star can be considered as a perfect gamptlemMaxwell-Boltzmann
distribution. In Eq. (2.4)Na is the Avogadro numbey = AjAz/ (A1 + Az) is the dimensionless
reduced mass, arkg is the Boltzmann constant. At sub-coulomb energies the astrophysical
factor is almost constant, and the energy dependence of the cross seci#s as

o(E) ~exp(—2mn)/E. (2.5)

Using (2.5), the integrand of (2.4) can be approximated by a Gaussige $ha?] with a
maximum at the Gamow peak. The energy and width of the peak are given by

2/3
Eo = n;izlzszT(unch/Z)l/z ~ 0.122u%3(212,T)?® MeV, (2.6)
AEo = 4(EoksT /3)? ~ 0.237(22Z5u) Y8 T./® Mev, 2.7)

whereTg is the temperature expressed irfK0 The Gamow energy defines the energy range where
the cross section needs to be known to derive the reaction rate. Res@raperties must also be
available in this energy range. In most cases, this energy is much lowethién@oulomb barrier

Vs which means that the cross sections drop to very low values. The Wigihs small at low
energies, and in low-mass nuclei. However, at high temperatures, tppegblosive burningAEy
becomes quite large. In that case, properties of many resonancdd Badunown. Table 1 gives
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Table 1: Typical Gamow-peak energies and widtig.is the energy of the Coulomb barrier.

Reaction | Ty Eo (MeV) AEp (MeV) Vg (MeV) o(Eg)/o(Vs)
d+p 0.015 0.006 0.007 0.70 @x 1073

SHe+3He | 0.015 0.021 0.012 1.4 Ax 10711
a+12C 0.2 0.31 0.17 3.2 8x1011
12c4lec 1 2.41 1.05 8.1 Bx 1011

some typical values. The ratm(Eq)/0(Ve) has been obtained by assuming a consgfiaictor;
it shows how fast the cross section decreases from the Coulomb bdovier to astrophysical
energies.

Rigorously the reaction rate should be calculated numerically by usingimemgal or theo-
retical cross sections. However, the analytical approach provideseainoitive understanding of
the physics, and is still widely used. Let us start with non-resonantioeac where thes-factor
weakly depends on energy. In this case, the integral (2.4) can beeddst an accurate analytical
approximation. A Taylor expansion nelgs provides

2
exp(—2mmn — E /kgT) ~ exp(—3Eo/ksT) exp(— (igo/E;’) ) . (2.8)

Assuming a linear variation &(E) in the Gamow peak [2], the reaction rate is then given by

~ 326, 36, BkeT 5

which presents a fast variation with temperature, owing to the exponentral ter
For resonant reactions in partial wakgat energyEg, the cross section is assumed to have a
Breit-Wigner form, valid neakE = Eg,

T 2 r+1 Fl(E)Fz(E)

9B~ e G 7 1) (227 1) (E—Er)2+ T (E)7/4 (2.10)

wherel'; and T, are the partial widths in the entrance and exit chanriels- (1 +I'2). This
definition is common to capture and to transfer reactions. In the formericasethe y width of
the resonance, while in the latter case, it corresponds to a particle widtredemant reactions, the
general definition (2.4) is of course still valid. However, one has towtdor the fast variation of
S(E) near the resonance energy. Since a numerical approach is difficolifi@w resonances, we
present an analytical method, widely used in nuclear astrophysics.

A careful analysis of integrand (2.4) shows that it always presentsntaxima [8]: at the
resonance energy, and at the Gamow energy. The peak at thenmes@mergy does not depend
on temperature. The second peak, corresponding to the Gamow emenggs according to the
temperature. From these considerations, and except in the temperaigeewhere both peaks
overlap, the resonant reaction rate can be split in two terms

Na < ov>~Np < oVv>R +Na<ov>T, (2.11)
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whereNp < gv >g corresponds to the maximumBt= Eg. For a narrow resonance, we have

3

where the resonance strengbly is defined by

2R+1 Mo

wy = ,
Y 2+ D)2+ 14T

(2.13)

(F'1,T2) being the partial widths & = Eg. In capture reactions, thewidth is in general much
lower than the particle width. The resonance strength is then proportiotiad temaller partial
width > =T',. The second maximum of integrand (2.11) yields the so-called "tail resehgrm
Na < ov>r. Its analytical expression is identical to the non-resonant rate (2.9) \BiteigWigner
expression foS(E).

3. Theoretical models

3.1 Introduction

As mentioned before, reaction models are essential in nuclear astraphyisicy models have
been used to describe low-energy reactions. Here we give a briefi@weof various approaches,
commonly used in nuclear astrophysics.

3.2 Microscopic cluster theories

Microscopic models are based on fundamental principles of quantum mnieshsuch as the
treatment of all nucleons, with exact antisymmetrization of the wave functideglecting three-
body forces, the Hamiltonian of&nucleon system is written as

A A
H=ST+ Y Vi, (3.1)

whereTi is the kinetic energy and; a nucleon-nucleon interaction [14].

The Schrodinger equation associated with this Hamiltonian can not be solaetlyewhen
A > 3. For very light system$A ~ 4 —5) efficient methods [20] exist, even for continuum
states [21]. However most reactions relevant in nuclear astrophyswlyenheavier nuclei es-
sentially with nucleon oo projectiles. Recent developmentsati initiomodels (see for example
Refs. [22, 23, 24]) are quite successful for spectroscopic ptiepef low-lying states. These mod-
els make use of realistic interactions, including three-body forces, and dittenany properties
of the nucleon-nucleon system. Recent works succeeded in computifigete, y)’Be [23] and
2H(d, y)*He [25] cross sections from realistic interactions. However, a considaseription of
bound and scattering states of A#body problem remains a very difficult task [21], in particular
for transfer reactions.

In cluster models, it is assumed that the nucleons are grouped in clugteB6]1We present
here the specific application to two-cluster systems. The internal wavBdngaof the clusters are
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denoted am'”"' (&), wherel; and g are the spin and parity of clusterandé; represents a set of
their internal coordinates. A channel function is defined as

JM

PaM(Qp, E1,8) = |Y(Qp) @ [@ T (&) @ @R (&)]'| (3.2)

where different quantum numbers show up: the channellspire relative angular momentuémn
the total spinJ and the total parityr= 75 75(—)".
The total wave function of thA-nucleon system is written as

l.pJM" 2 q}é’\lﬂﬂ

= %Q/gael ) $2M(Qp, &1, &), (3.3)

which corresponds to the Resonating Group (RGM) definition [27, 2B,|88ex a refers to dif-
ferent two-cluster arrangements, a@dis the antisymetrization operator. In most applications, the
internal cluster wave functionq;]"""i are defined in the shell model. Accordingly, the nucleon-
nucleon interaction must be adapted to this choice, which leads to effeotivesf such as the
Volkov [29] or the Minnesota [30] interactions. The relative wave funig,’;, (o) are to be de-
termined from the Schrédinger equation, which is transformed into a intiffevential equation
involving a non-local potential [28]. In most applications, this relativecfiom is expanded over
Gaussian functions [14, 26], which corresponds to the Generatad@ate Method (GCM). The
wave function (3.3) is rewritten as

Wi~ [ 2R RONR. (3.4

where®M7(R) is a projected Slater determinant, afff (R) the generator function, which must
be determined. The GCM is equivalent to the RGM, but is better adapted taicahwalculations,
as it makes uses of projected Slater determinants (see Ref. [14, 2@}&l).d

The main advantage of cluster models with respect to other microscopic thisaheir ability
to deal with reactions, as well as with nuclear spectroscopy. The fiplitapons were done for
reactions involving light nuclei, such asHe ora particles [31, 32]. More recently, much work
has been devoted to the improvement of the internal wave functions: multradiesteriptions [33],
large-basis shell model extensions [34], or monopolar distortion [35].

As mentioned before, the RGM radial wave functions are expandeddvaussian basis. The
GCM is well adapted to numerical calculations, and to a systematic appraatcthebGaussian
behaviour is not physical at large distances, and must be correctedus&the Microscopi&-
matrix Method (MRM) [36, 11] which is a direct extension of the stand&rdatrix technique [10],
based on the existence of two regions: the internal region (with chaawfiabg), where the nuclear
force and the nucleus-nucleus antisymmetrization are important, and thesgxégrion where they
can be neglected. In the external region, the Gaussian behaviour BGNeradial function is
replaced by Coulomb functions. Matching the internal and external compopmvide, either the
collision matrix for scattering states, or the binding energy for bound states.
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3.3 The potential model

Solving the Schrodinger equation associated with the Hamiltonian (3.1) is inajerdifficult
problem, which does not have an exact solution when the nucleon numaeydsthan three. The
potential model is fairly simple to use, and has been applied to many reactions-enkrgy
nuclear physics [37, 12, 38, 39, 40]. The basic assumptions of that@tmodel are:(i) the
nucleon-nucleon interaction is replaced by a nucleus-nucleus Yoiee which depends on the
relative coordinatg only; (ii) the wave functions of the unified nucleus can be described by a
cluster structure wit\; + A, nucleons; i{i ) the internal structure of the nuclei does not play any
role. Since we are dealing with low energies, the potential is in general Téwa.extension to
higher energies, which requires complex potentials to simulate absorptionalbais known as
the optical model. A generalization to coupled-channel problems is alsthbfmdsit seldom used
in nuclear astrophysics.

The radial functiorg%f(p) for bound and scattering states is deduced from the equation

G ) Ve ) a5e) ~ Ege) ©5)

whereE is the relative energyH > O for scattering states artfl < O for bound states). Let us
notice that the potential may depend®andJ. In nuclear physics, the nucleus-nucleus potential
involves a Coulomb terric(p) and a nuclear teriviy (o). According to the application, the choice
of the nuclear contribution is guided by experimental constraints. In reeiatipture calculations
it is crucial to reproduce the final-state energy. If phase shifts aitableg they can be used to
determine the initial potential.

In this simple model, the capture cross section (2.1) is deduced from inteyrallgng scat-
tering functionsgj:F(p) at energykE, and bound-state wave functiogﬁlgflrrf (p). For an electric

o.(E,Jsmp) = 8ni

multipole of order it is given by
A\ A\
Fvie | 2 (A) t2 <A)

(20¢4+1)(23¢ +1)(23 +1)
Ji;& (211 +1)(21,+1)

2 2
J 4 | ® T
X{gf Ji ,\} </0 giiﬁ(p)pAgif. (p>dp> : (3.7)

In this definition, the amplitude of the scattering state is

2
2t (A+D(@A+1)

VoOAA + D2 (36)

< £10A0]40 >2

g/ (p) 2 Fulko) cosd)* + Gy (kp) sing;™, (3.8)

whereF,(x) andG,(x) are the Coulomb functions, amijiil" the phase shift. The bound-state wave
function is normalized to unity and tends to

Jr T

J
gﬂfl (p) — Cf:lm W—I?f,ff+l/2(2kfp)7 (39)

p—soo

whereW(x) is the Whittaker function, ank; andn; the wave number and Sommerfeld parameter
Js 1T

of the bound state. In Eq. (3.9, is the Asymptotic Normalization Constant (ANC). It plays a



Theoretical models in nuclear astrophysics Pierre Descouvemont

crucial role for transitions to weakly bound states [41]. In this situatione#p®nential decrease
of the bound-state wave function is very slow, and the main contribution to tegral in (3.7)
arises from large distances. Consequently the cross section is esselatiatiypined by the ANC.
A typical example is théBe(py)®B reaction [42], where the findB ground state is bound by 137
keV only.

3.4 The phenomenologicaR-matrix method

The R-matrix method is well known in atomic and nuclear physics [11]. The basisigea
to divide the space in two regions: the internal region (with radjisvhere the nuclear force is
important, and the external region, where the interaction between the migleverned by the
Coulomb force only. Although th&-matrix parameters do depend on the channel raaliuke
sensitivity of the cross section with respect to its choice is quite weak. IR-thatrix method, the
energy dependence of the cross sections is obtained from Coulonitohsm@s expected from the
Schrédinger equation.

The physics of the internal region is determined by a nurbef poles, which are character-
ized by energ¥e, and reduced widthg,;. In a multichannel problem, thie-matrix at energye is
defined as

(3.10)

which must be given for each partial waydnot written for the sake of clarity). Indicesand f
refer to the initial and final channels. The pole properties are assoeidtethe physical energy
and width of resonances, but not strictly equal. This is known as thedliife between “formal”
and “observed" parameters, deduced from experiment. In a geraga@] involving more than
one pole, the link between those two sets is not straightforward (see[R&f<l4] for a general
formulation of this problem). The collision matrix, and therefore the crossosex; are directly
determined from th& matrices in the different partial waves (see Refs. [10, 11]).

The method can be applied in two ways: (i) in thedculable Rmatrix, parameterg,, Vi
andy, s are obtained from a variational calculation; (ii) in thikenomenological fhatrix variant,
these quantities are fitted to experiment. The calculRateatrix method is used, for example in
microscopic calculations (see section 3.2). Variational methods are widetyingphysics; they
rely on the choice of square-integrable basis functions, which tend ecatdarge distances. The
correct Coulomb behaviour can be restored by using these basis imatithe internal region,
and the asymptotic behaviour (3.8) in the external region (see Ref. ¢+ H feview and recent
applications). In general this method is quite efficient in scattering problemspled-channel
theories, three-body problems, microscopic calculations, etc. Many apptis exist in atomic
and in nuclear physics.

Although the origin of the phenomenological variant is identical, its applicatisonsewhat
different. In nuclear astrophysics the main goal offmatrix method [10] is to parameterize some
experimentally known quantities, such as cross sections or phase sliifts small number of
parameters, which are then used to extrapolate the cross section dovnopbgsical energies. A
well known example is th&C(a, y)*°0 reaction, which has been studied by many groups. In spite
of impressive experimental efforts, the lowest experimental energgesrannd 0.8 MeV, whereas
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the Gamow peak (at the typical He-burning temperaflyre- 0.2) is Eg ~ 0.3 MeV. At these
subcoulomb energies, the cross sections drop by several ordergyoftnge, and extrapolation
techniques are necessary. We refer to Refs. [45] for recentsvaarkhis topic.

The R-matrix method can be applied to transfer as well as to capture reactionsusiiasly
used to investigate resonant reactions but is also suited to describeswrant processes [46].
In the latter case, the non-resonant behavior is simulated by a highyeraeg referred to as the
background contribution, which makes tRamatrix nearly energy independent.

4. Specific examples

4.1 R-matrix parameterizations of the 12C(a, y)*®0 E2 cross section

The'?C(a, y)1%0 reaction plays a major role in nuclear astrophysics [47], as it determi@es th
12C/*8Q ratio after helium burning. In the nuclear physics point of view, @a, y)1°0 cross
section is very difficult for several reasons. The Gamow energ®d0 keV at the typical He-
burning temperatur& = 2 x 168 K) is much lower than the Coulomb barrier, and the cross section
cannot be measured at stellar energies [2]. Efhemultipolarity, although forbidden at the long
wavelength limit inN = Z nuclei, does not vanish owing to isospin impurities, and to the presence
of a 1~ broad resonance near 2.5 MeV. A further specificity of t@(a, y)1°0 cross section is
the presence, in both multipolarities, of a subthreshold stgtea(E.m = —45 keV forE1, and
2] atEcm = —245 keV forE2) whose effect is dominant at stellar energies, but less important
in the experimental range. In addition, these states interfere with higheyyeresonances {lat
Ecm = 2.4 MeV forE1, 2} atE.m = 2.68 MeV forE2), and interference patterns show up in the
Sfactor.

The importance of th&2 component in thé?C(a, y)'%0 cross section was first pointed out
by Dyer and Barnes [48] in 1974. However, disentanglingEtieandE2 multipolarities requires
high-precision data and, in particular, angular distributions. Accordingdset recent estimates
[49], the E1 andE2 multipolarities are of similar amplitude in the capture cross section. The
goal of the present work [45] is to investigate 82 multipolarity in a standar&-matrix analysis
involving the latest experimental data.

Definition (3.10) of theR-matrix is used for elastic scattering. For the capture cross section,
the gamma width of each pole is introduced, andRhmatrix theory is extended to electromagnetic
transitions [11]. As usual for the-wave phase shift we usgé = 4 poles, associated with tH&O
states at-0.245 (27,A = 1), 2.68 (2,1 = 2) and 4.36 MeV (2,A = 3), complemented by a
background termX = 4). Several properties of these states are well known experimentadly, an
are fixed in theR-matrix fits. We fit thed-wave phase shifts and the E2 capture data for various
values ofE,.

The E2 Sfactors are presented in Fig. 1 for different background energies experimental
data sets have a limited overlap between each other, which leads to rathgf iigl3). This prob-
lem is well known, and arises from the experimental difficulties associatixathe 12C(a, y)1°0
reaction. Fig. 1 shows that for smé&l} values theSfactor strongly varies. Although the? values
are weakly affecteds4 < 7 MeV should probably be discarded. Accordingly, only an upper limit
can be obtained for the extrapolatgethctor~ 190 keV-b.

10
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Figure 1: 1°C(a, y)*®0 E2 Sfactors obtained bR-matrix fits for different background energigs (labels).
Experimental data are as in Ref. [45].

From theR-matrix fits we conclude that current phase-shift and capture data abmeot
provide an extrapolate factor with a low uncertainty. This conclusion is similar to that drawn
for the E1 multipolarity, but the'®N B-decay data provide a strong constraint on the fit. For the
E2 component, we have used thg ANC provided by the GCM as additional constraint (see
Ref. [45]). This value is in good agreement with available data and, owitigeta+*2C cluster
structure, is expected to be reliable in a cluster model. This external datsheas to strongly
reduce the uncertainties on tRematrix fits. TheSfactor determined in this ways¢,(300 keV) =
42+ 2 keV-b) is slightly lower than a microscopic cluster calculation (50 keV-B},[But should
be more reliable as all properties of the Zsonances are taken from experiment.

4.2 Application of microscopic cluster models tdBe(p,y)®B

As an example of microscopic cluster models we chooséRleépy)®B Sfactor, which plays
a crucial role in the solar-neutrino problem [50]. Many direct as wahdisect measurements have
been performed in order to reduce the uncertainties orstlaetor at zero energy (see Ref. [51]
for an overview). As a high precision is required &0), the extrapolation down to astrophysical
energies should be done very carefully. Current experiments aferped in a limited energy
range, which requires the use of a theoretical model to d&ie The reliability of the model can
be tested in the energy range where data exist, which provides somal&wdilevel" on the ex-
trapolation. In most experiments, a microscopic cluster model [33] (Hereaferred to as DB94)
is used for the extrapolation. This model takes account of Beedeformation, of inelastic and
rearrangement channels, and has been tested with spectroscopidipsopf®B and®Li, as well
as with the’Li(n, y)8Li mirror cross section. An update of the calculation has been performeg mo
recently [52]. The theoreticé-factors obtained with two different nucleon-nucleon interactions
(MN and V2) are shown in Figure 2.

As discussed in DB94, a cluster model provides an upper bound of fihereaross section.
The "exact"®B wave function should contain many other configurations (other arraegts, 4
clusters, 5 clusters, etc.). Accordingly, the capture cross section wipdo the electromagnetic
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operator, is nothing but the overlap between the infigé+p and finaPB wave functions, is in
general overestimated by a cluster model. This overestimation factor desraa the model is
improved.

60 ¢ 7
i ¢
7 8
¢ Be(p.y)'B
- ¢
o L
> 40
by b ;
2 o [°
g 0 N +ﬂ*'?ﬁ+ﬁ¥ it
» 20 .m#’ + + ® Hammache et al. o Hass et al.
I o Strieder at al. m Baby et al.
I oJunghansetal. 4 Schumann etal.
A Davids et al.
O L
0 1 2 3
Ecm. (MeV)

Figure 2: "Be(py)®B Sfactor with two nucleon-nucleon interactions (V2 and MNIljgtines from [52]).
The results of DB94 are shown as a dashed line. See Ref. [b&jferences to the data.

The E2 transition between the'2ground state and the first excited ktate in the mirror
8Li nucleus is an interesting issue, and indirectly related to’B&(py)®B reaction. About 20
years ago, the quadrupole (E2) excitatiorflofwas measured using a radioactive beam [53, 54],
and unexpectedly large(E2) values were obtained(E2,2+ — 1) = 30+ 15€.fm* and 55+
15€2.fm*). These large values cannot be explained by a microscopic threerchetel [55] which
provides much smalleéB(E2) (2.1€2.fm?), although it nicely reproduces many other properties of
8Li and of similar light nuclei. This discrepancy raises a very challengingstion for nuclear
physicists: if confirmed the very lardg& E2) obtained in [53, 54] would question the precision of
most nuclear models. Obviously a remeasurement of the Coulomb excitaffanwaith modern
techniques is desirable.

4.3 Ab-initio calculation of the 2H(d, y)*He, 2H(d, p)®H and ?H(d, n)3He cross sections

The knowledge of the reaction cross sections at astrophysical en@giEgreat interest not
only for establishing imprints of the properties of nuclei in the universelsat for understanding
an interplay between the structure and reactions of these nuclei baseauaieon-nucleon\N)
interaction. Aside from the astrophysical interest, tHgd, y)*He capture reaction is extremely
important from the nuclear physics viewpoint because its cross sectiow ahergies (below 0.3
MeV) is expected to be dominated Byrwave components in the particle. Hence it should be
very sensitive to the tensor force in tNeN interaction [56, 15, 57].

We have recently applied a multi-channel microscopic cluster model to stughhttse shifts
of the p+3He [58] andd + d, p+3H, n+3He [59] systems. The model combines the stochastic
variational method (SVM) [60, 61] with the microscofematrix theory [11]. For théH, H and
3He nuclei, we use combinations of Gaussian functions to solve the Scheddiqgation for the
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cluster intrinsic Hamiltonian [25]. The relative function between the clustals®sexpanded in a
Gaussian basis. Matrix elements of the Hamiltonian can be obtained analyti&lly [5

-5 [ ] e

0.01 0.1 1 T 10
Ecm [ MeV]

Figure 3: The astrophysicab-factor of 2H(d, y)*He reaction. Results calculated with the realistic (AV8
G3RS) and the effective (MN) potentials are compared to ex@at (see Ref. [62]).

For the two-bodyNN interactionV;; we use two different realistic potentials, AV§3] and
G3RS [64], that consist of central, tensor, and spin-orbit compon&htslatter potential is softer
than the former and gives slightly smalBrstate probabilities i, H, anda [65]. It is crucial
to reproduce the +d, p+3H, andn+3He two-body thresholds for comparing calculagthctors
to experiment. These thresholds are fairly well reproduced by thé av@ G3RS realistic inter-
actions. However, they can be still improved by including a phenomenoldbiese-body force
taken from Ref. [66]. Because our main aim is to clarify the role of the tefasoe, it is useful to
compare results obtained with the realistic interactions with that of an effé¢hMateraction that
contains no tensor force. Using such effective interaction is realohabause onlg-shell nuclei
participate to the reactions. We adopt the MN central potential [30] with @atdrvalue for the
admixture parameter= 1. More detail can be found in Ref. [25].

Figure 3 displays the calculated astrophys@dctor for the?H(d,y)*He reaction. Results
with both AV8 (solid line) and G3RS (dashed line) potentials reproduce very well treriexental
data, especially its flat behavior at low energies (typical of an iniiakve), whereas the MN
potential (dotted curve) shows a rapidly decreasing patteEadecreases.

To clarify the energy-dependence of tBdactor, we studied the contributions of the three
incomingdd channels to th&factor: °S;, 1D,, and®D, (we use the spectroscopic notatfohl(;).
Without tensor interaction the particle only contains ah= 0 component and transitions from
the initial °S, and®D; partial waves|(= 2) are therefore forbidden. With the realistic interactions,
including a tensor component, the first two channels give similar contributiows to about 0.3
MeV. Below that energy, théS; channel overwhelms thkD, channel, yielding the flat behavior,
whereas above that energy fti& channel contributes more than ft® channel. Thé&2 transition
in the case of MN potential occurs through the path (iii), and the correspgis-factor (dotted
curve in Fig. 3) is quite similar to th&D, contribution of the realistic interactions. The energy-
dependence of th&-factor, obviously different between the realistic and effective interas, is
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attributed to the role played by the tensor force. Without the tensor foreeawnot reproduce the
2H(d, y)*He astrophysicab-factor below 0.3 MeV.

1 000 EE"","':":",‘,',',‘,:"",'",",",':',',,'.""t' TIITIIIT ST

S-factor [ keV-b |

0.001 0.01 0.1 1 0.001 0.01 0.1 1 10
Ecm [ MeV ] Ecm [ MeV ]

Figure 4: 2H(d, p)®H and?H(d,n)3He astrophysicaS-factors calculated with the realistic (AV/853RS)
and the effective (MN) potentials. See Ref. [62] for the ekpental data.

Similar conclusions can be drawn for the(d, p)3H and?H(d, n)He transfer reactions at low
energies. Th&factors are presented in Fig. 4. They mainly occur from the transitiongaf-thd
5S, channel to théd-wave continuum op+3H or n+3He, which is also due to the tensor force.
Without the tensor force, these cross sections cannot be reproduced

5. Conclusion

Nuclear astrophysics is a broad field, where many nuclear inputs agssay. In particular,
charged-particle cross sections are quite important, and difficult to negaswing to the low
energies and cross sections. Cluster models are well adapted to thagmneseaince in the low-
mass region, the number of open channels is fairly small. The assumptioduster structure is
in general realistic and allows to find approximate solutions of théody Schrédinger equation.
Many applications have been performed so far in nuclear astrophgesof the future challenges
for these models is the use of more realistic nucleon-nucleon interactiahsh&in extension to
higher mass systems.

In this work, we were only concerned with reactions, without discussihgraspects, such
as masses, beta decays, etc. In general, charged-particle indacgdn®occur at energies much
lower than the Coulomb barrier, and the corresponding cross sectmtieagfore extremely small.
An other characteristic is that there is almost no systematics. In the low-ngiss,reach reaction
presents its own peculiarities and difficulties, in the theoretical as well as extiegimental view-
points. Nevertheless some hierarchy can be established among reattst®physical interest.
Transfer reactions, arising from the nuclear interaction, presess @®ctions larger than capture
cross sections which have an electromagnetic origin. In addition, theamgson non-resonant
nature of a reaction also affects the cross section.

We have discussed different theoretical models often used in nucteaplagsics. The poten-
tial model and thé&R-matrix method are widely applied in this field; they are fairly simple and well
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adapted to low-energy reactions. On the other hand microscopic clustelsrtale a stronger
predictive power, since the only rely on a nucleon-nucleon interactrahpa the assumption of a
cluster structure for the nucleus.

A very impressive amount of work has been devoted to nuclear assimgtig the last decades.
Although most reactions involving light nuclei are sufficiently known, somsctions, such as
12C(a, y)*0 still require much effort to reach the accuracy needed for stellar modelshe
nucleosynthesis of heavy elemengsp¢ocess,p process), further problems arise from the level
densities and the cross sections should be determined from statistical mo8elser knowledge
of these cross sections represents a challenge for the future.
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