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Atomic nuclei are complex, quantum many-body systems whose structure manifests itself through

intrinsic quantum states associated with different excitation modes or degrees of freedom. Col-

lective modes (vibration and/or rotation) dominate at low energy (near the ground-state). The

associated states are usually employed, within a truncated model space, as a basis in (coherent)

coupled channels approaches to low-energy reaction dynamics. However, excluded non-collective

states can be essential, and their effects on the open (nuclear) system dynamics are usually treated

through complex potentials. Is this a complete description of open system dynamics? Does it

include effects of quantum decoherence? Can decoherence be manifested in reaction observ-

ables? This paper discusses these issues and the main ideas of a coupled-channels density-matrix

approach that makes it possible to quantify the role and importance of quantum decoherence in

low-energy nuclear reaction dynamics. Some topical applications are highlighted.
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Figure 1: Schematic of the coherent coupled-channels description of a low-energy nuclear collision.

1. INTRODUCTION

Nuclear reaction research has entered a new era with developments of radioactive ion beam fa-
cilities, at which nuclear reactions are the primary probe of the new physics, such as novel structural
changes, through dynamical excitations of nucleonic, collective and cluster degrees of freedom. In-
novative detection systems are allowing measurements of unprecedented exclusivity and precision,
including those using intense stable beams. These and the increased intensity rare-isotope beam
capabilities require investigations of the role of hitherto innaccessible degrees of freedom and new
considerations in quantum nuclear dynamics. Properly combining reaction dynamics and many-
body structure information is a frontier research area across disciplines.

Figure 1 illustrates the coherent quantum dynamics of a low-energy nuclear collision. The two
interacting nuclei are initially at the ground states, but get intrinsically excited -as they approach-
due to the mutual Coulomb and nuclear interactions. These two opposite interactions result in
a bare total potential that has a Coulomb barrier. A wave-packet with certain average incident
energy describes the relative motion. It is usually considered to be coupled to a few intrinsic, low-
lying collective states that keep their quantum phase relationship, the dynamics being dictated by
the Schrödinger equation. This leads to a coherent quantum superposition of intrinsic states that
has a major consequence: the bare Coulomb barrier splits into individual barriers associated with
the specific, intrinsic quantum states (fusion barriers distribution [1]). These determine different
scattering and fusion pathways that interfere with each other. Fusion happens when these barriers
are overcome, and the nuclei are irreversibly trapped in the potential pocket inside the barriers. In
general, the coherent quantum superposition of intrinsic states enhances the total fusion probability
[2], compared to the probability for the (single) bare potential barrier. Crucially, this can be tested
against high-precision fusion measurements.

New, precise fusion measurements [3, 4] over the last few years have systematically shown
disagreement with predictions of the coherent coupled-channels picture. It has also failed in de-
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Figure 2: A low-energy nuclear collision represented by an open quantum system (relative motion + a
few intrinsic, low-lying collective states). The high density of single-particle states surrounding a giant
resonance state represents the environment. It gradually destroys the coherent quantum superposition of the
reduced-system collective states, as the nuclei approach.

scribing the elastic and quasi-elastic scattering and fusion processes simultaneously [5]. This has
inevitably led to phenomenological (sometimes contradictory) adjustments [6, 7] to stationary-state
coupled channels models to fit the experimental data, but without a physically consistent founda-
tion.

Quantum decoherence and energy dissipation should be simultaneously included in a con-
sistent description of low-energy reaction dynamics [8]. A possible description is the coupled-
channels density-matrix (CCDM) approach [8, 9, 10]. In contradistinction to this approach, most
of the models for dissipative nuclear dynamics [8] do not treat the relative motion of the nuclei
quantum-mechanically and/or use incoherent (statistically averaged) rather than decoherent (par-
tially coherent) reaction channels. This paper discusses the main ideas of the CCDM approach and
highlights two topical applications.

2. COUPLED CHANNELS DENSITY MATRIX APPROACH

Figure 2 shows the key ideas of the CCDM approach. The reduced quantum system comprises
the relative motion of the nuclei and a few intrinsic, low-lying collective states, whilst the bath
of nucleonic excitations represents the environment. It significantly affects the dynamics of the
reduced quantum system, due to dissipation/absorption and decoherence. The latter really makes
these ideas, applied to low-energy nuclear collisions, innovative. This is because in the widely used
optical model for nuclear reactions, where a complex potential describes the effects of excluded
degrees of freedom, only absorption is described.

The absence of quantum decoherence in the complex-potential approach to nuclear scatter-
ing has recently been demonstrated in Ref. [11], within a simple model illustrated in Fig. 3(a).
Here, a wave-packet scatters off a potential barrier, and dynamical calculations are carried out for
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a measure of the spatial coherence [Fig. 3(b)] and the quantum tunnelling probability [Fig. 3(c)].
Whilst the optical model preserves coherence [thick solid line in Fig. 3(b)], the Lindblad dynamics
results in loss of coherence (dashed line). Clearly, the two descriptions are not equivalent, and
the impact of decoherence on the tunnelling probability is quite substantial [comparing the thick
solid to the dashed line in Fig. 3(c)]. It is also observed, comparing these two lines to the thin
solid line representing the tunnelling probability without environmental effects, that decoherence
changes the energy dependence of the tunnelling probability significantly. I conclude that a deter-
ministically evolving wave-function (pure state) cannot describe quantum decoherence which is a
dynamical process where a pure state becomes a mixed state. A description based on either a time-
dependent density matrix or an ensemble of stochastically evolving wave functions (Monte Carlo
wave-function method [12]) is essential for quantifying quantum decoherence effects on reaction
observables.

Figure 3: (a) One-dimensional model of a wave-packet scattering off a potential barrier [11]. Dynamical
calculations, using the optical potential model (OP) and the Lindblad dynamics (LvN), are carried out for
(b) a measure of coherence and (c) the quantum tunnelling probability. Clearly, the two descriptions are not
equivalent.

The CCDM approach is based on the Liouville-von Neumann master equation with Lindblad
dissipative terms [8, 9, 10]. This technique was first introduced in studies of quantum molecular
dynamics [13]. The Lindblad terms consistently account for dissipation and decoherence. The
crucial idea is to project this master equation onto a product-state basis, where a part of the basis
describes the internuclear separations (grid-basis) and another part describes the selected, intrinsic
(collective) states of the interacting nuclei. This yields a finite set of coupled equations for the time-
dependent density-matrix elements [10]. The initial density matrix is clearly determined when
the two nuclei are well-separated at the ground states and a Gaussian wave-packet describes the
radial motion. I have recently developed [10] the formalism presented in Refs. [8, 9] further,
using a coupled-angular-momentum state basis. This is very useful for investigating decoherence
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effects on asymptotic observables, such as the angular distribution of inelastic excitations [10].
Model calculations for the 16O + 154Sm reaction, which are presented in Ref. [10], show that a
surface environment -associated with a multi-nucleon transfer process- changes by a few degrees
the minimum of the angular distribution of 154Sm excitations at backward angles. Both extensive
CCDM calculations with energy projection and high-precision measurements are required in order
to compare theory with experiment [10].

For the sake of simplicity, I referred to only one specific environment in Fig. 2, i.e., the sea of
nucleonic excitations surrounding a giant resonance state of a colliding nucleus. However, various
types of environments can coexist in a nuclear collision, which may be specific to particular degrees
of freedom, such as weak binding or isospin asymmetry. Among these environments, which can
be coupled to specific states or to all states of the reduced system, are (i) the multitude of one- and
multi-nucleonic excitations in mass/charge partitions other than the entrance one (transfer), (ii) the
continuum of non-resonant decay states of weakly-bound nuclei (breakup), and (iii) the innumer-
able nuclear molecular (compound nucleus) states (fusion). These can be treated separately, and
their effects can be distinguished within the CCDM approach.

3. APPLICATIONS

The CCDM approach finds a wide range of applications in areas of low-energy nuclear reaction
physics. For instance, an excellent unresolved problem is understanding fusion of astrophysically
important collisions like 12C + 12C [14, 15]. Of relevance here is to know the fusion probability
at energies near the Gamow peak (∼ 1.5 MeV). It is usually obtained from extrapolations of high-
energy fusion measurements, as direct experiments are extremely difficult to carry out at very
low incident energies (≤ 3 MeV). The presence of pronounced resonance structures in the fusion
excitation function makes it quite uncertain. Understanding the origin of these resonances and their
impact on the reaction rates is a long-standing problem in heavy-ion physics.
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Figure 4: Neutron molecular shell structure of two interacting 12C nuclei as a function of the internuclear
distance [18] for configurations: (a) non-axial symmetric and (b) axial symmetric, where the different lines
denote magnetic sub-states. The spectrum at small distances is very sensitive to the nuclei alignment.
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The resonances may be mainly related to collective excitation modes in the dinuclear system,
when the two 12C nuclei come into contact. The 12C intrinsic symmetry axis vibrates and/or ro-
tates with respect to the internuclear axis. These molecular dynamical modes are opened up when
the nuclei overlap, and supply a complex environment. It can decohere the rotational states of the
separated, individual 12C nuclei, which are excited by the long-range Coulomb mechanism. Using
a realistic two-center shell model [16, 17, 18], I have demonstrated [18] that the single-particle
molecular shell structure at small internuclear distances is very sensitive to the alignment of the
12C nuclei (see Fig. 4). Non-axial symmetric configurations preserve the individuality of the over-
lapping nuclei (the asymptotic shell structure is largely maintained) [Fig. 4(a)], whilst this is not
the case for the axial symmetric configuration [Fig. 4(b)]. The former favors re-separation, and the
latter fusion. The competition among these configurations, as a function of the incident energy and
orbital angular momentum, should result in molecular resonance structures in the fusion excitation
function.

Figure 5: Schematic of some relevant reaction processes of a two-body, weakly-bound projectile colliding
with a stable target. The no-capture breakup (NCBU) process and different components of the total fusion
(TF) process are highlighted.

Another great theoretical challenge is to achieve a unified quantum dynamical description of
relevant reaction processes of weakly-bound nuclei. Some of these are presented in Fig. 5. Al-
though it is not illustrated there, the transfer process is also very important [19, 20, 21, 22]. Ex-
isting quantum models have limitations [23], as they cannot calculate integrated incomplete and
complete fusion cross sections unambiguously [24, 25]. Neither, after the formation of incom-
plete fusion products, can they follow the evolution of the surviving breakup fragment(s) since
incomplete fusion results in depletion of the total few-body wave-function. Some difficulties are
overcome by the classical dynamical model suggested in Refs. [26, 27], which is implemented
in the PLATYPUS code [28]. However, a quantum model is highly desirable, as it can deal with
quantum tunnelling that is essential for understanding astrophysical reaction rates involving exotic
nuclei. One possibility of tackling this issue is through the CCDM approach.
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4. SUMMARY

The main ideas of an innovative, coupled-channels density-matrix approach to low-energy
nuclear reaction dynamics have been presented. It quantifies the role and importance of quantum
decoherence in topical areas of nuclear reaction physics, such as planning and understanding the
formation of new elements. Decoherence should always be explicitly included when modelling
low-energy nuclear reaction dynamics with a limited set of (relevant) degrees of freedom.
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