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Pre-equilibrium processes play an important role in nutlealuced reactions above about 10
MeV. Models that describe such reactions were developegl émo. One of the more recent
models of such processes, the Double Differential HybrichMdCarlo Simulation (DDHMS)
of M. Blann and M. B. Chadwick, [1] follows the cascade of paet-hole pairs created by the
incident nucleon and subsequent excited particles and hupiél all excited particles are either
emitted or, together with the excited holes, equilibrafBae model has the advantage over older
models of permitting the emission of several nucleons amibdfequiring doubtful hypotheses
concerning statistical equilibrium [2] In this work, we dywe the momenta and angles of the
resulting particles and hole relative to the momentum anectlon of the nucleon inducing the
transition.
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1. Introduction

Nuclear reactions were initially classified as either dircequilibrium processes. In a direct
nucleon-induced reaction, the incident nucleon interadts a target nucleus on a time scale of
the order of the time it takes to pass by the target and oftetemxcollective degrees of freedom of
the target. A nucleon-induced equilibrium process can biaied by a direct reaction, but usually
involves the absorption of the incident nucleon followelteraa relatively long time, by the emis-
sion of other nucleons, composite particles gmeys. This decay process is well described by the
statistical theory of nuclear reactions, which assumestiteanucleus reaches internal equilibrium
before decaying.

However experimental measurements show that reactioesriatliate between the two also
occur, in which particles are emitted before complete éguilm is reached. Such reactions are
called pre-equilibrium reactions and have been studieensktely. The first model of preequi-
librium reactions, the exciton model, was formulated byfftarin 1966 [3]. This semi-classical
model classified nuclear excitations as particles abovehates below the Fermi energy, jointly
called excitons. It sought to describe the formation andagesf the nuceus resulting from a
nucleon-induced reaction at each stage, until the nuckaches equilibrium. The exciton model
was extended by Blann [4], by introducing the possibilityemfitting charged particles, and by
Williams [5], who extended the densities of excitons statas of transitions by including a correc-
tion for Pauli blocking and extending the densities to twaety of fermions. Another semi-classical
model frequently used to describe preequilibrium reastisrthe hybrid model, proposed by Blann
in 1971 [6]. There, he used the same basic ideas of Griffin $oriee the intermediate states to-
gether with the description of particle emission and tri@mss proposed by Harp, Miller and Berne
[71.

After serious criticisms of the statistical hypothesesdusethe exciton and hybrid model
were put forth by Bisplinghoff [8], Blann proposed an altgime, which he called the hybrid
Monte Carlo simulation (HMS) model [9]. This uses the basiission and transition rates of
the hybrid model but makes no assumptions concerning thiststal equilibrium of the excited
holes and particles. Rather, each of these is treated aslependent excitation, with subsequent
emissions and rescatterings followed using a Monte Canfwlgition. An additional advantage
of the HMS model compared to earlier models is that it easilymits multiple emissions from
the precompound nucleus. Two years later, Blann and Chadweneralized the model to the
DDHMS (double differential hybrid Monte Carlo simulationmodel by including the calculation
of angular distributions based on the work of Chadwick antb@hbsky[10, 11]. Here, we propose
a Monte Carlo method for calculating the exact energy-aargdistributions of the particles and
holes of the DDHMS transition rates.

2. Monte Carlo sampling of 1p — 2plhtransitionsand the 1p — 2plh transition
density

Up to a constant multiplicative factor, we can define tipe-1 2plh transition density by
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We identify the incident particle 1 with the final particle Bdathe incident particle (final hole) 2
with the final particle 4, by giving each pair the same Fermmmatum. This expression enforces
momentum and energy conservation and limits the partialiehae momenta to

|P1| > Pr1, |P2| < pr2, |P3| > Pr1 € |P4l > Pr2.

To sample the distributions of the final momeita ps and py, we will first choose the mag-
nitude of the hole momentunp,, produced in the reaction. We next choose the afgidetween
the initial particle and hole momenta. We then choose thenitiade of the momentum of particle 3
generated in the reactiopg. Finally we determine the momentum of the partigg, using energy
conservation and the angle between particles 3 aid,4using conservation of the magnitude of
the total momentum.

To use this procedure to determine the momenta, we mustdramghe integral 2.1 defining
the transitions densities so that it makes use of the samables. Making all necessary changes,
we find

P1p-2p1h(PL) = ﬁ% / 6(Pr2— P2)(PT+ P2 — PE1 — PE2) P3d P2 (22)
which results in
~ a my. o> 2 P> P o
P1p-s2pih(P1) = (2740 1 |:(p1 — PE1— PR2) 2 37175 } . (2.3)

wherep3 i, = max0, p2, + p&, — p}). This furnishes
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_ ) 2w (pl “ PR 5F2> 5 PL= PEL P2 (2.4)
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We are now ready to determine the momepitaps and py by Monte Carlo sampling. We first
choose the magnitude of the hole momentye which is limited by

2 2 2
Pzmin < P> < PF2-

The value ofp, is determined so that the frequency of a given value will bagreement with the
integral of its distribution. For a random numbex® < 1, we define the corresponding value of
p2 to be
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We next choose the anglg, between the initial particle and the hole momenta, which is
unrestricted in value,

X — (2.5)

—1<cosO;, < 1.

In this case, we associate a value of 8psto a random value & x < 1 by requiring that

\/ P+ B3+ 2p1p2cosBio — [p1 — |
a [PL+ P2| — [P — P2l

X (2.6)

The next choice is that of the magnitude of the final particlemantum,ps, which is limited
by
PE1 < P3 < Pi+ Po— PR

The value ofps corresponding to a random valueX < 1 is defined by

_ P3— PEs
P+ P5— PRy — PRy
The value ofpy is then determined by energy conservation and the angleekeatihe final
momentabs, is determined by conservation of the magnitude of the totahentum.

2.7)

3. Monte Carlo sampling of 1h — 1p2h transitions and the 1h — 1p2h transition
density

Sampling the distributions of the final momenta ps and p; of the 1h — 1p2h transiton
density by Monte Carlo sampling is very similar to that of fipe— 2p1h distribution. In this case,
the density is proportional to,

_a oo Pl p5 PP
Pih—1p2h(P1) = W/fS(lerpz— Pz — p4)6(?n+?n_?n+?n)

x 0(| P2 — Pr2)d3p20(pr1 — | Pa|)d3 P3O (pr2 — | Pal)d3pa, (3.1)

with the limits on the particle and hole momenta now being flas opposite of the previous case,

IP1l < Pr1, P2l > Pr2, P3| < Pr1 € [Pa| < pro. (3.2)

Using the same procedure used above the integral 3.1 cadlesckto

am
) )=— [ 8(p,— 2. 1+ pZ,— p2— p3)pod . 3.3
P1h—1p2h(P1) (2n)4ﬁep1/ (P2— Pr2)(PE1+ P2 — PT— P2)P2d 2 (3.3)

The integral ovep, furnishes
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The Monte Carlo sampling can be performed much as beforeoiilyadifferences here are in
the distributions of the variablgs e ps.

Here, the magnitude of the holp; is limited by
PE2 < P3 < PRa+ PR — Y.

For arandom number € x < 1, we define the corresponding valuepafas

2[(PBat 22— F2— %) B3 (PBa+ B2 — 2) P2
(PEy — P})?

X =

The anglef;, between the initial particle and the hole momenta can beerhas before.
The magnitude of the final momentumg, is limited by

Pi+P5— PR < P3 < PRy,
with the value ofpz corresponding to the random valueck < 1 defined by

_ Pt PE PP
PR+ PR, — PT—P3

The remaining momenturps and angles are determined as in thpe-2 2plh case

4. Results

The distributions of particles and holes were obtainedgiaismall Fortran code. Results for
two values of the incident energy are shown here: one belewrdrmi energy, at 15 MeV, and
one above it, at 133 MeV. We take the Fermi momentum to be 33.Meté that we have defined
both particle and hole energies with respect to the zero mameenergy state. Hole energies and
momenta are thus actually those of the unoccupied partalessand not the values conventionally
used for holes. Particle energies include the Fermi energy.

4.1 Incident Momentum of 15MeV: 1h — 1p2h.

Below we show the distributions of the particle and eithahefholes produced in &1 1p2h
transition induced by a eV energy hole. The particle distribution is peaked at backvaaugles
and at the Fermi momentum while the hole distributions pedksrward angles and at the Fermi
momentum.
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Figure 1: Distribution of the particle and the holes generated itha+11p2h transition.

4.2 Incident Energy of 133MeV: 1p — 2plh

Here we display the distributions of the hole and either ef tivo particles produced in a
1p — 2plh transition induced by a 138eV energy particle. Here the hole momentum distribution

peaks at backward angles and at the Fermi energy while thielpatistribution peaks at extreme
forward angles and values of the momentum close to thelipitie.
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Figure 2: Distribution of the hole and the particles generated ipa-42plh transition.

5. Conclusion

We have developed a Monte Carlo algorithm for sampling thh2energy-angular distribu-
tion resulting from a transition induced by a particle in leac matter, as well as thg2h energy-
angular distribution resulting from a transition inducedébhole. Our algorithm furnishes a fast

means of sampling the exact energy-angular distributidriteotransition rates of the DDHMS
model. We plan to perform DDHMS calulations using these @rthar future.
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