
P
o
S
(
X
X
X
I
V
 
B
W
N
P
)
1
3
4

Monte Carlo sampling of particle-hole creation
transitions in a model of pre-equilibrium reactions

Daniel Farias Mega∗†

Instituto Tecnológico de Aeronáutica, São José dos Campos SP Brasil
E-mail: danielfmeg@gmail.com

B. V. Carlson
Instituto Tecnológico de Aeronáutica, São José dos Campos SP Brasil
E-mail: brett@ita.br

Pre-equilibrium processes play an important role in nucleon-induced reactions above about 10

MeV. Models that describe such reactions were developed long ago. One of the more recent

models of such processes, the Double Differential Hybrid Monte Carlo Simulation (DDHMS)

of M. Blann and M. B. Chadwick, [1] follows the cascade of particle-hole pairs created by the

incident nucleon and subsequent excited particles and holes until all excited particles are either

emitted or, together with the excited holes, equilibrated.The model has the advantage over older

models of permitting the emission of several nucleons and ofnot requiring doubtful hypotheses

concerning statistical equilibrium [2] In this work, we analyze the momenta and angles of the

resulting particles and hole relative to the momentum and direction of the nucleon inducing the

transition.
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1. Introduction

Nuclear reactions were initially classified as either direct or equilibrium processes. In a direct
nucleon-induced reaction, the incident nucleon interactswith a target nucleus on a time scale of
the order of the time it takes to pass by the target and often excites collective degrees of freedom of
the target. A nucleon-induced equilibrium process can be initiated by a direct reaction, but usually
involves the absorption of the incident nucleon followed, after a relatively long time, by the emis-
sion of other nucleons, composite particles andγ rays. This decay process is well described by the
statistical theory of nuclear reactions, which assumes that the nucleus reaches internal equilibrium
before decaying.

However experimental measurements show that reactions intermediate between the two also
occur, in which particles are emitted before complete equilibrium is reached. Such reactions are
called pre-equilíbrium reactions and have been studied extensively. The first model of preequi-
librium reactions, the exciton model, was formulated by Griffin in 1966 [3]. This semi-classical
model classified nuclear excitations as particles above andholes below the Fermi energy, jointly
called excitons. It sought to describe the formation and decay of the nuceus resulting from a
nucleon-induced reaction at each stage, until the nucleus reaches equilibrium. The exciton model
was extended by Blann [4], by introducing the possibility ofemitting charged particles, and by
Williams [5], who extended the densities of excitons statesand of transitions by including a correc-
tion for Pauli blocking and extending the densities to two types of fermions. Another semi-classical
model frequently used to describe preequilibrium reactions is the hybrid model, proposed by Blann
in 1971 [6]. There, he used the same basic ideas of Griffin to describe the intermediate states to-
gether with the description of particle emission and transitions proposed by Harp, Miller and Berne
[7].

After serious criticisms of the statistical hypotheses used in the exciton and hybrid model
were put forth by Bisplinghoff [8], Blann proposed an alternative, which he called the hybrid
Monte Carlo simulation (HMS) model [9]. This uses the basic emission and transition rates of
the hybrid model but makes no assumptions concerning the statistical equilibrium of the excited
holes and particles. Rather, each of these is treated as an independent excitation, with subsequent
emissions and rescatterings followed using a Monte Carlo simulation. An additional advantage
of the HMS model compared to earlier models is that it easily permits multiple emissions from
the precompound nucleus. Two years later, Blann and Chadwick, generalized the model to the
DDHMS (double differential hybrid Monte Carlo simulation)model by including the calculation
of angular distributions based on the work of Chadwick and Oblozinský[10, 11]. Here, we propose
a Monte Carlo method for calculating the exact energy-angular distributions of the particles and
holes of the DDHMS transition rates.

2. Monte Carlo sampling of 1p→ 2p1h transitions and the 1p→ 2p1h transition
density

Up to a constant multiplicative factor, we can define the 1p→ 2p1h transition density by
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ρ1p→2p1h(~p1) =
a

(2πh̄)6
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p2

1

2m
+

p2
2

2m
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p2
3

2m
−

p2
4

2m
)

×θ(pF2−|~p2|)d
3p2θ(|~p3|− pF1)d

3p3θ(|~p4|− pF2)d
3p4, (2.1)

We identify the incident particle 1 with the final particle 3 and the incident particle (final hole) 2
with the final particle 4, by giving each pair the same Fermi momentum. This expression enforces
momentum and energy conservation and limits the particle and hole momenta to

|~p1| ≥ pF1, |~p2| ≤ pF2, |~p3| ≥ pF1 e |~p4| ≥ pF2.

To sample the distributions of the final momenta~p2, ~p3 and~p4, we will first choose the mag-
nitude of the hole momentum,p2, produced in the reaction. We next choose the angleθ12 between
the initial particle and hole momenta. We then choose the magnitude of the momentum of particle 3
generated in the reaction,p3. Finally we determine the momentum of the particle,p4, using energy
conservation and the angle between particles 3 and 4,θ34, using conservation of the magnitude of
the total momentum.

To use this procedure to determine the momenta, we must transform the integral 2.1 defining
the transitions densities so that it makes use of the same variables. Making all necessary changes,
we find

ρ1p→2p1h(~p1) =
a

(2π)4h̄6

m
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2
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which results in
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(2.4)

We are now ready to determine the momenta~p2, ~p3 and~p4 by Monte Carlo sampling. We first
choose the magnitude of the hole momentum,p2, which is limited by

p2
2min ≤ p2

2 ≤ p2
F2.

The value ofp2 is determined so that the frequency of a given value will be inagreement with the
integral of its distribution. For a random number 0≤ x≤ 1, we define the corresponding value of
p2 to be
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x=
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We next choose the angleθ12 between the initial particle and the hole momenta, which is
unrestricted in value,

−1≤ cosθ12 ≤ 1.

In this case, we associate a value of cosθ12 to a random value 0≤ x≤ 1 by requiring that

x=

√

p2
1+ p2

2+2p1p2 cosθ12−|p1− p2|

|p1+ p2|− |p1− p2|
(2.6)

The next choice is that of the magnitude of the final particle momentum,p3, which is limited
by

p2
F1 ≤ p2

3 ≤ p2
1+ p2

2− p2
F2.

The value ofp3 corresponding to a random value 0≤ x≤ 1 is defined by

x=
p2

3− p2
F1

p2
1+ p2

2− p2
F1− p2

F2

. (2.7)

The value ofp4 is then determined by energy conservation and the angle between the final
momentaθ34 is determined by conservation of the magnitude of the total momentum.

3. Monte Carlo sampling of 1h→ 1p2h transitions and the 1h→ 1p2h transition
density

Sampling the distributions of the final momenta~p2, ~p3 and ~p4 of the 1h → 1p2h transiton
density by Monte Carlo sampling is very similar to that of the1p→ 2p1h distribution. In this case,
the density is proportional to,

ρ1h→1p2h(~p1) =
a

(2πh̄)6

∫

δ (~p1+ ~p2− ~p3− ~p4)δ (
p2

1

2m
+

p2
2

2m
−

p2
3

2m
+

p2
4

2m
)

×θ(|~p2|− pF2)d
3p2θ(pF1−|~p3|)d

3p3θ(pF2−|~p4|)d
3p4, (3.1)

with the limits on the particle and hole momenta now being just the opposite of the previous case,

|~p1| ≤ pF1, |~p2| ≥ pF2, |~p3| ≤ pF1 e |~p4| ≤ pF2. (3.2)

Using the same procedure used above the integral 3.1 can be reduced to

ρ1h→1p2h(~p1) =
am

(2π)4h̄6p1

∫

θ(p2− pF2)(p
2
F1+ p2

F2− p2
1− p2

2)p2dp2. (3.3)

The integral overp2 furnishes
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ρ1h→1p2h(~p1) =
am

4(2π)4h̄6(p
2
F1− p2

1)
2. (3.4)

The Monte Carlo sampling can be performed much as before. Theonly differences here are in
the distributions of the variablesp2 e p3.

Here, the magnitude of the hole,p2 is limited by

p2
F2 ≤ p2

2 ≤ p2
F1+ p2

F2− p2
1.

For a random number 0≤ x≤ 1, we define the corresponding value ofp2 as

x=
2
[(
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2

2
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2−

(
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F2
2 − p2

1

)

p2
F2

]

(p2
F1− p2

1)
2

.

The angleθ12 between the initial particle and the hole momenta can be chosen as before.

The magnitude of the final momentum,p3, is limited by

p2
1+ p2

2− p2
F2 ≤ p2

3 ≤ p2
F1,

with the value ofp3 corresponding to the random value 0≤ x≤ 1 defined by

x=
p2

3+ p2
F1− p2

1−P2
2

p2
F1+ p2

F2− p2
1− p2

2

The remaining momentump4 and angles are determined as in the 1p→ 2p1h case

4. Results

The distributions of particles and holes were obtained using a small Fortran code. Results for
two values of the incident energy are shown here: one below the Fermi energy, at 15 MeV, and
one above it, at 133 MeV. We take the Fermi momentum to be 33 MeV. Note that we have defined
both particle and hole energies with respect to the zero momentum/energy state. Hole energies and
momenta are thus actually those of the unoccupied particle states and not the values conventionally
used for holes. Particle energies include the Fermi energy.

4.1 Incident Momentum of 15MeV: 1h→ 1p2h.

Below we show the distributions of the particle and either ofthe holes produced in a 1h→ 1p2h
transition induced by a 15MeV energy hole. The particle distribution is peaked at backward angles
and at the Fermi momentum while the hole distributions peaksat forward angles and at the Fermi
momentum.
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Figure 1: Distribution of the particle and the holes generated in a 1h→ 1p2h transition.

4.2 Incident Energy of 133MeV: 1p→ 2p1h

Here we display the distributions of the hole and either of the two particles produced in a
1p→ 2p1h transition induced by a 133MeV energy particle. Here the hole momentum distribution
peaks at backward angles and at the Fermi energy while the particle distribution peaks at extreme
forward angles and values of the momentum close to the initial one.
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Figure 2: Distribution of the hole and the particles generated in a 1p→ 2p1h transition.

5. Conclusion

We have developed a Monte Carlo algorithm for sampling the 2p1h, energy-angular distribu-
tion resulting from a transition induced by a particle in nuclear matter, as well as the 1p2h energy-
angular distribution resulting from a transition induced by a hole. Our algorithm furnishes a fast
means of sampling the exact energy-angular distributions of the transition rates of the DDHMS
model. We plan to perform DDHMS calulations using these in the near future.
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