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Study of fragmentation reactions of light nuclei

D.A. Toneli∗a†, B.V. Carlsona, R. Donangelob,cand S.R. Souzab,d

a Departamento de Física, Instituto Tecnológico de Aeronáutica
CTA, 12.228-900, São José dos Campos, Brazil

bInstituto de Física, Universidade Federal do Rio de Janeiro
Cidade Universitária, CP 68.528, 21.941-972, Rio de Janeiro, Brazil

cInstituto de Física, Facultad de Ingeniería, Universidad de la República
Julio Herrera y Reissig, 565, 11.300, Montevideo, Uruguay

dInstituto de Física, Universidade Federal do Rio Grande do Sul
Av. Bento Gonçalves, 9.500, CP 15.051, 91.501-970, Porto Alegre, Brazil

The decay of the compound nucleus is traditionally calculated using a sequential emission model,
such as the Weisskopf-Ewing or Hauser-Feshbach ones, in which the compound nucleus decays
through a series of residual nuclei by emitting one particle at a time until there is no longer suffi-
cient energy for further emission. In the case of light compound nucleus, however, the excitation
energy necessary to fully disintegrate the system is relatively easy to attain. In such cases, decay
by simultaneuous emission of two or more particles becomes important. A model which takes
into account these decays is the Fermi break-up model. Recently, the Fermi break-up model was
shown to be equivalent to the statistical multifragmentation model used to describe the decay
of highly excited fragments from heavy ion reactions when the residual nuclei have few excited
states. Due the simplicity of the thermodynamic treatment used in the multifragmentation model,
we have adapted it to the calculation of Fermi breakup of light nuclei in a general context. The
ultimate goal of this study is to calculate the distribution of isotopes produced in proton-induced
reactions on light nuclei of biological interest, such as C, O and Ca. Although most of their resid-
ual nuclei possess extremely short half-lives and thus represent little long-term danger, they tend
to be neutron-deficient and to decay by positron emission, which allows the monitoring of proton
radiotherapy by PET (’positron emission tomography’).
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1. Introduction

The fragmentation of a highly-excited compound nucleus may be described by the Fermi
break-up [1] or the statistical multifragmentation model [2-5]. The Fermi break-up model has
traditionally been used for light nuclei (A≤16). In both models, the result of a collision between
two nuclei is assumed to be a highly excited, equilibrated system in a small volume of space. Ac-
cording to Fermi’s golden rule, the transition rate for formation of an arbitrary fragment partition
is proportional to the squared transition matrix element times the density of final states. Assuming
that all transition matrix elements are identical, the transition rate for the formation of an arbitrary
configuration of fragments can be estimated in terms of its density of states, obtained by integrating
over its phase space with the restrictions of total energy and momentum conservation:
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where the permutation factor
n
∏
l=1

1/Nl! takes into account the indistinguishability of fragments with

the same Z and A, m j is the mass of each of fragment, m0 =
n
∑
j=1

m j is the mass of the decaying

nucleus, g j is the spin multiplicity of the fragment and Vn is the volume of the fragmenting nucleus,
defined as:

Vn = (1+χ)V0, (1.2)

where χ is the expansion factor and V0 is the ground state volume of the nucleus. The total kinetic
energy of the fragments, Ekin is given by:

Ekin = ε0 −B0 −Ec0 +
n

∑
j=1

(B j +Ec j) , (1.3)

where the total excitation energy is ε0, the ground state binding energy and the Coulomb energy of
the decaying nucleus are B0 and Ec0, respectively, while those of fragment j are denoted by B j and
Ec j.

The Fermi break-up model, as normally used [5], extends the expression above by taking into
account all states of the fragments below the particle-emission threshold. In both of these cases, as
well as that of a continous density of states, the density of final states can be well approximated in
terms of the entropy Sn, the specific heat CV,n and the temperature T0 [6] as:

ωn =
eSn(T0)√
2πCV,nT 2

0

, (1.4)

This expression is very similar to that used in the microcanonical treatment of the statistical multi-
fragmentation model:

ωn = eSn(T0). (1.5)
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In both cases, Sn is the entropy corresponding to a specific breakup channel parametrized by set
of fragment multiplicities{NA,Z}. The denominator of Eq. 1.4 arises from the steepest descent
approximation to the integral defining the total density of states [6] but is usually neglected in the
statistical multifragmentation model.

2. SMM and Fermi3 codes

The SMM code [7] uses the statistical multifragmentation model to calculate the fragmentation
process of a highly-excited compound nucleus. The Fermi3 code we have developed is based on
the Fermi break-up model. It permits calculation of the emission of fragments in the ground state
alone (FB-GS), the emission of fragments restricted to the particle-bound excited levels (FB-PB) or
the emission of fragments including all known excited levels plus the continuous density of states
of the SMM (FB-CD). Both codes have been adapted to use the Audi-Wapstra mass table and to
reproduce the Gilbert-Cameron level density parameter at low excitation energies which can be
found at [8]. The entropy and the temperature are calculated by requiring energy conservation and
both codes furnish the same value of the entropy in the case of a continuous density of excited
states. The difference between the models is the Monte Carlo method used by the SMM code to
select partitions versus the consideration of all partitions by the Fermi3 code, as well as the slowly
varying factor in the denominator of the Fermi3 density of final states.

3. Fragmentation of 16O

The figures below show the primary fragment charge and mass distributions resulting from the
fragmentation of 16O at an excitation energy of 5 MeV/nucleon for four different calculations. The
calculations were performed using the SMM code. The other calculations used the Fermi3 code,
in which only fragment ground states were included in the FB-GS calculation, all particle-bound
excited states were included in the FB-PB calculation and the same continuous density of states of
the SMM calculation was used in the case of the FB-CD calculation.
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Figure 1: Primary mass (a) and charge (b) distribution of the multifragmentation of 16O at an excitation
energy of 5 MeV/nucleon.
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Note that the results for the Fermi break-up model with continuum energy spectra are close
to the results obtained with the statistical multifragmentation model but very different from those
including only the ground or particle-bound excited states. Slight differences in the SMM and
Fermi3 results are due to the differences in partition sampling and the factor in the denominator of
the Fermi3 density of states.

In the Figure 2, we show the primary distributions of Li, Be, B and C isotopes resulting from
the fragmentation of the same nucleus 16O at the same excitation energy of 80 MeV. We again note
the similarity of the results of the continuum Fermi break-up and statistical multifragmentation
models, which are quite different from those including only the ground or particle-bound excited
states.
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Figure 2: Primary isotopic distributions from the multifragmentation of 16O at an excitation energy of 5
MeV/nucleon.

The Fermi3 code provides the average temperature and energy of fragments, as well as the
probability and number of configurations of each multiplicity, information that we plan to use to
estimate secondary decay of the fragments.
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Figure 3: Average temperature (a) and excitation energy (b) of the fragments from the multifragmentation
of 16O at an excitation energy of 5 MeV/nucleon as a function of the multiplicity.

Note the extremely high temperatures at low multiplicity in the case of Fermi breakup includ-
ing only ground or particle-bound states (FB-GS and FB-PB). This is due to the fact that none
(FB-GS) or very little (FB-PB) of the excitation energy can be deposited in the fragments and thus,
in these cases, it must be released as the kinetic energy in these cases. The average temperature
varies much more slowly when the kinetic energy is in equilibrium with the fragment excitation en-
ergy (FB-CD). However, even here the average fragment excitation energy decreases rapidly with
the increase of the multiplicity.

About 500 fragmentation partitions are available to the 16O nucleus at an excitation energy of
80 MeV (5 MeV/nucleon). The greatest number of these correspond to multiplicities 4 and 5, with
the distribution in multiplicity fairly symmetric about the maximum.
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Figure 4: Average occupation statistical weight (a) and number of fragmentation partitions (b) as a function
of the multiplicity for the multifragmentation of 16O at an excitation energy of 5 MeV/nucleon.

The probability distribution reaches its peak at a multiplicity of 4 in the cases of Fermi breakup
including only ground or particle-bound states (FB-GS and FB-PB) and falls fairly quickly at larger
and smaller values of the multiplicity. In contrast, the two-fragment partition makes the dominant
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contribution in the case in which the fragment excitation energies participate in the equilibrium,
furnishing results very similar to that of an extended evaporation model.

4. Conclusion

Multifragmentation plays an important role in the statistical decay of light nuclei of biological
interest. The statistical multifragmentation and extended Fermi breakup models take into account
the large number of fragment states that can be excited in such decays, while the usual Fermi
breakup model does not. Taking these states into account furnishes statistical properties, such as
fragment temperatures and average kinetic energies, in better agreement with those of evaporation
models of the decay. We are now studying the multiplicity dependence of the multifragmentation
process in order to better calculate the secondary decay of the excited fragments.
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