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1. Introduction

High energy physics at the current and future colliders likethe LHC and the ILC requires
theorists to carry out large-scale calculations with multi-body productions. In the perturbative
approach, the number of Feynman graphs to be calculated grows rapidly as the number of produced
particles increases and as the order of perturbation becomes higher. For example, several tens of
diagrams typically appear in the final four-body processes at the tree level, but a few thousand
diagrams emerge in the 1-loop correction. Performing such computation is absolutely beyond the
human power if it should be done by hand. Since the procedure of a perturbation calculation is
well established, computers must be able to take the place ofthe human hand. In the past decade,
several groups have developed computer programs which generate Feynman diagrams and calculate
cross sections automatically. The GRACE system is such a program package for the automatic
calculation of the amplitudes, based on the Feynman rules ofthe standard model (SM) and also of
the minimal supersymmetric extension of the standard model(MSSM). We report the current status
of studies with the GRACE system on QCD and MSSM. Furthermorewe also take the two-loop
non-planar box diagram as an example to treat loop-diagramsbeyond one-loop diagrams.

2. QCD application for the LHC

A program package of GR@PPA (GRace At Proton-Proton/Antiproton) version 2.8 was re-
leased in November, 2010 [1]1. GR@PPA is an extension of the GRACE system [2, 3] to hadron
collision interactions. GRACE is a powerful tool for deriving the differential cross section of
hard interactions at the parton level, and for generating the corresponding events with the help of
BASES/SPRING [4, 5]. GR@PPA provides a mechanism for addingthe effects of the initial-state
variation in the flavor and momentum according to the parton distribution finctions (PDF), and for
achieving a generalization of the final state. The previous releases of GR@PPA [6, 7] included
many multi-body (multi-jet) production processes, such asW + jets andZ + jets, diboson (W +W−,
W Z, ZZ) + jets, top-pair + jets, and QCD multi-jets. Although the version 2.8 includes only those
processes for single and double weak-boson productions associated with the jet production up to
one jet, a jet matching method is applied to simulate the weak-boson kinematics continuously in
the entire phase space.

In order to accomplish an appropriate jet matching, we subtract divergent collinear components
numerically from radiative (1 jet) processes. The subtracted components are identical to the leading
terms in parton showere (PS), applied to non-radiative (0 jet) processes. Thus, we can obtain
smooth spectra by combining the subtracted 1-jet processeswith the 0-jet processes to which an
appropriate PS is applied, with allowing any divergence or double-counting problem. Since the
PS implementation is limited with a certain energy scale (µPS), the subtraction is limited with the
same scale. In addition, we takeµPS equal to the factorization scale in order to strictly preserve the
identity between the PS and PDF.

We have shown in a previous report [8] that the simulation employing our matching method
and a custom-made initial-state parton shower reproduces the pT spectrum of theZ bosons mea-
sured at Tevatron experiments [9, 10, 11], with very good precision. Figure 1 shows the result

1http://atlas.kek.jp/physics/nlo-wg/grappa.html.
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Figure 1: pT spectrum ofZ bosons at Tevatron Run 1,pp̄ collisions at a cm energy of 1.8 TeV. The
GR@PPA simulation (histograms) is compared with the measurements by CDF [9] (circles) and D0 [10]
(triangles). Together with a result covering thepT range up to 200 GeV/c (a), a result to cover the range
up to 20 GeV/c (b) is presented to show the low-pT behavior. In addition to the summed spectrum (solid
line), the spectra of events from theZ + 0-jet (dashed line) andZ + 1-jet (dotted line) processes are shown
separately for the GR@PPA simulation in (a).

of a simulation of the same quantity, in which, together withthe initial-state PS, a final-state PS
is applied to partons from the hard interaction and to those radiated in the initial-state PS. The
factorization scale (µF ) and the renormalization scale (µR) are taken to be equal to theZ-boson
mass (91.17 GeV/c2). We can see that theZ + 0-jet component overwhelms the remaining non-
logarithmicZ + 1-jet component for lowpT <∼ 100 GeV/c, and the non-logarithmic component
converges to zero aspT → 0. The summed spectrum is somewhat softer compared to the previous
result. Nevertheless, because of the application of the final-state PS, the simulation is still in good
agreement with the measurements.

3. MSSM application

Despite its compactness and success in describing known experimental data available up to
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now, the standard model (SM) is considered to be an effectivetheory which is valid only at the
currently accessible energies, on account of theoretical problems. Supersymmetric (SUSY) theory,
which predicts the existence of a partner to every particle of the SM that differs in spin by one
half, is believed to be an attractive candidate for the theory beyond the SM (BSM). The minimal
supersymmetric extension of the SM (MSSM) remains consistent with all known high-precision
experiments at a level comparable to the SM. One of the most important aims of the particle exper-
iments at sub-TeV-region and TeV-region energies is to probe evidence of the BSM; so the search
for SUSY particles plays a crucial role in it.

Experiments at present and future accelerators, the Large Hadron Collider (LHC) and the In-
ternational Linear Collider (ILC), are expected to discover SUSY particles and provide accurate
data on them. In particular, experiments at the ILC offer high-precision determination of SUSY
parameters viae−e+-annihilation processes. Since theoretical predictions with similarly high ac-
curacy are required for us to extract important physical results from the data, we have to include at
least one-loop contributions in perturbative calculations of the amplitude.

Among SUSY particles, only the lightest one (LSP) is stable if R-parity is conserved. Then,
decay processes should be analyzed precisely in experiments at the LHC and the ILC. Recently,
we have calculated the radiative corrections to productionprocesses and decay processes of SUSY
particles, in the framework of the MSSM using GRACE/SUSY-loop [12, 13, 14, 15]. Related
references can be found in [16].

For many-body final states, each production process or decayprocess is described by a large
number of Feynman diagrams, even at tree-level order. Thereare still more Feynman diagrams
at one-loop order even for two-body final states. For this reason, we have developed the GRACE
system [3], which enables us to calculate amplitudes automatically. A program package called
GRACE/SUSY-loop is a version of the GRACE system for the calculation of the MSSM amplitudes
in one-loop order, which includes the model files of the MSSM and the loop library. There exist
other program packages developed independently by other groups, for the calculation of the MSSM
amplitudes at one-loop order, SloopS [17] and FeynArt/Calc[18].

We have calculated the radiative corrections to productionprocesses and decay processes of
SUSY particles in the framework of the MSSM using GRACE/SUSY-loop. Table 1 shows the list
of processes calculated using GRACE/SUSY-loop.

Processes GRACE Preceding studies

Chargino-pair production (e− + e+ → χ̃−
1 + χ̃+

1 ) [12] [19, 20, 21]
Chargino decay (̃χ+

2 → two body and̃χ+
1 → three body) [12]

Neutralino-pair production (e− + e+ → χ̃0
1 + χ̃0

2) [13] [19, 20]
Neutralino decay (̃χ0

2,3,4 → two body and̃χ0
2 → three body) [13] [22]

Sfermion decay (̃f → two body) [14] [23, 24, 25]
Stop production (e− + e+ → t̃1 + t̃∗1) [26] [27]
Stop decay (̃t1 → b+ χ̃+

1 , t + χ̃0
1 andt̃1 → b+W + + χ̃0

1) [15] [23, 24, 25]
Gluino decay (̃g → b+ b̃1, t + t̃1) [15] [23]

Table 1: List of processes calculated using GRACE/SUSY-loop
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4. Two-loop non-planar box diagrams

At the one-loop level, analytic solutions exist for any diagrams. These are expressed in terms
of known functions, such as logarithms and Spence functions(see, for example [28]).

The extension to calculate higher order corrections is, however, not a trivial task, because an-
alytic expressions of the integrals are generally unknown for higher-loop diagrams, especially for
diagrams with more general mass configurations. In order to overcome this situation, we rely on
numerical evaluations. We need to establish efficient methods that can be incorporated into auto-
matic computation systems to evaluate cross-sections. Over the past decade we have accumulated
experience evaluating one-loop integrals numerically, since those results can be compared with
analytic answers. We succeeded in calculating vertex, box and pentagon diagrams with arbitrary
masses. We also computed two-loop self-energy and vertex diagrams. Related work and references
can be found in [29].

In this paper we focus on the topology in Fig. 2, called the non-planar box diagram. The loop
integral in the Feynman parameters (x1, · · · ,x7) is expressed as follows;

I = −

∫ 1

0
dx1 dx2 dx3 dx4 dx5 dx6 dx7 δ (1−

7

∑
ℓ=1

xℓ)
C

(D− iεC)3 . (4.1)

Here,D andC are polynomials of Feynman parameters.

p1

p2

p3

p4

x1, m1

x3, m3

x2, m2

x5, m5x7, m7

x4, m4

x6, m6

Figure 2: Two-loop non-planar box diagram

The external momentap1, p2, p3 andp4 are defined to flow inward, satisfyingp1+ p2+ p3+ p4 = 0.
The kinematical variabless andt are given bys = (p1 + p2)

2 = (p3 + p4)
2, t = (p1+ p3)

2 = (p2 +

p4)
2. For later notational convenience we introduce a third kinematical variableu = (p1 + p4)

2 =

(p2 + p3)
2.

The functionsD andC in Eq. (4.1), corresponding to Fig. 2, are

D = C∑xℓm
2
ℓ (4.2)

− {s(x1x2x4 + x1x2x5 + x1x2x6 + x1x2x7 + x1x5x6 + x2x4x7− x3x4x6)

+ t(x3(−x4x6 + x5x7))

+ p2
1(x3(x1x4 + x1x5 + x1x6 + x1x7 + x4x6 + x4x7))

+ p2
2(x3(x2x4 + x2x5 + x2x6 + x2x7 + x4x6 + x5x6))

+ p2
3(x1x4x5 + x1x5x7 + x2x4x5 + x2x4x6 + x3x4x5 + x3x4x6 + x4x5x6 + x4x5x7)

+ p2
4(x1x4x6 + x1x6x7 + x2x5x7 + x2x6x7 + x3x4x6 + x3x6x7 + x4x6x7 + x5x6x7)}

5
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and
C = (x1 + x2+ x3 + x4 + x5)(x1 + x2+ x3 + x6+ x7)− (x1 + x2 + x3)

2. (4.3)

We introduce theDirect Computation Method (DCM), based on a combination of numerical
integration and extrapolation on a sequence of integrals. DCM comprises the following three steps:
(Step 1)ε in Eq. (4.1) is set to a finite value determined by a (scaled) geometric sequenceε =

εl = ε0/(Ac)
l with l = 0,1, · · · , ε0, and 0< 1/Ac < 1. (Step 2) Evaluate the multi-dimensional

integralI of Eq. (4.1) numerically. Because of the finiteεl, we obtain a finite value for the integral
corresponding to eachl. Thus a sequence ofI(εl), l = 0,1,2, · · · is generated. (Step 3) Extrapolate
the sequenceI(εl) to the limit asεl → 0 to extractI as limε→0 I(ε).

If D does not vanish in the integration region, we can putε = 0 and we do not need an extrap-
olation process asI = I(ε) |ε=0.

We use Wynn’sε-algorithm [32, 33] for the extrapolation, which works efficiently under fairly
general conditions, even for very slowly convergent sequences. Theε algorithm is applied to the
sequenceI(εl), l = 0,1, · · · obtained by multi-dimensional integration.

We evaluateInon−planar given by Eq. (4.1). The kinematical variables is varied butt is fixed
at t = −10000 GeV2 throughout the computations. We introduce the dimensionless variablefs =

s/m2. For the mass parameters we setm = m1 = m2 = m4 = m6 = 50 GeV,M = m3 = m5 = m7 =

90 GeV, andp2
1 = p2

2 = p2
3 = p2

4 = m2.
Fig. 3 shows the results for−20.0≤ fs ≤ 20.0. It is known thatInon−planar has two cuts; one

starts from the normals-channel threshold,s = 4m2, and the other froms = −t −M2− 4mM to
s = −∞. The latter corresponds to theu-channel threshold atu = (M +2m)2. The first and second
cut correspond tofs = 4.0 and fs = −6.44, respectively. In Fig. 3 we also show results for the
imaginary part in the range−100.0≤ fs ≤−20.0. In this region the imaginary part is small but its
contribution is not negligible when it is put in the dispersion integral;

ℜ(I(s)) =
1
π

(
P

∫ s′0

−∞

ℑ(I(s′))
s− s′

ds′ +P

∫ ∞

s0

ℑ(I(s′))
s− s′

ds′
)

, (4.4)

wheres0 = 4m2 ands′0 = −t −M2−4mM are the threshold in thes-channel and in theu-channel,
respectively.

For the principal value integral computation, we used the trapezoidal rule, assuming that
ℑ(I(s)) = 0 far away from the origin, forfs ≤ −100.0 and fs ≥ 50.0. The results show good
agreement with those by DCM. Thus the relation of Eq. (4.4) provides a consistency check of the
numerical results produced by DCM.

5. Summary

We presented new results of GR@PPA 2.8, the event generator package for proton-proton and
proton-antiproton collision, as a QCD application of GRACE. The matching method can be applied
to singleW andZ production processes and diboson (W +W−, ZW andZZ) production processes.

We also developed the program package GRACE/SUSY-loop for the EW corrections and QCD
corrections of the MSSM amplitudes at one-loop order. Then we calculated the radiative correc-
tions to production processes and decay processes of SUSY particles, in the framework of MSSM,
using GRACE/SUSY-loop.
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Figure 3: Numerical results ofℜ(Inon−planar) andℑ(Inon−planar) for −20.0≤ fs ≤ 20.0 and ofℑ(Inon−planar)

for −100.0≤ fs ≤−20.0 in units of 10−12 GeV−6 with t = −10000.0GeV2. Plotted points are the real part
(bullets) and the imaginary part (squares).

The calculation of the scalar integral of two-loop non-planar box diagrams involving massive
particles, was shown as an example of the treatment of multi-loop integrals in the GRACE project.
We introduced DCM for the evaluation of the loop integrals. The idea in DCM is that theε value
in the propagators is treated numerically as a finite number.The usage of the dispersion relation is
a powerful consistency check between the real and the imaginary part of the integral.
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