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1. Introduction

High energy physics at the current and future colliders tike LHC and the ILC requires
theorists to carry out large-scale calculations with miodtdy productions. In the perturbative
approach, the number of Feynman graphs to be calculatedsgapidly as the number of produced
particles increases and as the order of perturbation becbigber. For example, several tens of
diagrams typically appear in the final four-body processethea tree level, but a few thousand
diagrams emerge in the 1-loop correction. Performing swuchpeitation is absolutely beyond the
human power if it should be done by hand. Since the proceduseperturbation calculation is
well established, computers must be able to take the platteedfuman hand. In the past decade,
several groups have developed computer programs whichagerigeynman diagrams and calculate
cross sections automatically. The GRACE system is such grgmo package for the automatic
calculation of the amplitudes, based on the Feynman ruléseaftandard model (SM) and also of
the minimal supersymmetric extension of the standard mdd85M). We report the current status
of studies with the GRACE system on QCD and MSSM. Furthermarealso take the two-loop
non-planar box diagram as an example to treat loop-diagheysnd one-loop diagrams.

2. QCD application for the LHC

A program package of GR@PPA (GRace At Proton-Proton/Aoitigpy) version 2.8 was re-
leased in November, 2010 1]JGR@PPA is an extension of the GRACE system [2, 3] to hadron
collision interactions. GRACE is a powerful tool for deng the differential cross section of
hard interactions at the parton level, and for generatiegctirresponding events with the help of
BASES/SPRING [4, 5]. GR@PPA provides a mechanism for adtffiageffects of the initial-state
variation in the flavor and momentum according to the paristridution finctions (PDF), and for
achieving a generalization of the final state. The previasases of GR@PPA [6, 7] included
many multi-body (multi-jet) production processes, suckvas jets andZ + jets, diboson\W W,
WZ, Z7) + jets, top-pair + jets, and QCD multi-jets. Although thesien 2.8 includes only those
processes for single and double weak-boson productiongiatsd with the jet production up to
one jet, a jet matching method is applied to simulate the wemon kinematics continuously in
the entire phase space.

In order to accomplish an appropriate jet matching, we sgbttivergent collinear components
numerically from radiative (1 jet) processes. The sub&écbmponents are identical to the leading
terms in parton showere (PS), applied to non-radiative {0gecesses. Thus, we can obtain
smooth spectra by combining the subtracted 1-jet procegilshe O-jet processes to which an
appropriate PS is applied, with allowing any divergence aulde-counting problem. Since the
PS implementation is limited with a certain energy scaiss), the subtraction is limited with the
same scale. In addition, we takps equal to the factorization scale in order to strictly presghe
identity between the PS and PDF.

We have shown in a previous report [8] that the simulation legipg our matching method
and a custom-made initial-state parton shower reprodimepyt spectrum of theZ bosons mea-
sured at Tevatron experiments [9, 10, 11], with very goodipren. Figure 1 shows the result

Ihttp://atlas. kek. j p/ physi cs/ nl o-wg/ grappa. htm .
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Figure 1: pt spectrum ofZ bosons at Tevatron Run pp collisions at a cm energy of 1.8 TeV. The
GR@PPA simulation (histograms) is compared with the measeants by CDF [9] (circles) and DO [10]
(triangles). Together with a result covering tpe range up to 200 Ge¢/(a), a result to cover the range
up to 20 GeVe (b) is presented to show the lopt behavior. In addition to the summed spectrum (solid
line), the spectra of events from tlet+ 0-jet (dashed line) and + 1-jet (dotted line) processes are shown
separately for the GR@PPA simulation in (a).

of a simulation of the same quantity, in which, together viita initial-state PS, a final-state PS
is applied to partons from the hard interaction and to thaskated in the initial-state PS. The
factorization scalepfs) and the renormalization scalg) are taken to be equal to ttieboson
mass (91.17 Ge¢f). We can see that th& + 0-jet component overwhelms the remaining non-
logarithmicZ + 1-jet component for lowpr <~ 100 GeVE, and the non-logarithmic component
converges to zero g¥ — 0. The summed spectrum is somewhat softer compared to thieyse
result. Nevertheless, because of the application of thédiate PS, the simulation is still in good
agreement with the measurements.

3. MSSM application

Despite its compactness and success in describing knowarimental data available up to
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now, the standard model (SM) is considered to be an effettisery which is valid only at the
currently accessible energies, on account of theoreticdllems. Supersymmetric (SUSY) theory,
which predicts the existence of a partner to every parti€lthe SM that differs in spin by one
half, is believed to be an attractive candidate for the thémyond the SM (BSM). The minimal
supersymmetric extension of the SM (MSSM) remains condistéth all known high-precision
experiments at a level comparable to the SM. One of the mgsiritant aims of the particle exper-
iments at sub-TeV-region and TeV-region energies is to@mbdence of the BSM; so the search
for SUSY particles plays a crucial role in it.

Experiments at present and future accelerators, the Laagiedd Collider (LHC) and the In-
ternational Linear Collider (ILC), are expected to disao8&JSY particles and provide accurate
data on them. In particular, experiments at the ILC offehhigecision determination of SUSY
parameters vig e’ -annihilation processes. Since theoretical predictioith gimilarly high ac-
curacy are required for us to extract important physicalltegrom the data, we have to include at
least one-loop contributions in perturbative calculatiofthe amplitude.

Among SUSY particles, only the lightest one (LSP) is stable-parity is conserved. Then,
decay processes should be analyzed precisely in expegraettie LHC and the ILC. Recently,
we have calculated the radiative corrections to produgiimeesses and decay processes of SUSY
particles, in the framework of the MSSM using GRACE/SUS¥dd12, 13, 14, 15]. Related
references can be found in [16].

For many-body final states, each production process or daoagss is described by a large
number of Feynman diagrams, even at tree-level order. Tdrerstill more Feynman diagrams
at one-loop order even for two-body final states. For thisseawe have developed the GRACE
system [3], which enables us to calculate amplitudes autoally. A program package called
GRACE/SUSY-loop is a version of the GRACE system for thewalkion of the MSSM amplitudes
in one-loop order, which includes the model files of the MSSiM #he loop library. There exist
other program packages developed independently by otbepgy for the calculation of the MSSM
amplitudes at one-loop order, SloopS [17] and FeynArt/CEdg.

We have calculated the radiative corrections to produgti@tesses and decay processes of
SUSY particles in the framework of the MSSM using GRACE/SLISdp. Table 1 shows the list
of processes calculated using GRACE/SUSY-loop.

Processes GRACE Preceding studies
Chargino-pair productione( +et — x; + X;") [12] [19, 20, 21]
Chargino decayX, — two body andx;” — three body) [12]

Neutralino-pair productione( +e* — X2+ X9) [13] [19, 20]
Neutralino decayxga 4 — two body andx$ — three body) [13] [22]
Sfermion decayf—é two body) [14] [23, 24, 25]
Stop productiond” +e" — t; +t;) [26] [27]

Stop decaytf — b+ X, t+ X andt; — b+W* + x?) [15] [23, 24, 25]
Gluino decay § — b+ by, t +17) [15] [23]

Table 1: List of processes calculated using GRACE/SUSY-loop



The GRACE project - QCD, SUSY, Multi-loop - J. Fujimoto

4. Two-loop non-planar box diagrams

At the one-loop level, analytic solutions exist for any d&mgs. These are expressed in terms
of known functions, such as logarithms and Spence funciiess, for example [28]).

The extension to calculate higher order corrections is,dvaw not a trivial task, because an-
alytic expressions of the integrals are generally unknowvrhigher-loop diagrams, especially for
diagrams with more general mass configurations. In ordevéocome this situation, we rely on
numerical evaluations. We need to establish efficient nustltbat can be incorporated into auto-
matic computation systems to evaluate cross-sectionst tD&gast decade we have accumulated
experience evaluating one-loop integrals numericallycesithose results can be compared with
analytic answers. We succeeded in calculating vertex, bdxpgntagon diagrams with arbitrary
masses. We also computed two-loop self-energy and veragxains. Related work and references
can be found in [29].

In this paper we focus on the topology in Fig. 2, called the-ptamar box diagram. The loop
integral in the Feynman parametexs,(-- ,x7) is expressed as follows;

1 ! C
| = —/0 dxy dxp dxz dx4 dxs dxs dxz 5(1—21&) D_ieC)® (4.1)

Here,D andC are polynomials of Feynman parameters.

Ty, T4, MMy

P1 P3

T3, ms

D2 2
T, Mo T, Mg

Figure 2: Two-loop non-planar box diagram

The external momentpay, p2, p3 andp, are defined to flow inward, satisfying + p>+ ps+ ps =0.
The kinematical variablesandt are given bys= (p1+ p2)2 = (ps—+ pa)2 t = (p1+ ps)? = (P2 +
ps)2. For later notational convenience we introduce a third iiatcal variableu = (p; + ps)? =
(p2+ ps)?.
The functionsD andC in Eq. (4.1), corresponding to Fig. 2, are
D =CY xm? (4.2)

— {S(XaX2Xq + X1XoX5 + X1 X2X + X1 XpX7 -+ X1X5X6 + XoXaX7 — X3XaXp )

+ t(X3(—XaXe + X5%7))

+ PE(Xa(X1Xa ++ X1X5 + X1X6 + X1X7 + XaXe + XaX7))

+ P3(X3(X2Xg + X2X5 + XoXg -+ X2X7 + X4Xe + X5X6))

+ P3(XaXaXs + X1X5X7 -+ XoXaXs -+ XoXaXe + XgXaXs + XgXaXe + XaXsXe + XaX5X7)

+ PG(X1XaXs + X1 X6X7 + XpX5X7 + XpXeX7 + XaXaXs + XaXeX7 -+ XaXeX7 -+ X5X6X7) }
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and
C = (Xg 4 Xo -+ X3+ X4+ X5) (X + X2 + X3 4 X6 + X7) — (X1 + X2 + X3)*. (4.3)

We introduce théirect Computation Method (DCM), based on a combination of numerical
integration and extrapolation on a sequence of integraMBomprises the following three steps:
(Step 1)¢ in Eq. (4.1) is set to a finite value determined by a (scalednggric sequence =
g =&/(Ac) with | =0,1,---, &, and 0< 1/A. < 1. (Step 2) Evaluate the multi-dimensional
integrall of Eq. (4.1) numerically. Because of the fin#e we obtain a finite value for the integral
corresponding to eadh Thus a sequence bfg)), | =0,1,2,--- is generated. (Step 3) Extrapolate
the sequencl(g) to the limit asg; — O to extractl as limg_gl (€).

If D does not vanish in the integration region, we cangt0 and we do not need an extrap-
olation process als= I (€) |¢—o.

We use Wynn's-algorithm [32, 33] for the extrapolation, which works eiistly under fairly
general conditions, even for very slowly convergent seqeenThee algorithm is applied to the
sequencé(g),l =0,1,--- obtained by multi-dimensional integration.

We evaluatdnon—pianar given by Eq. (4.1). The kinematical varialdas varied butt is fixed
att = —10000 GeV throughout the computations. We introduce the dimensssni@riablefs =
s/rr12. For the mass parameterswegset My =N =My =mg =50 GeV,M =mg =g =y =
90 GeV, andp? = p3 = p3 = p2 = n?.

Fig. 3 shows the results for20.0 < fs < 20.0. It is known thatlnon—pianar has two cuts; one
starts from the normas-channel thresholds = 4n?, and the other frons = —t — M2 — 4mM to
s= —oo. The latter corresponds to tiiechannel threshold at= (M +2m)2. The first and second
cut correspond tds = 4.0 and fs = —6.44, respectively. In Fig. 3 we also show results for the
imaginary part in the range 1000 < fs < —20.0. In this region the imaginary part is small but its
contribution is not negligible when it is put in the dispersintegral;

D(I(s)):3<1>/ wdﬂp/&) Di'_(s;,))ow), (4.9)

T —o0

wheresy = 4n¥ ands,) = —t — M2 — 4mM are the threshold in thechannel and in the-channel,
respectively.

For the principal value integral computation, we used tla@droidal rule, assuming that
O(1(s)) = 0 far away from the origin, forfs < —1000 and fs > 50.0. The results show good
agreement with those by DCM. Thus the relation of Eq. (4.4yigles a consistency check of the
numerical results produced by DCM.

5. Summary

We presented new results of GR@PPA 2.8, the event generatkage for proton-proton and
proton-antiproton collision, as a QCD application of GRACEe matching method can be applied
to singleW andZ production processes and dibosti\W—, ZW andZZ) production processes.

We also developed the program package GRACE/SUSY-loop&EW corrections and QCD
corrections of the MSSM amplitudes at one-loop order. Thercalculated the radiative correc-
tions to production processes and decay processes of SUBMg®m in the framework of MSSM,
using GRACE/SUSY-loop.
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Figure3: Numerical results ofl (Inon— pianar) @nd0(Inon—planar) for —20.0 < f5 < 20.0 and of(Inon—planar)
for —1000 < fs < —20.0 in units of 1012 GeV® with t = —100000Ge\2. Plotted points are the real part
(bullets) and the imaginary part (squares).

The calculation of the scalar integral of two-loop non-plahox diagrams involving massive
particles, was shown as an example of the treatment of howgltiintegrals in the GRACE project.
We introduced DCM for the evaluation of the loop integralfieTdea in DCM is that the value
in the propagators is treated numerically as a finite numides.usage of the dispersion relation is
a powerful consistency check between the real and the iraggpart of the integral.
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