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1. Introduction

Strangeness changing leptonic decays of kaons are an important test ofthe standard model. In
particular, theKl3 decays

K → π + l +νl, l = e, µ (1.1)

are a sensitive probe of QCD at low energies [1]. In addition, these decays provide for the most pre-
cise determination of the Cabibbo-Kobayashi-Maskawa (CKM) matrix elementVus [2, 3], crucial
for testing the unitarity of the CKM matrix. The dominant source of uncertainty inthe extraction of
Vus, resides in the experimentally determined quantity| f+(0)Vus|. TheKℓ3 decay rates were mea-
sured by BNL-E865, KLOE, KTEV, ISTRA+ and NA48, for a recent review see [4]. The decay of
a kaon to a pion, charged lepton and a neutrino is described by the matrix element

〈π0(p′)|sγµu|K+(p)〉= 1√
2
[(p′+ p)µ f+(t)+(p− p′)µ f−(t)], (1.2)

where f+(t) is the vector form factor and the combination

f0(t) = f+(t)+
t

M2
K −M2

π
f−(t) (1.3)

is known as the scalar form factor. The matrix element for the charged pionand the neutral kaon is
related to Eq. (1.3) by isospin symmetry. For the scalar form factor, expansion att = 0

f0(t) = f+(0)

(

1+λ ′
0

t
M2

π
+

1
2

λ ′′
0

t2

M4
π
+ · · ·

)

, (1.4)

defines the slopeλ ′
0 and the curvatureλ ′′

0 parameters. Analogously we define the expansion for the
vector form factor. For a precise determination of|Vus|, it is important to improve the accuracy of
the parameterizations of the form factors using additional theoretical and experimental information.
We use inputs from current algebra, perturbative QCD, lattice and chiral perturbation theory to
provide stringent bounds on the slope and curvature parameters of the parameterizations of the
form factors. More detailed discussions may be found in [5 – 7].

2. Formalism

Analyticity is the ideal tool for relating the information from the unitarity cut to the semilep-
tonic range. The formalism applied in this work (see also [5 – 7]) exploits the fact that a bound on
an integral involving the modulus squared of the form factors along the unitarity cut is known from
the dispersion relation satisfied by a certain QCD correlator. For scalar form factor this reads

χ0(Q
2)≡ ∂

∂q2

[

q2Π0
]

=
1
π

∫ ∞

t+
dt

tImΠ0(t)
(t +Q2)2 , (2.1)

ImΠ0(t)≥
3
2

t+t−
16π

[(t − t+)(t − t−)]1/2

t3 | f0(t)|2 , (2.2)
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with t± = (MK ±Mπ)
2. Similar expression, involving the correlatorχ1(Q2), can be written down

for the vector form factor. We can now use the conformal mapt → z(t)

z(t) =
√

t+−√
t+− t√

t++
√

t+− t
, (2.3)

that maps the cutt-plane onto the unit disc|z|< 1 in thez ≡ z(t) plane, witht+ mapped ontoz = 1,
the point at infinity toz = −1 and the origin toz = 0. This mapping transforms the relations Eqs.
(2.1) and (2.2) to

1
2π

∫ 2π

0
dθ |g(exp(iθ))|2 ≤ I (2.4)

where
g(z) = f0(t(z))w(z). (2.5)

The functionw(z) is called outer function and can be calculated analytically in our case. The
functiong(z) is analytic within the unit disc and can be expanded as:

g(z) = g0+g1z+g2z2+ · · · , (2.6)

and Eq. (2.4) implies
∞

∑
k=0

g2
k ≤ I. (2.7)

Truncating the above series after finite number of terms gives equations for constraints on the shape
parameters. Improvement of the bound results iff0(t) is known at a number of real pointsti. Using
a Lagrange multiplier method, we get a determinantal inequality which leads to a quadratic form
in the shape parameters that is bounded by a known quantity. In order to exploit the knowledge of
the phase, the dispersion contribution fromt+ to tin should be subtracted from the pQCD value,

I′ = χ0(Q
2)− 3

2
t+t−
16π2

∫ tin

t+
dt

[(t − t+)(t − t−)]1/2| f0(t)|2
t2(t +Q2)2 , (2.8)

which requires the knowledge of| f0(t)|2 in the regiont+ ≤ t ≤ tin. Now Eqs. (2.1) and (2.2) can
be written in the following form

∫ ∞

tin
dtρ(t)|O(t)|2|h(t)|2 ≤ I′ (2.9)

for a known weight functionρ(t), and where the functionh(t) is analytic in thet-plane cut for
t > tin and given by

h(t) = f0(t)[O(t)]−1, (2.10)

where we implement the phase information by considering the Omnès function:

O(t) = exp

(

t
π

∫ ∞

t+
dt

δ (t ′)
t ′(t ′− t)

)

, (2.11)

whereδ (t) is theI = 1/2 elastic S-waveKπ scattering phase, in the elastic region and arbitrarily
Lipschitz continuous abovetin, leading to an extended formalism. This is based on the observation
first made in [8] which points out that the phase of the Omnès function can compensate for that of
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the form factor in the region (t+, tin), thereby delaying the onset of the branch point totin. The Eq.
(2.9) can be brought into a canonical form by making the conformal transformation

z̃(t) =

√
tin −

√
tin − t√

tin +
√

tin − t
, (2.12)

which maps the complext-plane cut fort > tin onto the unit disk in thez-plane defined byz = z̃(t).
Now Eq. (2.9) can be written as

1
2π

∫ 2π

0
dθ |g(exp(iθ))|2 ≤ I′. (2.13)

The functiong(z) is now defined by

g(z) = w(z)ω(z) f0(t̃(z)) [O(z)]−1, (2.14)

where the outer function for the Omnès function given by:

ω(z) = exp

(

√

tin − t̃(z)

π

∫ ∞

tin
dt ′

ln |O(t ′)|√
t ′− tin(t ′− t̃(z))

)

. (2.15)

For more information and the review of the formalism, see [5 – 7].

3. Experimental and theoretical information

We briefly give a description of different inputs used for deriving the improved bounds.

3.1 QCD correlators

In the limit Q2 >> Λ2
QCD, the correlatorsχ1(Q2) andχ0(Q2) can be calculated by perturbative

QCD. Recent calculations to orderα4
s [9, 10] give

I+ = χ1(Q
2) =

1
8π2Q2(1+

αs

π
−0.062α2

s −0.162α3
s −0.176α4

s ), (3.1)

I0 = χ0(Q
2) =

3(ms −mu)
2

8π2Q2 (1+1.80αs +4.65α2
s +15.0α3

s +57.4α4
s ). (3.2)

We have omitted the power corrections due to nonzero masses and QCD condensates, as they are
negligible. We getχ1(2GeV) = (343.8±51.6)×10−5GeV−2 andχ0(2GeV) = (253±68)×10−6.

3.2 Low-energy theorems

The symmetries of QCD at low energies are very useful sources of information for our formal-
ism. The vector form factor becomes equal to the scalar form factor att = 0. The SU(3) symmetry
implies f+(0) = 1. The deviations from this limit are small due to Ademollo-Gatto theorem. Re-
cent determinations from the lattice givef+(0) = 0.964(5) [11]. In the case of the scalar form
factor, current algebra relates the value of the scalar form factor at the Callan-Treiman (CT) point
∆Kπ ≡ M2

K −M2
π to the ratioFK/Fπ of the decay constants [12, 13]:

f0(∆Kπ) = FK/Fπ +∆CT . (3.3)
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In isospin limit,∆CT =−3.1×10−3 to one loop [14] and∆CT ≃ 0 to two-loops in chiral perturbation
theory [15 – 17]. At∆̄Kπ(=−∆Kπ), a soft-kaon result [18] relates the value of the scalar form factor
to Fπ/FK

f0(−∆Kπ) = Fπ/FK + ∆̄CT . (3.4)

Recent lattice evaluations giveFK/Fπ = 1.193±0.006 [19, 20]. A calculation in ChPT to one-loop
in the isospin limit [14] gives̄∆CT = 0.03, but the higher order ChPT corrections are expected to
be larger in this case. In the present work we use as input the values of the vector and scalar form
factor att = 0. For the scalar form factor we impose also the valuef0(∆Kπ) at the first CT point. As
discussed in [7], due to the poor knowledge of∆̄CT , the low-energy theorem Eq.(3.4) is not useful
for further constraining the shape of theKℓ3 form factors at low energies. On the other hand we
obtain bounds on̄∆CT .

3.3 Phase and modulus along the elastic region of the cut

As mentioned in Sec. 2 the bounds can be improved if the phase of the form factor along the
elastic part of the unitarity cut is known from an independent source. According to the Fermi-
Watson theorem, the phase of the form factor coincides with the phase of thescattering amplitude
along the elastic part of the unitarity cut. In our calculations we use belowtin the phases from
[21, 22] for the scalar form factor, and from [23, 24] for the vectorform factor. We recall that,
while the standard dispersion approaches require a choice of the phaseabove the inelastic threshold
tin, the present formalism is independent of this ambiguity [6]. Abovetin we have takenδ (t) as a
smooth function approachingπ at high energies. The results are independent of the choice of the
phase fort > tin. We have checked numerically this independence with high precision.

To estimate the low-energy integral in Eq. (2.8), we use the Breit-Wigner parameterizations
of | f+(t)| and | f0(t)| in terms of the resonances given by the Belle Collaboration [25] for fitting
the rate ofτ → Kπν decay. This leads to the value 31.4×10−5GeV−2 for the vector form factor
and 60.9×10−6 for the scalar form factor. By combining with the values ofI+,0 defined in Eqs.
(3.1)-(3.2), we obtain

I′+ = (312±69)×10−5GeV−2, I′0 = (192±90)×10−6. (3.5)

4. Results

In Fig. 1, the allowed band for the slopeλ ′
0 is compared with the experimental determina-

tions. The slope predicted by NA48 (2007) is not consistent with our predictions. However their
recent determination confirms our predicted range, see Veltri et.al [4]. We note that the theoretical
prediction of ChPT to two loopsλ ′

0 = (13.9−0.4
+1.3± 0.4)× 10−3, λ ′′

0 = (8.0−1.7
+0.3)× 10−4 is consis-

tent within errors. For the central value of the slopeλ ′
0 given above, the range ofλ ′′

0 is (8.24×
10−4,8.42× 10−4). The same is true for the theoretical predictionλ ′

0 = (16.00± 1.00)× 10−3,
λ ′′

0 = (6.34±0.38)×10−4 obtained from dispersion relations.
As shown in Fig. 2 for vector form factor, except the results from NA48and KLOE, which

have curvatures slightly larger than the allowed values, the experimental data satisfy the constraints.
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Figure 1: The allowed range for the slope of the scalar form factor, when we include phase, modulus and the
Callan-Treiman constraint (yellow band). The grey band shows the range without using the Callan-Treiman
constraint.
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Figure 2: The best constraints for the slope and curvature of the vector form factor in the slope-curvature
plane, where the allowed region is the interior of the ellipse.

We note also that the theoretical predictionsλ ′
+ = (24.9±1.3)×10−3, λ ′′

+ = (1.6±0.5)×10−3

obtained from ChPT to two loops, andλ ′
+ = (26.05+0.21

−0.51)×10−3, λ ′′
+ = (1.29+0.01

−0.04)×10−3, and
λ ′
+ = (25.49± 0.31)× 10−3, λ ′′

+ = (1.22± 0.14)× 10−3 obtained from dispersion relations are
consistent with the constraint. For precise results, see [5]. As we mentioned, the same formalism
can be used to derive regions in the complex plane where the form factorscan not vanish. In Fig. 3
we show the region where zeros of the scalar form factors are excluded. If we impose the Callan-
Treiman constraint, the value off0(∆Kπ), the scalar form factor cannot have simple zeros in the
range−1.81GeV2 ≤ t0 ≤ 0.93GeV2. The formalism rules out zeros in the physical region of the
kaon semileptonic decay. In the case of complex zeros, we have obtained arather large region
where they cannot be present.

For the vector form factors, simple zeros are excluded in the interval−0.31GeV2 ≤ t0 ≤
0.23GeV2 of the real axis, while Fig. 4 shows the region where complex zeros are excluded.
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Figure 3: Domain without zeros for the scalar form
factor: the small domain is obtained without including
phase and modulus in the elastic region, bigger one
using phase, modulus and Callan-Treiman constraint.

Figure 4: Domain without zeros for the vector form
factor: the small domain is obtained without including
phase and modulus in the elastic region, bigger one
using phase and modulus.

For more results, see [5]. We mention that we do not use as input the soft-kaon theorem, but
derive bounds on the value at the relevant point. Thus we are able to predict a narrow range
−0.046≤ ∆̄CT ≤ 0.014 for higher order corrections.

5. Conclusion

We have studied the shape of the scalar and vector form factors in theKℓ3 domain, crucial for
the determination of the modulus of the CKM matrix element|Vus|. The results are very stringent in
the scalar form factor case. The most recent results from NA48 [4] is consistent with our prediction
for the slope of scalar form factor and restricts the range of the slope to∼ 0.01−0.02.

Our results show that the zeros are excluded in a rather large domain at lowenergies, which
provides confidence in semiphenomenological analyses based on Omnès representations which
assume that the zeros are absent. Unlike the standard dispersive treatments, our method does not
require the knowledge of zeros and of the phase above the inelastic threshold. Therefore, model
dependent assumptions are not necessary. The price to pay is that we only are able to predict
ranges for shape parameters and zero positions. However, due to the high precision of low energy
measurements and calculations, the predicted bounds are very stringent.
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