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1. Introduction

Strangeness changing leptonic decays of kaons are an importantttesstdndard model. In
particular, theK|3 decays
Komn+l+vy,l=eu (1.1

are a sensitive probe of QCD at low energies [1]. In addition, theseydgarovide for the most pre-
cise determination of the Cabibbo-Kobayashi-Maskawa (CKM) matrix elemgifi2, 3], crucial
for testing the unitarity of the CKM matrix. The dominant source of uncertaintiyerextraction of
Vis, resides in the experimentally determined quarjtity(0)Vys|. TheK,3 decay rates were mea-
sured by BNL-E865, KLOE, KTEV, ISTRA+ and NA48, for a receaview see [4]. The decay of
a kaon to a pion, charged lepton and a neutrino is described by the matrixxleme

1
(m°(P)syuulK™ (p) = ﬁ[(p’ﬂt Pufi®) +(p—p)uf-(1)], (1.2)
wheref_ (t) is the vector form factor and the combination
— (1) (1.3)
T

is known as the scalar form factor. The matrix element for the chargechpidthe neutral kaon is
related to Eq. (1.3) by isospin symmetry. For the scalar form factor, sipaatt = 0

2
fo(t) = f,(0) <1+)\0M2+2)\ L, ) (1.4)

defines the slop#j and the curvaturdgy parameters. Analogously we define the expansion for the
vector form factor. For a precise determination\g§|, it is important to improve the accuracy of
the parameterizations of the form factors using additional theoreticabguadimental information.
We use inputs from current algebra, perturbative QCD, lattice andlgiéréurbation theory to
provide stringent bounds on the slope and curvature parameters othmgterizations of the
form factors. More detailed discussions may be found in [5—7].

2. Formalism

Analyticity is the ideal tool for relating the information from the unitarity cut to teendep-
tonic range. The formalism applied in this work (see also [5—7]) exploitsatitiiat a bound on
an integral involving the modulus squared of the form factors along therityitat is known from
the dispersion relation satisfied by a certain QCD correlator. For scatarféator this reads

XO(QZ)ET / dt “T_n(gz ’ (2-1)
ImMo(t) > gtfé,; ¢ —t+)(tt3— L2 o, 2.2)
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with t+ = (Mk = M;)2. Similar expression, involving the correlatpr(Q?), can be written down
for the vector form factor. We can now use the conformal mapz(t)

_ Vv ot 2.3)
ViV =T
that maps the cutplane onto the unit disiz| < 1 in thez= z(t) plane, witht, mapped onta=1,

the point at infinity toz= —1 and the origin t@ = 0. This mapping transforms the relations Eqs.
(2.1) and (2.2) to

Z(t)

2n
o | dolgtexpiio))f? <1 (2.4)

where
9(2) = fo(t(2))w(2). (2.5)

The functionw(z) is called outer function and can be calculated analytically in our case. The
functiong(z) is analytic within the unit disc and can be expanded as:

9(2) = go+ Quz+ @2+, (2.6)

and Eq. (2.4) implies
2
ok <l. (2.7)
2

Truncating the above series after finite number of terms gives equatior@Tstraints on the shape
parameters. Improvement of the bound resulfg(if) is known at a number of real poirt{s Using

a Lagrange multiplier method, we get a determinantal inequality which leads tadaatic form
in the shape parameters that is bounded by a known quantity. In ordepltiteixe knowledge of
the phase, the dispersion contribution fromnto t, should be subtracted from the pQCD value,

3ttt tin [(t—t+)(t—t_)]1/2’fo(t)‘2
216m _/t+ dt t2(t + Q2)2 ) (2.8)

" = xo(Q?) —

which requires the knowledge ¢fo(t)|? in the regiont, <t <tj,. Now Egs. (2.1) and (2.2) can
be written in the following form

| apmlom P <1 (2.9)

for a known weight functiorp(t), and where the functioh(t) is analytic in thet-plane cut for
t > ti, and given by
h(t) = fo(®)[0(t)] %, (2.10)

where we implement the phase information by considering the Omnés function:

o) = exp(%/:’ dtt’(ét’(t—/)t)> ) (2.12)

whered(t) is thel = 1/2 elastic S-wav& 1t scattering phase, in the elastic region and arbitrarily
Lipschitz continuous abowg,, leading to an extended formalism. This is based on the observation
first made in [8] which points out that the phase of the Omnés function capeosate for that of
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the form factor in the regiort (, tin), thereby delaying the onset of the branch poirtitoThe Eq.
(2.9) can be brought into a canonical form by making the conformalfwemstion

\/\/::::+ ﬁvtm (2.12)

which maps the complexplane cut fot > tj, onto the unit disk in the-plane defined by = Z(t).
Now Eg. (2.9) can be written as

At) =

1 2n
— [ dB|g(exp(if))|> <. (2.13)
211 Jo

The functiong(z) is now defined by

9(2) =w(2) w(2) fo(f(2)) [O(2)] %, (2.14)

where the outer function for the Omnés function given by:

_ Vlin In|ot)]
w(z)_exp< /tm N (T ))) (2.15)

For more information and the review of the formalism, see [5-7].

3. Experimental and theoretical information
We briefly give a description of different inputs used for deriving thermapd bounds.

3.1 QCD correlators

In the limit Q >> Ay, the correlatorg:(Q?) andxo(Q?) can be calculated by perturbative
QCD. Recent calculations to ordef [9, 10] give

Iy = x2(QP) = SnZQZ(H ® _0.06202 —0.16203 — 0.176a3), (3.1)
3 o 2
lo = Xo(Q?) = W(H 1.8005+ 4.6502 + 15,008 + 57.4a2). (3.2)

We have omitted the power corrections due to nonzero masses and QCénsates, as they are
negligible. We ge1(2GeV) = (3438+51.6) x 10 °GeV 2 andxo(2GeV) = (253+68) x 1076,

3.2 Low-energy theorems

The symmetries of QCD at low energies are very useful sources ofiation for our formal-
ism. The vector form factor becomes equal to the scalar form factee & The SU(3) symmetry
implies f.(0) = 1. The deviations from this limit are small due to Ademollo-Gatto theorem. Re-
cent determinations from the lattice gife (0) = 0.964(5) [11]. In the case of the scalar form
factor, current algebra relates the value of the scalar form factoea@ahian-Treiman (CT) point
Ak = MZ — M2 to the ratioFk /Fr of the decay constants [12, 13]:

fo(Akn) = Fc/Fr+AcT. (3.3)
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Inisospin limit,Act = —3.1x 1023 to one loop [14] and\cT ~ O to two-loops in chiral perturbation
theory [15-17]. ATEK,T(: —NAk ), a soft-kaon result [18] relates the value of the scalar form factor
to Fn/FK

fo(—Dkn) = Fr/Fc +AcT. (3.4)

Recent lattice evaluations gi¥e /F; = 1.1934+0.006 [19, 20]. A calculation in ChPT to one-loop

in the isospin limit [14] gives&;T = 0.03, but the higher order ChPT corrections are expected to
be larger in this case. In the present work we use as input the values wdéd¢tor and scalar form
factor att = 0. For the scalar form factor we impose also the vdii{éx ;) at the first CT point. As
discussed in [7], due to the poor knowledge&@fr, the low-energy theorem Eq.(3.4) is not useful
for further constraining the shape of thg; form factors at low energies. On the other hand we
obtain bounds oAcr.

3.3 Phase and modulus along the elastic region of the cut

As mentioned in Sec. 2 the bounds can be improved if the phase of the foion #ong the
elastic part of the unitarity cut is known from an independent sourcecorling to the Fermi-
Watson theorem, the phase of the form factor coincides with the phase sifdtiering amplitude
along the elastic part of the unitarity cut. In our calculations we use bglotve phases from
[21, 22] for the scalar form factor, and from [23, 24] for the vedtmnm factor. We recall that,
while the standard dispersion approaches require a choice of thegiimsethe inelastic threshold
tin, the present formalism is independent of this ambiguity [6]. Abgvere have takem(t) as a
smooth function approaching at high energies. The results are independent of the choice of the
phase fot > t;,. We have checked numerically this independence with high precision.

To estimate the low-energy integral in Eq. (2.8), we use the Breit-Wignanpeterizations
of |f(t)| and|fo(t)| in terms of the resonances given by the Belle Collaboration [25] for fitting
the rate oftr — Knv decay. This leads to the value.8k 10-°GeV 2 for the vector form factor
and 609 x 106 for the scalar form factor. By combining with the valuesl o defined in Egs.
(3.1)-(3.2), we obtain

I = (3124+69) x 10 °GeV 2, I§=(192+90) x 10°°. (3.5)

4. Results

In Fig. 1, the allowed band for the slopg is compared with the experimental determina-
tions. The slope predicted by NA48 (2007) is not consistent with ourigtieds. However their
recent determination confirms our predicted range, see Veltri et.al [@h&é that the theoretical
prediction of ChPT to two loopaj = (139,93 +0.4) x 1073, A{ = (8.05) x 10~* is consis-
tent within errors. For the central value of the slolgegiven above, the range af] is (8.24 x
1074,8.42x 10~4). The same is true for the theoretical predictigh= (16.00+ 1.00) x 10~3,

A = (6.34+0.38) x 10~* obtained from dispersion relations.

As shown in Fig. 2 for vector form factor, except the results from Na#8 KLOE, which

have curvatures slightly larger than the allowed values, the experimetdaatasfy the constraints.
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Figure 1: The allowed range for the slope of the scalar form factor,ivae include phase, modulus and the
Callan-Treiman constraint (yellow band). The grey bandwshitne range without using the Callan-Treiman
constraint.
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Figure 2. The best constraints for the slope and curvature of the wéatm factor in the slope-curvature
plane, where the allowed region is the interior of the edlips

We note also that the theoretical predictiors= (24.941.3) x 1073, A7 = (1.64+0.5) x 103
obtained from ChPT to two loops, and. = (26.05'321) x 1073, A7 = (1.2933%) x 1073, and
AL = (25.4940.31) x 1073, A/ = (1.224+0.14) x 103 obtained from dispersion relations are
consistent with the constraint. For precise results, see [5]. As we medtitreesame formalism
can be used to derive regions in the complex plane where the form faetorst vanish. In Fig. 3
we show the region where zeros of the scalar form factors are extlifdee impose the Callan-
Treiman constraint, the value d§(Ax 1), the scalar form factor cannot have simple zeros in the
range—1.81Ge\ < ty < 0.93Ge\?. The formalism rules out zeros in the physical region of the
kaon semileptonic decay. In the case of complex zeros, we have obtanaditkea large region
where they cannot be present.

For the vector form factors, simple zeros are excluded in the inter@aBl Ge\ < tp <
0.23Ge\* of the real axis, while Fig. 4 shows the region where complex zeros ataded.
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Figure 3: Domain without zeros for the scalar form Figure 4: Domain without zeros for the vector form
factor: the small domain is obtained without including factor: the small domain is obtained without including
phase and modulus in the elastic region, bigger ongohase and modulus in the elastic region, bigger one
using phase, modulus and Callan-Treiman constraintusing phase and modulus.

For more results, see [5]. We mention that we do not use as input theasmfttkeorem, but
derive bounds on the value at the relevant point. Thus we are able d&tpeenarrow range
—0.046< Act < 0.014 for higher order corrections.

5. Conclusion

We have studied the shape of the scalar and vector form factors iy 4ltemain, crucial for
the determination of the modulus of the CKM matrix elemgfy|. The results are very stringentin
the scalar form factor case. The most recent results from NA48 [4}isistent with our prediction
for the slope of scalar form factor and restricts the range of the slopedt61— 0.02.

Our results show that the zeros are excluded in a rather large domain ahégies, which
provides confidence in semiphenomenological analyses based on Ospnésentations which
assume that the zeros are absent. Unlike the standard dispersive ttesatuemethod does not
require the knowledge of zeros and of the phase above the inelastibdlire3 herefore, model
dependent assumptions are not necessary. The price to pay is thallyar® able to predict
ranges for shape parameters and zero positions. However, due tighhgrécision of low energy
measurements and calculations, the predicted bounds are very stringent.
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