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The short-lived nuclidé*Sm, synthesized in stellar events by fherocess and now
extinct in the Solar System, serves as both anomsgsical and geochemical
chronometer through measurements of isotopic anemalf its o-decay daughter
YNd. Using artificially produced*®sm via**’Sm(,n), **’Sm,2n) and **’Sm(p,ns)

reactions, we performed a new measurement of*fBen half-life by measuring the
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195 mA*’Sm alpha activity with a Si surface barrier deteetod the***Sm/*’Sm atom

ratio with accelerator mass spectrometry (AMS). leult,ti‘/‘g =68 = 7 (1) million

years (My), is significantly shorter than the adaptalue (103 £+ 5 My). The shorter
1%Sm half-life value implies a higher initial Solayssem ratio, {°*Sm/**Sm), =
0.0094 £ 0.0005 @, than the recently derived value 0.0085 * 0.0268)/(The time
interval between isolation of the Solar Nebula frdhe interstellar medium and
formation of the first solids, is reduced by a &acof ~2.5 to 20 from previous
estimates. Early planetary mantle differentiationcesses on Earth, the Moon and
Mars dated by**Sm-*Nd converge to a shorter time span, due to the terdteffect

of the new**Sm half-life and {**Sm/**Sm), values.
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1. Introduction

The p-process nuclidé*sm (k= 103 £ 5 My [1,2]), now extinct, was live in tharty
Solar System as established through isotopic arnesnal itsa. daughter*Nd, first observed in
meteorites [3]. The initial*®Sm/*‘Sm abundance (see also [4] in these proceedirgshah of
other short-lived nuclidesff < 100 My) present in the early Solar System, has hesed to
study the time evolution of nucleosynthesis proslictthe Interstellar Medium until the start of
formation of the Solar System [5,6]. Samarium-14& also as an important geochronometer
for the early silicate mantle differentiation irapktary bodies (meteorite parent bodies, Earth,
the Moon and Mars, see [7] for a recent reviewhaf field). The'**Sm half-life has been
measured four times with values of ~50 My [8], 741% My [9] and 103 + 5 My [1,2].
Considering the range of these values and its itapoe for Solar System evolution and
chronology, we have performed a new determinatibi*®m half-life, leading to a shorter
value of 68 = 7 My [10]. We describe below the meament and implications of this value.

2. Experimental method and results

We have performed a new determination*86m half-life [10] by measuring both the
1S mi*'Sma activity ratio @v4dAwsr) and the atom ratidNg.g/Ni47) in activated*’Sm samples.
The**Sm half-life (t;%s ) is obtained through the exgzien
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where t} =107+£09 Gy [11] is thedecay half-life of naturally occurring’Sm. The
measurement of ratios eliminates some of the sydtemncertainties irw-activity (detector
efficiency and geometrical acceptance) and in detettion of absolute number of atoms.
Samples of***Sm were prepared from three different activatiohsenriched**’Sm targets
(**'sSm@;n)**°sm, *'Smp,2n)**°Sm and *’Smn,2n)**°Sm, see [12,13] for details). The
o activities were measured with a surface barrieeaet. Accelerator mass spectrometry
(AMS) was used to measure the atom ratios becaugemeed to discriminaté®Sm from
stable isobarid*™Nd impurities. Following the measurement, the sesirwere dissolved and
quantitatively diluted with high-purit}*Sm to obtair**Sm#*’Sm atom ratios in the range 0
10°. The AMS measurements were performed at the AmgoBER-ATLAS facility by
accelerating highly-charged ion&**6nt*") produced in the Electron Cyclotron Resonance
(ECR) source to an energy of 6 MeV/u and detecseaguthe Enge gas-filled spectrograph for
ion identification (see [13] for details). Fig. haws the alpha energy and ion identification
spectra. The double ratios of tH&SmA*’Sm isotopic abundances measured by using AMS to
those derived from thé,,7A.4s activity ratios using the adopté®Sm half-life (103 My) are
plotted in fig.2 for the independently activateangées; the double ratio is equivalent to the
ratio of the measured half-life (Eq. (1)) to theoptdd *°Sm half-life. From fig.2, our
determination of this half-life is 68 £ 7 My, sidicantly shorter than the adopted value.
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Figure 1: (left panel) Alpha energy spectra meastdioe (top to bottom) the gamma, neutron
and proton activated samples, determining thaig/A4¢) activity ratio; (right panel) lon
identification spectra of differential energy losssus position along the focal plane of the gas-
filled magnet for then-activated sample (top). The lower spectrum cooedp to an
unactivated (natural) Sm sample. The groups cooregipg to**°Sm and stable isobari¢Nd
(from chemical impurities) are indicated. TH&e group shown results from residual gas in the
ion source.
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Figure 2: Double ratios dfl;4¢/N;47 atom ratios measured by using AMS to those exgddoben

the o activity ratio of the different samples. G-x, Nard P-x represent the gamma, neutron and

proton activated samples. The double ratios aralgguthe ratios of the determined half-life

for each sample to that adopted in the literathaa points represented by a diamond and

circles were measured as the ratio*8m counts versu¥’Sn??* ion beam current; square

symbols represent ratios 8fSm counts versus quantitatively attenuaf€8m counts in the

same detector.
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3. Implicationsto Solar System chronology

The initial abundancerd) of **°Sm at the time of Solar System formation, usually
expressed relative to the other $mprocess nuclidé*’Sm (stable), can be determined by
extrapolation of**Sm/*Sm values extracted from individual meteorites mbkn ages to the
age of the Solar System, 4,568 My. In these stutties,= (“**SmA*'Sm), value is determined
from the correlation between tH&Nd/**“Nd isotopic anomaly of thé**Sm alpha daughter
“Nd and the chemical Sm content (expressed‘am/*Nd) in different mineral phases of the
meteorite. Boyet et al. [14] selected a set ofaflit meteorites (i.e., that remained a closed
system with respect to Sm-Nd) and derived a vajse0.0085 + 0.0007 @ for the initial
1S m/i**Sm ratio in the Solar System. Figure 3 presentsiaterpretation of the available data
using our measured value of tHéSm half-life, leading to a higher initial ratio 60094 +
0.0005 (2).
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Figure 3: Reinterpretation of thé*&mA*‘Sm), initial ratio measured in selected meteorites
([14] and references therein) plotted against time inbdfore the present (bp). The time of
solar system formation is taken as 4,568 My bp. Jdteof meteorites selected by Bogetl.
[14] as closed Sm-Nd systems is used here: 4 eacfiloore County, EET87520, Caldera,
Binda), one mesosiderite (Mt. Padburry) and oneign@-EW 86010). The data are fitted here
by a new decay curve (solid blue line) using #f&m half-life value measured in this work
(ti= 68 My) and yield an initial solar systentioa,= (***Sm***Sm), = 0.0094 + 0.0005 @),
compared to the curve from Boyattal. [14] (dashed), who usedy =103 My and yieldge
0.0085 + 0.0007 @. Recent data [15,16] on angrite meteorites NWA1484590 and
D’Orbigny are included in the figure. NWA 4590, vefeoages determined BSm (4568 + 27
My [15]) and by Lu-Hf (4470 + 23 My [16]) are incsistent and D’Orbigny (reported to be
disturbed [16]) were not included in the present fi

The initial abundances of short-lived nuclides hie tSolar System, combined with estimated
production yields obtained from nucleosynthesicwations, provide constraints on the time
evolution of Galactic nucleosynthesis. Wasserburgl.g5] used the Uniform Production (UP)
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closed-box model (without Galactic-disk enrichmamtlow-metallicity gas from the halo)
which assumes a quasi-steady state of short-livetides abundance in the Interstellar Medium
(ISM). The steady-state nuclide abundances areewethi by a balance between stellar
production and free decay. With the previdtiSm values (t;x = 103 My anfSm/*'Sm),

= 0.01), Wasserburg et al. [5] estimated an ismtatime intervalA ~ 70 My between formation
of the Solar nebula and formation of the first dsliwith the'*°Sm values derived herg,*® =

68 My andr, = 0.0094 A decreases to ~5 My. This value is closer to theegacalculated from
some other nuclides, e.g*Hf/***Hf. Huss et al. [6] have used a more compreher@ighase
open-box mixing model, proposed by Clayton [17hufe 4 (adapted from [6]) shows initial
Solar System abundances normalized to produatites for a number of short-lived
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Figure 4: (Adapted from [6]) Initial abundance (daliots) of short-lived radioactive nuclides
(Zr) relative to a stable specieBs normalized by the respective nucleosynthetic pctidn
ratio (R/Ps) plotted versus the radioactive nuclide mean [ifee solid lines (left to right)
correspond to the quasi-steady state model (eeuivdab the UP model, see text) with an
isolation time intervah of 0, 50 and 100 My). The dashed lines corresporal3-phase model
of the ISM with two mixing times between these @sagleft to right)T; = T, = 10, 50, 100 and
300 My (see [6,17] for details).The solid red depresent thé**Sm/*‘Sm ratio using our
present values]y = 68 My ang= 0.0094. Within this model, the point lies cldsetheA=
100 My curve.

nuclides vs. their mean lives. With the previotiSm values, thé**Sm/**Sm point (upper right
part of plot) is positioned close to 3-phase made¢he ISM [6,17] withT, = T, = 300 My curve
(rightmost dashed curve), as are tH&/**1 and **Puf*’Th points. T, and T, represent
respectively mixing time between a (star-formingdlecular cloud phase and large neutral-
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hydrogen (H 1) clouds not affected by supernovazks$, and between the latter clouds with a
phase made of smaller H | clouds heated by supaeskiocks. The reviséSm/*‘Sm point
(solid red circle) is positioned now close bottthe free-decay curve with = 100 My and to
the 3-phase model witfy = T, = 100 My. Figure 4 clearly shows the complexitytiod issue of
explaining simultaneously the abundances of sivetl!nuclides in the Early Solar System.
The values derived here reduce significantly'tf@m residence times, independent of model.

The***Sm/A*Nd system has also become an important tool fasriogy of early silicate
mantle differentiation processes in planetary b®dig18]. Terrestrial, Lunar, and Martian
planetary silicate mantle differentiation eventsedawith ***Sm-*Nd converge to a shorter
time span and in general to earlier times, dudéocombined effect of the neWsSm half-life
and ¢*°*smA*‘sm), values [10]. The revised®Sm**Nd age of lunar ferroan anorthosite 60025,
recently dated with precision [19], becomes comsistith ages based on tHéSm***Nd and
Pb-Pb chronometers (see fig. 5).

43592 + 2.4 6 Pb-Pb age (20)
4,367 + 11 e '*'Smage (20)
4,318+30 —o- E 1469m age (20)

4,393 2 +@- '%°Sm age (20)
- with revised t;

4,200 4,300 4,400 4,500 4,568
Age (My bp) +S.S.

Figure 5: Dating of Lunar ferroan anorthosite 60@85Pb-Pb,"*’Sm and**°Sm chronometers
[19]. The ***Sm age (175% My), derived using the revised valuds, = 684y and ro=
0.0094+0.0005 is in better agreement with the peeétb-Pb andi‘”Sm ages (208.8+2.4 and
201+11 My, respectively [19]). The horizontal axepresents the sample age in millions of
years before the present (My bp).
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