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1. Introduction

The globular clusters of the Milky Way have played a majoefiol modern astronomy. They
have long been regarded to be the best example of a simplar giepulation, i.e., a coeval and
chemically homogeneous population [1]. These simpleast@ibpulations are the oldest objects
for which reliable ages can be obtained. Prior to 2003, thes aj globular clusters as inferred
from isochrone fitting [2] provided firm lower limits to the agf the Universe (see Figure 1).
After 2003, the ages inferred from globular clusters prexad important independent check on the
WMAP results [3].
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Figure1: Isochrone fitting to the globular cluster M92. (Taken frorguitie 3, A Distance-Independent Age
for the Globular Cluster M92, Grundahl et al., The AstroncahiJournal, Volume 120, Issue 4, 2000, pp.
1884-1891 [2]. Reproduced by permission of the AAS.)

In the context of th&luclei in the Cosmomeetings, globular clusters are ideal laboratories for
testing the predictions of nuclear astrophysics. The lmiggs, colours and chemical abundances
of individual stars are the direct result of stellar evalutand stellar nucleosynthesis within a given
object. Recent results demonstrate, however, that evelystudied Galactic globular cluster ex-
hibits large star-to-star abundance variations for thiatlejements O and Na, and thus, globular
clusters cannot be regarded to be simple stellar poputatiGiurthermore, a small but growing
number of clusters also show variations in Fe-peak elem@R&views on Galactic globular clus-
ters include [4], [5], and [6], and some excellent materigpared by Jay Anderson can be found
at the following websité<$3.)

Ihttp://hubblesite.org/newscenter/archive/releagd928/video/d/
2http://hubblesite.org/pubinfo/ppt/2010/28/ppt.ppt
Shttp://hubblesite.org/newscenter/archive/releagd928/video/b/
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2. Chemical Abundances and Nucleosynthesis

In this section, | offer five examples of how chemical aburmdameasurements in globular
clusters have provided valuable new insights into stellahugion, stellar nucleosynthesis and nu-
clear astrophysics. The examples are presented in ordagomiicanumber of the species being
investigated.

i. Measurements of lithium in the metal-poor globular clust&C 6397 have provided strong
observational constraints on first dredge-up, atomic sliffa and turbulent mixing [7]. (See Figure
2)
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Figure 2: Lithium abundance (from non-LTE analysis) vs. absolutei@isnagnitude (left) and spectro-
scopic targets superimposed onto the colour-magnitudgatia (right). [Credit: Lind et al., A&A, 503,
545, 2009, reproduced with permissi@ESO.]

iil. Measurements of carbon and nitrogen in globular clustave Bnabled quantitative tests of
stellar evolution models that include thermohaline mixi@p (See Figure 3.)

ii. Building upon earlier work by [9] and [10], there is now coelijng evidence that ev-
ery well studied Galactic globular cluster shows a largeeagrin the abundances of oxygen and
sodium including a prominent O-Na anticorrelation [11]g$8gure 4). Such abundance patterns
are believed to be the result of hydrogen-burning at highptrature. With the discovery of these
light element abundance variations in unevolved stars [h2] consensus view is that these abun-
dance variations have been imprinted on globular clusses $tom their birth rather than being the
product of nucleosynthesis and mixing within the observadss Intermediate-mass (4 M
< 8 M) asymptotic giant branch (AGB) stars are a leading candittatproducing the light ele-
ment abundance variations. In this context, [13] suggetatthe most extreme values (O-poor,
Na-rich) can be produced in AGB stars only if the [14] rate thoe 2°Na (pa) “°Ne reaction is
lowered by a factor of four (see Figure 5).

iv. The abundances of magnesium and aluminium present, in glotmgar clusters, a star-to-
star variation and anticorrelation [15]. As discussed [8],[the presence of a Mg-Al anticorrela-
tion may be related to a combination of mass and metallicitthe cluster. Fast rotating massive
stars have been suggested as an alternative site to AGBatar®ducing the light element abun-
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Figure 3: [C/Fe] vs.My for NGC 5466, M92, and M15. (Taken from Figure 2, The Role oéfrhohaline
Mixing in Intermediate- and Low-metallicity Globular Cless, Angelou et al., The Astrophysical Journal,
Volume 749, Issue 2, 2012, p 128 [8]. Reproduced by perniissithe AAS.)

dance variations. For massive stars to produce the obsbtgedll anticorrelation, [17] find that
the [18] rate for the*Mg (p.y) *°Ne reaction needs to be increased by a factor of 1000 at 50
10°K.

v. Measurements of the neutron-capture elements in globluaters have provided unique
observational insight into theprocess at low metallicity. In the globular cluster M22¢[R] ~
—1.7, [19] made an empirical estimate of therocess "residual”" by comparing two populations
of stars, one with a-process only element abundance pattern and the other with-a&process
element abundance pattern. They find thatsipeocess "residual" cannot be explained by AGB
stars with masses 3M,. In their analysis, [19] considered the more metal-richr péiglobular
clusters M4 and M5, [Fe/H}: —1.2. When subtracting the heavy element abundances of Mb fro
those of M4 (as published by [20]), [19] find that teg@rocess residual is remarkably similar to
that of M22. (See the contribution in these proceedinbise’s-process in globular cluster M22:
hints for higher-mass pollutetdy Roederer.)

3. Multiple Populations

The discovery of complex structure in colour-magnitudegchms demonstrates that globular
clusters harbour discrete, multiple populations withididtages and/or chemical compositions
[21]. When using appropriate photometric filters, it is pblesto identify stars lying on various
parts of the O-Na abundance distribution [22 — 24].

In Figure 6, three clusters with differing degrees of phattno and chemical diversity are
shown. The simplest cluster is M4 in which there is a singl¢athieity, a single O-Na anticorre-
lation and one value for theprocess ratio [Ba/Fe]. Our current understanding is tiaiajority
of globular clusters behave like M4, although there are nauntgtanding issues concerning the
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Figure 4: The O-Na anticorrelation for 19 globular clusters. [Cre@iarretta et al., A&A, 505, 117, 2009,
reproduced with permissig@) ESO.]

O-Na anticorrelation including (i) the nature of the padig, (ii) the mass range involved, (iii) the
enrichment timescales, (iv) the relationship with globatgmeters (mass, HB morphology, etc.)
and (v) possible differences with environment, e.g., Miday vs. Magellanic Clouds, [6]. M22
is a more complex system in which there is a bimodal metslldistribution function, two O-Na
anticorrelations and a large spread ingkgrocess ratio [La/Fe]. Additionally, M22 shows a double
subgiant branch, a feature also shared by other globulatecki[27]. Finallyw Centauri has long
been regarded as the most enigmatic of the globular clusttdra significant spread in metallicity.
It also exhibits a large range in O-Na abundances as well astiaall pattern in the [La/Fe] vs.
[Fe/H] plane.

4. Future Directions

Understanding the chemical enrichment histories of alételts, from the least to the most
complex, represents one of the major challenges in moddéronasny. There are a number of
areas in which progress can be made.

NUCLEOSYNTHESIS None of the candidate polluters can successfully repmthe observed
abundance patterns [6]. Additional measurements of flealundances and isotope ratios of Mg
will be of great value (see the contribution in these prooegd“A different view on light element
anticorrelations in globular clusters: fluorine variatisrin the globular cluster NGC6656(M22)
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Figure 5: Yields from AGB models with different assumptions concagnthe cross sections of the main
channel for sodium destruction (full square, cross, andcitdle). Measurements in globular clusters are
shown as open squares. Triangles represent yields fromImodeulated with extra mixing. [Credit:
Ventura & D’Antona, A&A, 457, 995, 2006, reproduced with pession(© ESO.]
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Figure 6: The metallicity distribution functions (left), [Na/Fe] vEO/Fe] (right) and [Ba,La/Fe] vs. [Fe/H]
(right) for the globular clusters M4 (upper), M22 (middle)w Cen (lower). Data are taken from [23, 25,
26].

by D’Orazi et al.). Mg represents one of the few elements fbichv isotope ratios can be mea-
sured in globular clusters [15]. Isotope ratios offer a mdirect probe of the nucleosynthetic
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processes responsible for the light element abundancatieas. In the handful of globular clus-
ters in which fluorine has been measured [28 — 30], there iga far-to-star abundance variations.
Thus, fluorine offers new insight into the light element atbamce variations in globular clusters
and potentially a new check on nuclear reaction rates.

CHEMO-DYNAMICAL MODELLING : A physical understanding of the processes which led to
the formation of multiple populations in globular clustékely awaits detailed chemo-dynamical
models. While a number of efforts have already been condu@e, 32], additional work is
strongly encouraged.

Given how quickly this field is moving, it will be of great imest to re-assess our understand-
ing of chemical abundances in globular clusters at the nexteé\lin the Cosmos meeting.

5. Questions

S. Martell: You showed a correlation between Nd and Ni abundance. Thera #ot of
neutron-capture elements: in measuring Nd, were you luckiynd the one element that’s interest-
ing or is there a larger connection between neutron-cagteraents and iron-peak elements?

D. Yong: The Nd-Ni correlation is seen in some preliminary work orhhigecision chemical
abundance analyses. In that work, we find a correlation letvesery combination of elements
including alpha, Fe-peak and neutron-capture species.r¥\&tifl working on the interpretation.

M. Lugaro: Are s-process elements correlated with O and Na? (e.g. #€¢lin M22)

D. Yong: There are a small number of clusters (including NGC 1851, NK3&2) in which
there appear to be correlations between the light elemerds © and Na) and the s-process ele-
ments.
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