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We study the so called hybrid stars, which are hadronic starsthat contain a core of deconfined

quarks. For this purpose, we make use of an extended version of the SU(3) chiral model. Within

this approach, the degrees of freedom change naturally fromhadrons (baryon octet) to quarks

(u, d, s) as the temperature and/or density increases. At zero temperature we are still able to

reproduce massive stars, even with the inclusion of hyperons.
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Figure 1: QCD Phase Diagram: Temperature versus baryon chemical potential

1. Introduction and Model Description

In the center of compact stars the density can reach several times the nuclear saturation den-
sity. At such extreme conditions, the baryon chemical potential is high enough for nucleons to be
converted into hyperons. In addition, QCD calculations have shown that those densities are high
enough for the hadrons to be deconfined into quarks [1]. In this work we are going to consider that
neutron stars are actually hybrid stars composed of hadronssurrounding a core of quark matter.

To describe these stars, we are going to use an extended version of the hadronic SU(3) chiral
model that also contains quarks [2]. We are further going to use the mean-field approximation
in which all particles contribute to the global mean-field interactions and are in turn affected by
them. In this model the order parametersσ andΦ signal chiral symmetry restoration and quark
deconfinement, respectively. Both transitions are expected to happen at high densities and/or tem-
peratures.

Fig. 1 shows a phase diagram obtained from analyzing the behavior of the order parameters.
The first order phase transition line ends in a critical pointbeyond which the transition becomes a
crossover in accordance with lattice QCD constraints [3]. The different lines correspond to sym-
metric matter (same number of protons and neutrons) and neutron star matter (in beta equilibrium
and charge neutral). For the first case, the nuclear matter liquid-gas phase transition is also shown.
The potential for the deconfinement order parameterΦ is an extension of the Polyakov loop po-
tential [4] modified to also depend on baryon chemical potential. In this way the model is able
to describe the entire QCD phase diagram, including the low and zero temperature part which is
relevant for compact star physics.

Within the model described above, the baryon and quark masses are generated by the scalar
mesons, whose mean-field values correspond to the isoscalar(σ ) and isovector (δ ) light quark-
antiquark condensates as well as the strange quark-antiquark condensate (ζ ). In addition, there is
a small explicit mass termM0 and the term containingΦ

M∗
B = gBσ σ +gBδ τ3δ +gBζ ζ +M0B +gBΦΦ2

, (1.1)
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Figure 2: Normalized effective mass versus baryon chemical potential for star matter at zero temperature.

M∗
q = gqσ σ +gqδ τ3δ +gqζ ζ +M0q +gqΦ(1−Φ), (1.2)

where the coupling constant values can be found in Ref. [2].

With the increase of density/temperature, theσ field (non-strange chiral condensate) decreases
from its high value at zero density, causing the effective masses of the particles to decrease towards
chiral symmetry restoration. The fieldΦ assumes non-zero values with the increase of tempera-
ture/density and, due to its presence in the baryons effective mass, suppresses their presence. On
the other hand, the presence of theΦ field in the effective mass of the quarks, included with a neg-
ative sign, ensures that they will not be present at low temperatures/densities. This can be clearly
seen at Fig. 2 where the normalized effective mass (quark effective masses are multiplied by 3) is
shown for star matter at zero temperature.

2. Results and Conclusions

For more realistic star calculations we assume that charge neutrality is globally conserved.
This means that hadronic and quark phases don’t necessarilyhave to be charge neutral when sep-
arated, but can also be charge neutral when combined. As a result, a mixed phase appears. Fig. 3
shows the particle population for star matter atT = 0. As the baryon chemical potential increases,
the neutrons convert to protons and electrons (for charge neutrality), followed by muons and Lamb-
das. All the other hyperons are suppressed by the appearanceof the quarks. First up and down
quarks slowly appear and later the strange quark. The amountof electrons present in the system
is substantial in the hadronic phase, but not in the quark phase, as the down quarks take care of
balancing the positive charged particles.

Finally, we plug in our equation of state into the Tolman Oppenheimer Volkoff equations [5, 6],
the solution of Einstein’s equations for the specific case ofspherical, isotropic, static stars. For each
possible central density we obtain a respective star mass and radius as shown in Fig. 4. The two
different lines represent pure hadronic and hybrid stars. Within this model pure quark stars are not

3



P
o
S
(
N
I
C
 
X
I
I
)
1
0
1

Modeling Hybrid Stars Jirina Stone

1000 1200 1400 1600
µ

B
 (MeV)

10
-3

10
-2

10
-1

10
0

ρ i (
fm

-3
) p

n
Λ
e
µ
u
d
s

Figure 3: Particle population versus baryon chemical potential for star matter at zero temperature.

stable, only pure hadronic or hybrid stars. I the case of hybrid stars, they can contain up to 2 km of
"mixed" matter.

In conclusion, our model is suitable for the description of neutron stars. We predict stars as
massive as the most massive pulsar observed (PSR J16142230 with a mass of 1.97± 0.04 M⊙).
The predicted radii also lie in the allowed range being practically the same for hadronic or hybrid
stars. We were also able to be in good agreement with data concerning the cooling behavior of
hybrid stars [7] and heavy ion collision data [8].

A major advantage of our work compared to other studies of hybrid stars is that because we
have only one equation of state for different degrees of freedom we can study in detail the way in
which chiral symmetry is restored and the way deconfinement occurs at high temperature/density.
The model additionally shows a realistic structure of the phase transition over the whole range of
chemical potentials and temperatures as well as phenomenologically acceptable results for satu-
rated nuclear matter.
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Figure 4: Mass-Radius Diagram: Star mass versus radius for differentcentral densities (for star matter at
zero temperature).
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