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We explore inhomogeneous structures and properties of low-density nuclear matter in the pres-
ence of neutrinos, which are relevant to supernova cores and protoneutron stars. As a theoretical
framework we employ a relativistic mean-field model with the Thomas-Fermi approximation for
fermions, which is able to describe well-known bulk properties of nuclei and well-accepted prop-
erties of symmetric nuclear matter. In this framework with a soft density-dependence of symmetry
energy, low-density nuclear matter without neutrinos exhibits “pasta” structures only if the pro-
ton fraction is large enough. For catalyzed nuclear matter which has small proton fraction, only
spherical droplets have appeared. However, with inclusion of neutrinos by setting a constant lep-
ton fraction, the pasta structures are found to be persistent due to the increased proton fraction.
Though the structure of neutrino-trapped nuclear matter is similar to that of nuclear matter with a
fixed proton fraction, the equation of state is significantly different due to the neutrino contribution
to the pressure.
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1. Introduction

Nuclear matter is considered to be a Van der Waals fluid: It has a free-energy minimum at
a certain density, i.e., the saturation density. Below the saturation density the pressure becomes
negative and the system is expected to undergo a liquid-gas phase transition, which is of the first-
order. Thus nuclear matter below the saturation density generally consists of mixture of dense
liquid and dilute gas. The relation between the pressure and the density, i.e., equation of state
(EOS), is often obtained by applying the Maxwell construction. However, the systems where the
Maxwell construction can be applied are limited to those with a single chemical component. For
systems with more than one chemical component, the Maxwell construction does not satisfy the
Gibbs conditions, i.e., equilibrium of chemical potentials and partial pressures of components in
coexisting phases. What is characteristic of nuclear matter is that it consists of more than one
chemical component and some of them have electric charge. In this case the mechanical balance
as well as the chemical balance between coexisting phases should be satisfied.

Ravenhall et al. [1] and Hashimoto et al. [2] have proposed that spherical droplets of nuclei
change their shapes to cylindrical rods, planar slabs, cylindrical tubes, and spherical bubbles with
increasing density before melting into uniform matter. This series of non-spherical shapes is often
called “pasta”. Pasta structures appear as ground states of matter below the saturation density. The
optimum shape and size of the structure is determined by a balance between the Coulomb repulsion
and the surface tension: Roughly speaking, the Coulomb energy per baryon ECoul/A depends on
the size of the structure R by a second power ECoul/A ∝ R2, and the surface energy per baryon
Esurf/A depends on the inverse of R as ECoul/A ∝ R−1. Hence the sum of both has a minimum at a
value of R where 2ECoul = Esurf. If the Coulomb interaction is reduced, e.g., by a charge screening,
or the surface tension is enhanced, then the minimum point moves to a lager R. In the extreme
case of above, the minimum point diverges and the structure becomes mechanically unstable, i.e.,
amorphous mixed phase appears [3]. Nevertheless, inhomogeneous mixed phase is expected to
appear when the energy gets lower than that of uniform matter. This energy gain which should
exceed the energy loss of ECoul + Esurf is achieved by the deeper binding energy of dense liquid
phase which is largest at ρ liq = ρ0 and with a proton fraction Y liq

p = 0.5. Therefore, the structured
mixed phase becomes more stable when the average baryon density is well below the saturation
density ρ0 and the proton fraction Yp is close to 0.5. In fact, in our previous calculation [4] the
upper limit of pasta structure is 0.11 fm−3 for Yp = 0.5, 0.10 fm−3 for Yp = 0.3, and 0.08 fm−3 for
Yp = 0.1.

The sites where pasta phases are expected are the crust region of neutron stars and the core of
supernovae. In the former case of cooled neutron stars, the temperature is low enough to assume
T = 0 and there is no trapped neutrinos. In the case of protoneutron stars and core of supernovae,
effects of finite temperature and trapped neutrinos should be taken into consideration. In the prac-
tical calculation, however, trapped neutrinos are often omitted and a fixed value of proton fraction,
i.e., Yp ∼ 0.3 is assumed. By the presence of neutrinos, the proton fraction of matter in beta equi-
librium significantly increases and Yp = 0.3 is a good number.

It is well known that the proton fraction of matter in beta equilibrium depends on the inho-
mogeneous structure. If we assume uniform matter, proton fraction Yp monotonically decreases
with decreasing density, while Yp increases to approach to ∼ 0.5 in the low-density limit. There-
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fore, the dependence of Yp on the density in the presence of neutrinos is not trivial. There are
some preceding works by Ogasawara et al. [5, 6] and Watanabe et al. [7] on the structure and
EOS of neutrino-trapped matter. It has been reported that the presence of neutrinos enhances the
appearance of inhomogeneous structure of matter by increasing proton fraction. In Refs. [5, 6],
only spherical nuclei and bubbles have been taken into account, and in Ref. [7] pasta structures are
considered but the temperature has been limited to zero. In this paper, we explore the properties of
nuclear matter at finite temperature and finite neutrino fraction taking account of pasta structures
at low densities.

2. Relativistic Mean-Field and Thomas-Fermi Approximation

We employ a relativistic mean-field (RMF) model and the Thomas-Fermi approximation. In
the RMF model, baryons (proton p and neutron n) interact via the coupling with σ , ω , and ρ
mesons. All the fields of baryons, mesons, and electrons e are introduced in a Lorentz-invariant
way. By the Thomas-Fermi approximation, the momentum distributions of fermions are assumed
to have those of Fermi gas at finite temperature. Our framework is not only relatively simple for
numerical calculations, but also sufficiently realistic to reproduce bulk properties of finite nuclei as
well as the saturation properties of nuclear matter [4, 8]. One characteristic is that the Coulomb
interaction is properly included in the equations of motion for baryons and electrons and for meson
mean-fields. Thus the baryon and electron density profiles, as well as the meson mean-fields, are
determined in a fully consistent way with the Coulomb interaction.

To describe inhomogeneous structures of matter, we employ Wigner-Seitz approximation: We
assume a periodic structure of an ideal crystalline unit with geometrical symmetry. The shape of the
unit cell is a sphere for the dimensionality D = 3, a cylinder for 2, and a plate for 1. By assuming
a completely symmetric shape and charge-neutrality of the cell, all the calculations are reduced to
that in one dimension and also we can neglect interactions among cells.

Giving an average baryon density ρB and a temperature T , we solve field equations for mesons
and the Coulomb potential determined by the density distributions of proton, neutron, and elec-
tron, ρi(r) (i = p,n,e). Each fermion density distribution ρi(r) (i = p,n,e) is obtained so that the
chemical potential µi(r) = ∂ε(r)/∂ρi(r) becomes uniform, where ε(r) is the local energy density.
The neutrino density ρν(r) is always uniform. A lepton fraction Yl =

∫
d3r [ρe(r)+ρν ]/

∫
d3rρB is

given and the chemical equilibrium condition µn + µν = µp + µe is set into a constraint.

3. Low-Density Nuclear Matter With and Without Neutrinos

First, let us present in Fig. 1 the resultant structures of matter with a constant lepton fraction
Yl = 0.3 at temperature T = 5 MeV. If neutrino is absent, the proton fraction becomes small and
there was no chance to have pasta structures such as rod, slab, etc. [4]1 With inclusion of neutrinos
with a constraint Yl = 0.3, on the contrary, we can see all kinds of pasta structures. As we will see
later, this is because the finite lepton fraction Yl ≡Ye +Yν = const. causes the electron fraction, i.e.,
the proton fraction Yp to increase, and consequently enhances clusterization of matter.

1Whether pasta structures appear or not in the beta-equilibrium matter depends on the density dependence of the
symmetry energy [9].
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Figure 1: Density distributions in the Wigner-Seitz
cells. The hatches on the right-hand side shows
the cell boundaries. From the top, with increase of
the baryon density, the most suitable dimensionality
changes as 3,2,1,2, and 3, and the matter structure
changes as spherical droplet, cylindrical rod, planar
slab, cylindrical tube, and spherical bubble.

Figure 2 shows the equation of state (EOS), i.e., the pressure dependent on the baryon density.
The baryon partial pressures PB of uniform matter (solid and dashed black lines in the upper panels)
have negative gradient at lower densities, which causes mechanical instability. Therefore a first-
order phase transition occurs and there appears a mixed phase to avoid unstable regions, forming
inhomogeneous pasta structures. Although the region of a largely negative gradient disappears,
the overall behavior of PB of the pasta phases has a slightly negative gradient. However, the total
presser Ptot and its gradient are always positive as shown in the lower panel.

The proton fraction as a function of baryon density is plotted in Fig. 3. As a constraint, the
lepton fraction Yl =Ye +Yν is kept constant. We can see that the resulting Yp =Ye is about 3/4 of Yl .
One reason of this rather large ratio of Yp to Yν is that the production of an e brings about another
production of a p, i.e., higher degree of freedom compared to that of ν production. Another reason
is that electrons and protons attract with each other via the Coulomb interaction and reduce their
chemical potentials.

If there are no neutrinos in matter, the proton fraction is very small (bottom of Fig. 3). The
effect of neutrino is, therefore, to increase proton fraction, which enhances the appearance of inho-
mogeneous structures.

As already mentioned, a constant Yp has been often used as a condition of supernova matter.
This is justified only approximately. To see more precisely, we show the density dependence of Yp

in Fig. 3. Interesting is that this density-dependence is different for temperatures T = 5 MeV and
T ≈ 0, and for uniform and inhomogeneous cases.
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Figure 2: Upper panels show baryon partial pressures as functions of baryon density. The lepton fraction
is kept constant Yl = 0.3 in the left panel, while proton fraction is constant Yp = 0.3 without inclusion of
neutrino in the right panel. The lower panel shows the total pressures for Yl = 0.3. Black dashed lines show
the cases where uniform matter is assumed, while colored lines show the cases where pasta structures appear.
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Figure 3: Density dependence of pro-
ton fraction. Lines except two lowermost
ones are proton fraction Yp in the case of
constant lepton fraction Yl = 0.3.
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4. Summary

We have performed relativistic mean-field calculation with Thomas-Fermi approximation for
neutrino-catalyzed nuclear matter at finite temperature. We have shown results on the structure and
properties of matter relevant to the core of supernovae and crust of protoneutron stars. We have
seen that pasta structures appear below saturation densities, which affects the EOS. The presence
of neutrinos enhances the pasta structures. It also affects the EOS of uniform matter as well as
inhomogeneous matter.

Our results are consistent to the preceding studies by Ogasawara et al. and Watanabe et al.
But we have extended their conclusions to more general case of matter with pasta structures. It
is worth applying our calculation systematically to supernova matter so that supernova simulation
can use. So far, our calculation on pasta structures assume geometrical symmetry of crystalline
unit. In the future we can apply our new fully 3-dimensional calculation [10] without Wigner-Seitz
approximation to neutrino-catalyzed matter at finite temperature.
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