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1. Gamow-Teller Strengthsin Ni and Co I sotopes and Electron Capture Rates

Electron capture reactions play the most essential roles in the core-egfiegaesses at the last
stage of the life-cycle of stars. Accurate evaluations of the electron reagattes at high densities
and temperatures are quite important to determine the initial conditions for theosynthesis in
supernova explosions.

Gamow-Teller (GT) transition strengths in Ni and Co isotopes are studiedhdl model
calculations with the use of a new Hamiltonian fip-shell, GXPF1J[[1],which can successfully
describe spin-dependent transitiond imshell, for example, GT strength #§Ni and M1 strengths
in f p-shell nuclei. The GT strengths for GXPF1J are generally more fragmeontapared to those
of conventional Hamiltonians such as KB3[5[2] as shown in Fig. 1(a)féi. The GT strength by
GXPF1J shows a two-peak structure while KB3G gives only a single peadently, the two-peak
structure of the GT strength was confirmed by (p, n) experirient[3]. Grkeoreasons of the
different structure of the GT strength can be attributed to a wider singtécleashell gap between
0f7/, and 0f, orbits for GXPF1J. The GT strength ACo recently measured by (p, n) reaction is
also found to be reproduced well by GXPH]J[4], which is more fragntecwenpared to the case
of KB3G as shown in Fig. 2(a).
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Figure 1: (a) The GT strength ifi®Ni obtained by GXPF1J and KB3G. (b) Electron capture rate2°hin
evaluated by GXPF1J, KB3G and experimental GT strength.

The GT strengths obtained are used to evaluate electron capture raédisaeavironment§[5].
The capture rates at high densitje¥ = 10°~° g/cn? and high temperatureB =Tg x 10° K are
shown in Fig. 1(b) foP®Ni.

The capture rates are calculated by

A= 61|2:(s) IZVV.’ Z B(GT;i — f) wmmoop(Qif + w)%F (Z, 0)S(w)dw,
(1.1)
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Figure 2: (a) The GT strength iR°CO obtained by GXPF1J and KB3G. (b) Electron capture rateSen
evaluated by GXPF1Jand KB3G.

wherew and p are electron energy and momentum in unitset? and Mp, respectively. Qi
is the Q-value for the reaction, and is the statistical weight facor for the initial state(Z, w)
is the Fermi function, an&(w) is the Fermi-Dirac distribution for electrons where the chemical
potential, i, is determined from the densitgYe, by

PYo= () [ (8- 5)pPdp 12)
whereN, is the Avogadro constant arfg) is the Fermi-Dirac distribution for positrons with the
chemical potentiali, = — . It can become as large as-50 MeV at high densitiepYe =10° ~
1019 g/c?. The reaction rates become larger at higher densities because of taectamical
potential of electrons.

We find that GXPF1J reproduces well the capture rat€8Nti obtained by the experimental
GT strength at higher densities and temperatures. The difference o&piere rates iR°Ni be-
tween GXPF1J and KB3G is shown in Fig. 2(b). The capture rates forFkdXRre smaller than
those for KB3G due to larger spreading of the strength.

The calculated capture rates3Ni and ®°Ni are also found to reproduce well the rates ob-
tained by using the experimental GT strendgth$]6, 7]. Accurate evaluatitheoglectron cap-
ture rates in Ni and Co isotopes has been achieved by using GXPF1J reahwaish previous
calculationd[Bl.

2. B-Decay Half-Livesat and near N=126 Waiting Point Nuclei and R-Process
Nucleosynthesis

B-decay half-lives at the waiting point nuclei with=126 are evaluated by shell-model cal-
culations including contributions from both the GT and FF transit{gns[9]. A iffemtiG-matrix,
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which describes well the energy spectra of the isotones Wit 7~80[[LJ], is used for the shell-
model interaction. The quenching of, gA/g/iree =0.70, is adopted for both the GT and FF tran-
sitions except for 0, where an enhancement of the p term due to the meson-exchange current
effects are taken into account.

The decay rates), as well as the partial half-lives, », of the transitions are obtained by the

following formulae[TiL [IP[ 13];

Ast = In2/t1/2 — f/8896(s)
f _/ C(wW)F (Z,w) pw(wo — w)2dw
C(W) = Ko+ Kaw+ K_1/w+ Kow?, (2.1)

wherew the electron energy; (Z,w) is the Fermi function, an#,’s depend on nuclear transition
matrix elements. Here, relativistic corrections from the expansion of elecadial wave functions
in powers of electron mass and nuclear charge parameters are inclodeitk elements of one-
body operators,f[x 6] with A =0, 1, 2 and, as well as those from weak hadronic currents,
d, are taken into account for the FF transitions. The effects of finite nuckeage distribution are
taken into accourfi[1{, L 2]. The so-call&eapproximation was not made.

Calculated half-lives are shown in Fig. 3 (left) for GT and GT+FF casesell as those of
FRDMI[L4] and CQRPA[]5]. The FF transitions reduce the half-livealbyut 1.5 to several times
compared to the case of GT only. The net half-lives are found to be& sborpared with those
of FRDM model[I#], which are often used as standard values for dstsigal calculations. They
are, on the other hand, longer than those of CQRRA[15]. We also natiaéhadd-even staggering
seen in FRDM is not found in the present shell-model results.

Effects of the short half-lives obtained here on r-process nucigbsgis are investigated. The
dependence of the abundances of the elements around mass rAimb@5 on the half-lives of
the isotones is studied for various astrophysical conditions. An analytiehadeheutrino-driven
winds[[1§] is used for the time evolution of thermal profiles (see Rfgf. [Bhfore details). The
neutrino energy spectra are assumed to obey Fermi distributions withlzmuiaal potentials. The
temperatures of o, Ve andvy = vy, ¢, V,r are set to beT, , Ty, , Ty,) = (3.2 MeV, 5 MeV, 6
MeV)[[7] . The abundances of elements in the r-process nucleosjsitbietained by using the
presentB-decay half-lives folN=126 isotones are compared with those of the standard FRDM
half-lives in Fig. 3 (right). The third peak of the element abundancesiisddo be slightly shifted
toward higher mass region. This shift is a robust effect independehegresent astrophysical
condition for the r-process.

We now discuss the dependence of flrdecay half-lives on the quenching factorsgafand
ov. A large quenching of botlgy andgy for 1~ spin-dipole transitions was suggested by [F
decays in the lead regiong/g}"™®®, gv/g\'®) =(0.47, 0.64)[18]. Two sets of quenching factors,
(0.34, 0.67) and (0.51, 0.30), are obtained from the analyi&ef (1/2*) — 2%°Pb (1/2°)[LQ]. A
large quenching dofia is suggested from the studies of BFdecays of the isotones with=78~80,
while a large quenching fagy is unlikely (see Ref.[]9]).

Dependence of the calculated half-lives on the quenchingacdind gy is studied for the
N=126 isotones. Half-lives obtained with the set (0.34, 0.67) for thé&rdnsitions are shown by
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Figure 3. Calculated3-decay half-lives for isotones witN=126 obtained with GT and GT+FF transitions.
Half-lives for FRDM] and CQRPAﬂS] (denoted as DF3) alsoashown (left). Element abundances of
r-process nucleosynthesis obtained with the present-siwlkl half-lives (denoted as "Modified") as well
as those of the FRDM model (denoted as "Standard") (right).

long-dashed line in Fig. 4(a). The half-lives get longer but still remaortsh than those of Ref.
[L4] except forZ =71. The dependence of the half-lives on @walues of the transitions are also
studied. The present shell-model calculations give sm@Hiealues compared to the experimental
ones forZ =78~80, while there is no experimental information on Qevalues forZ =64~73.
When calculated)-values are increased by 1MeV fdr=64~73, the half-lives become small as
shown by short-dashed line in Fig. 4(a). The effects are found totherrkarge.

Dependence of the FB-decay half-lives on the quenching factors is also studie¢’iRt
and some nuclei near the waiting poirff®Pt, 2°4r and2°YIr. Recently, experimental information
on the half-lives of these nuclei become available. The half-lives of @] are far off the
experimental valuef[14, P0]. A set of the quenching/g\'®, gv/g\'®) =(0.70, 1.0) is rather
consistent with the experimental values except?fdir as shown in Fig. 4(b). A large quenching
of gy is not favored for the Pt isotopes similar to the case ofNké&26 isotones witlz =78~80.
Quenching ofgy is not taken for the case of DF3-QRPA[15] also. Further study is sacgs$o
understand the quenching @f andgy in nuclei around this region.
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