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Supergiant Fast X-ray Transients (SFXTs) represent the most extreme case of X-ray variability
in High Mass X-ray Binaries hosting blue supergiant companions. Mainly discovered thanks to
the INTEGRAL monitoring of the Galactic plane, these hard X-ray transients display dynamic
ranges which can span five orders of magnitude. This intensity variability is associated with
accretion onto Galactic compact objects (mostly neutron stars) through a physical mechanism
which is still poorly understood. A review of the current status of our understanding on these
sources is presented and discussed. Finally, I present recent XMM-Newton results about the
SFXT IGR J16418-4532, proposing that its variability behavior is due to a transitional accretion
regime, intermediate between pure wind accretion and Roche Lobe Overflow. This same regime
could explain the X-ray activity of other “intermediate” SFXTs with narrow orbits.
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1. Supergiant Fast X-ray Transients: properties and hypotheses.

Supergiant Fast X—ray Transients (SFXTs), a new class of X—ray sources recognized thanks
to INTEGRAL observations (Sguera et al. 2005, 2006; Negueruela et al. 2006), represent the
most extreme case of X—ray variability in High Mass X-ray Binaries (HMXBs) hosting early-type
supergiants (Masetti et al. 2006; Pellizza et al. 2006; Nespoli et al. 2008; Rahoui et al. 2008;
Chaty et al. 2008). They show dynamic ranges (ratios between the luminosity in outburst and
in quiescence) which can span from two (the so-called “intermediate SFXTs”) to five orders of
magnitude (observed, for example, in the prototypical SFEXT IGR J17544-2619; Sunyaev et al.
2003, in’t Zand 2005, Rampy et al. 2009). This variability can be compared with a dynamic range
of about one order of magnitude exhibited by supergiant HMXBs (SGXBs) with persistent X—ray
emission, steadily accreting from their massive donors and showing an accretion luminosity around
10% erg s~!. The SFXTs X-ray activity consists of outbursts lasting a few days (Romano et al.
2007, Sidoli et al. 2009a, Rampy et al. 2009), characterized by several short and bright flares,
each with a duration between ~107 s and ~10* s, reaching 103~1037 erg s~ at the peak. One of
the most sensitive and long observation of a SFXT was performed by Suzaku and was targeted on
IGR J17544-2619 (Rampy et al. 2009), the first SEXT discovered by INT EGRAL (Sunyaev et al.
2003). The observation lasted about 3 days, covering more than a half of the orbit (P,,=4.9 day,
Clark et al. 2009), and displayed an extremely large dynamic range, with two phases of bright
X-ray emission, which included the times of the periastron passage.

In these transients, both the duration and shape of the bright flares are variable, not only from
source to source, but also for a given SEXT (e.g. Sidoli 2011). The SFXT extreme variability is
driven by the accretion of matter from the supersonic wind of the supergiant companion, although
the mechanism producing the transient emission is still not clear (see below).

X-ray spectra (0.1-100 keV) during flares are well described either by a flat power law below
10 keV (Walter et al. 2006, Sidoli et al. 2006), with a photon index, I'~0-1, and a high energy
cut-off around 10-30 keV, or by a bremsstrahlung model with a temperature, kT, of ~15-40 keV. A
more physical model could be applied to the less absorbed (10! cm~2) SFXT, IGR J08408—4503,
allowing recognition of a double component continuum during the bright flares, with a black-body
together with a Comptonizing hot plasma (Sidoli et al. 2009b).

A low intensity flaring is usually present in the out-of-outburst state, with an X-ray luminosity
of 10°3-10°* erg s~!. In this state the X—ray spectrum is softer, with an absorbed power law
with I'~1-2 (Sidoli et al. 2008). In deep observations with XMM-Newton or Suzaku, a double-
component model is needed, with a hard power law together with a soft emission well described
by a hot thermal plasma model (e.g. MEKAL model in XSPEC), with a temperature of 0.2-0.3 keV,
likely produced by the supergiant wind (Sidoli et al. 2008, 2010; Bozzo et al. 2010). The power
law spectrum present in the intensity state below 10°* erg s~! (and sometimes the detection of
X-ray pulsations, e.g. Giunta et al. 2009) demonstrates that the neutron star is still accreting, even
outside the bright flares. The lowest luminosity state at 10°? erg s ! is characterized by a very soft
spectrum (I'~6) and has been rarely observed (IGR J17544-2619; in’t Zand et al. 2005).

About a half of the members of the class are X—ray pulsars, and they display very different
spin periods, from 4.7 s (AX J1841.0-0536, Bamba et al. 2001, although this periodicity has
been recently questioned by Bozzo et al. 2011) to 1210 s (IGR J16418-4532, Walter et al. 2006,
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Sidoli et al. 2011). A spin-phase spectral variability was observed and studied in detail only in
the SFXT IGR J11215-5952 (Sidoli et al. 2007), the first member of the class known to display
periodic outbursts (Sidoli et al. 2006) every ~165 days (Sidoli et al. 2007), likely triggered near the
periastron passage (although other binary system geometries are also possible, see Fig. 9 in Sidoli
et al. 2007). The hardness ratio is indeed modulated on the pulsar spin period (P=187 s). The pulse
profiles are different in two source intensity states, with a double-peaked shape during the bright
flare, and a broad single pulse profile during the fainter state. A combination of a power-law plus a
blackbody component (kT ~ 1-2 keV) is a good deconvolution of the IGR J11215-5952 continuum
observed by XMM-Newton, resulting in a blackbody radius of a few hundred meters, consistent
with emission in the accretion column (e.g Becker & Wolff 2005), similar to what is often found
in the X-ray emission produced by accreting Be/XRBs pulsars (e.g. La Palombara & Mereghetti
2006).
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Figure 1: Percentage of time spent in bright flares, as measured with INT EGRAL/IBIS, with respect to the total exposure time of
the source fields (data taken from Ducci, Sidoli, Paizis, 2010).

The percentage of time spent by SFXTs in bright flaring activity (Ly~10¢ erg s~1) is lower
than a few percent, and highly variable from source to source (see Fig. 0 for the duty cycles ob-
served by INTEGRAL/IBIS, for SFXTs and candidate members located in the direction of the
central regions of our Galaxy). In the early times of these discoveries, SFXTs outbursts were ap-
parently sporadic and unpredictable. On the other hand, a member of the class soon showed a
periodicity in the outburst recurrence (IGR J11215-5952, Sidoli et al. 2006), as already mentioned
above. This SFXT seems to be a nice clock, since every time an X-ray satellite looks at it, at
the predicted times of its outbursts, it undergoes an outburst as expected. This 165 days period-
icity, together with the shape of the X-ray light curve, is suggestive of an orbital phase—locked
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steady structure, probably an equatorially enhanced wind component, reminiscent of the Be—disks
triggering the outbursts in transient Be/X-ray Binaries (Sidoli et al. 2007), although we note that
the structure of this supposed supergiant equatorial wind component could be very different from
Be-disks, although it is able to trigger a source outburst every time the neutron star crosses it along
its orbit. A similar wind component, inclined with respect to the orbital plane, is also very likely
present in one of the better known SFXTs: XTE J1739-302. It could indeed explain the pres-
ence of three peaks in the X-ray orbital light curve (Drave et al. 2010; see also Bird 2011, these
proceedings).

The search for X-ray periodicities is a fundamental step towards the understanding of the
nature of these transient sources (Bird 2011, these proceedings). Long-term periodic X-ray mod-
ulations were later found in a few SFXTs, thanks to the timing analysis of large databases, and
interpreted as the orbital period of the binary systems. Sometimes these orbital modulations seem
to be generated mainly or exclusively by the outbursts emission (Sguera et al. 2007; Drave et al.
2010, 2011; Bird et al. 2009; Bozzo et al. 2009), while in other cases (e.g. IGR J17544-2619,
Clark et al. 2009) the modulation is still present even excluding the outbursts. SFEXTs orbital peri-
ods range from 3.3 days to 165 days and their positions in the Corbet diagram of spin period versus
orbital period (Fig. D) are strangely not confined only in the region typical of wind-fed accreting
pulsars, possibly suggestive either of an evolutionary link between SFXTs lying in the Be/XRBs
region (or in the bridge between wind-fed HMXBs and Be/XRB) and Be/XRBs (Liu et al. 2011),
or of a similar mechanism triggering the outbursts (as already discussed; Sidoli et al. 2007).

The SFXTs X-ray extreme variability is puzzling since these sources seem to be similar to
SGXBs showing persistent X—ray emission: both are composed by compact objects (mostly neu-
tron stars) accreting matter from the clumpy wind of the supergiant companion. Thus, the main
open issue deals with the difference between persistent SGXBs and the SFXTs, where X-ray flares
are usually attributed to the ingestion of single dense clumps (in’t Zand 2005, Walter et al. 2007,
Negueruela et al. 2008, Ducci et al. 2009, Rampy et al. 2009, Bozzo et al. 2011). What drives the
extreme transient behavior? If clumpy winds are ubiquitous in hot massive stars (e.g. Sundqvist
et al. 2010), why do SGXBs show steadily persistent X—ray emission while SFXTs display ex-
treme X—ray transient activity? Negueruela et al. (2008) suggested the important role of the orbital
parameters (orbital separation and/or eccentricity), but we now know that some SFXTs display
even shorter orbital periods than persistent X-ray sources (see, e.g., the Corbet diagram reported in
Fig.l). In the framework of clumpy winds, a possibility could be that the wind porosity in SFXTs
is intrinsically different from persistent systems, or that the clumping factor depends on the radial
distance from the companion.

In close binaries, also the ionization effect by the X—ray source is thought to play a role (Ducci
et al. 2010). In slowly rotating SEXT pulsars where quasi-spherical accretion takes place, the
short X-ray flaring can be produced by Rayleigh—Taylor instability (Postnov et al. 2011, these
proceedings; Shakura et al. 2011).

A different structure (geometry) in the outflowing wind has been invoked by Sidoli et al.
(2007), as discussed above, suggesting a preferential plane for the outflow, inclined with respect to
the orbital plane, thus triggering the flaring activity only during the neutron star passage inside this
wind component.

An alternative explanation is that in SFXTs the accretion is inhibited for most of the time by
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Figure 2: Updated Corbet diagram of Galactic High Mass X-ray Binaries. Blue stars mark X-ray pulsars with optically identified
supergiant companions, while the red squares the sources with optically identified Be donors (Liu et al., 2006). Supergiant Fast X-ray
Transients are indicated by the large circles around blue stars. Arrows mark SFXTs (or candidate SFXTs) where only one of the two
periodicities are known.

the presence of a centrifugal or a magnetic barrier produced by the neutron star properties (Bozzo et
al. 2008), involving very high magnetic fields (B~10'*~10'> G) and slow spin periods (P ~1000 s).

2. IGR J16418-4532: a transitional accretion regime?

IGR J16418-4532 is the SFXT with the narrowest orbit where both the orbital (~3.74 days;
Corbet et al. 2006, Levine et al. 2011) and the spin (~1200 s; Walter et al. 2006) periods are
known (Fig. ). It belongs to the so-called “intermediate” SFXTs sub-class, where the observed
dynamic range is limited to two orders of magnitude. We observed this transient in February 2011
with XMM-Newton (Sidoli et al. 2011 for more details).

In Fig. B (left panel) we show the source light curve observed with EPIC pn (0.5-12 keV),
while in the right panel the results of the timing analysis of our X MM-Newton observation together
with two archival observations (XMM-Newton in 2004 and RXTE in 2009) is reported.

In the 2011 XMM-Newton observation, the following interesting features are present:

1. a flaring activity with a dynamic range of two orders of magnitude, from 5x10* erg s~! to
5x10% erg s~! (assuming a distance of 13 kpc; Chaty et al. 2008; Rahoui et al. 2008);

2. a hint of quasi-periodic flares (confined to the last part of the EPIC pn observation reported
in Fig. B), not related with the pulse period;
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Figure 3: Left panel: XMM-Newton EPIC pn light curve (0.5-12 keV) of IGR J16418-4532 observed in February 2011. Right
panel: IGRJ16418-4532 pulse period history.

3. the pulsations, detected more clearly during the low luminosity state (unabsorbed flux level
of 5x 1072 erg s7!), showed a double-peaked pulse profile, while a single peak was observed
in 2004,

4. the EPIC spectrum did not show variability from flare to flare, but displayed a lower ab-
sorbing column density in 2011 than in 2004 (8.2(*0%)x 10?2 cm~2 instead of 18.6 (133)
x 10?2 cm™2); the spectrum of the low intensity emission (central part of the XMM-Newton
observation) is softer than during the flares;

5. asoft excess is present in the cumulative flares spectrum, consistent with being produced by

a photoionized wind with a ionization parameter, &, of 125 J_rgg ergcms !,

Interestingly, the IGR J16418-4532 light curve observed in 2011 is very similar to a simu-
lated light curve performed by Blondin & Owen (1997) of the accretion luminosity in a HMXB
undergoing a transitional accretion regime, intermediate between the full Roche Lobe overflow
(RLO) and the pure wind accretion. According to these simulations, if the orbit is narrow (as in
the case of IGRJ16418-4532) and the supergiant is close to filling its Roche Lobe (but it is not
undergoing RLO) the mass loss is dominated by the strong outflowing wind, but now with an ad-
ditional contribution of a weak tidal gas stream from the supergiant, focussed towards the neutron
star. The dynamical interaction of the weak tidal gas stream with the accretion bow shock around
the compact object could produce the extreme variations in the accretion rate (Blondin, Stevens &
Kallman, 1991) shown in Fig. B (left panel).

In this same scenario, the quasi-periodic flares can be in principle produced by the strong
asymmetry in the accreting wind, where temporary accretion disks of alternating directions could
form (Blondin, Stevens & Kallman, 1991).

In conclusion, we propose that the X—ray variability (its high dynamic range on the observed
time scale), the narrow orbit and the quasi-periodic flaring activity, all suggest that the X-ray emis-
sion from IGR J16418-4532 is driven by a transitional accretion regime, intermediate between
“pure” wind accretion and “full” RLO.
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We suggest that this accretion regime could explain both IGR J16418-4532 X-ray properties
and possibly other “intermediate” SFXTs with similarly short orbital periods.
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