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From astronomical observations, we know that dark matter exists, makes up 23% of the mass

budget of the Universe, clusters strongly to form the load-bearing frame of structure for galaxy

formation, and hardly interacts with ordinary matter except gravitationally. However, this infor-

mation is not enough to identify the particle specie(s) thatmake up dark matter. As such, the

problem of determining the identity of dark matter has largely shifted to the fields of astroparticle

and particle physics. In this talk, I will review the currentstatus of the search for the nature of

dark matter. I will provide an introduction to possible particle candidates for dark matter and

highlight recent experimental astroparticle- and particle-physics results that constrain the proper-

ties of those candidates. Given the absence of detections inthose experiments, I will advocate a

return of the problem of dark-matter identification to astronomy, and show what kinds of theoret-

ical and observational work might be used to pin down the nature of dark matter once and for all.
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Figure 1: Contents of the Universe, as illustrated by a chocolate cupcake. Recipe available upon request.

1. Introduction

Dark matter is the dominant gravitationally attractive component in the Universe, but we do
not know what it consists of. All the evidence for the existence of dark matter and constraints on
its nature come from astronomy. This is what we know so far:

Abundance: We may infer the content of the Universe from observations of the cosmic mi-
crowave background and of large-scale structure [1, 2, 3]. The relative abundances of the major
components of the Universe are illustrated by the chocolate cupcake in Fig.1. Baryons lightly
sprinkle the Universe, as they constitute only about 4% of the total mass-energy density. Dark
energy makes up the bulk of the Universe at the present epoch, clocking in at∼ 73%, just as the
cake dominates the cupcake. Dark matter comprises∼ 23% of the Universe. Just as the chocolate
frosting glues the sprinkles together on the cupcake, dark matter binds baryons together to form
galaxies, galaxy groups, and galaxy clusters.

A few things it cannot be: Dark matter cannot consist of baryons. There are two lines of evi-
dence for this. First, if baryons made up all the dark matter, the cosmic microwave background and
cosmic web of structure would look radically different. Second, the abundance of light elements
created during big-bang nucleosynthesis depends strongly on the baryon density (more precisely,
on the baryon-to-photon ratio) of the Universe (see [4] and references therein). Observed abun-
dances of deuterium and4He give similar constraints on the baryon density in the Universe as
those coming from cosmic microwave background observations. These lines of evidence imply
that a once-popular class of baryonic dark-matter candidate, the Massive Compact Halo Object
(MaCHO) class (e.g., brown dwarfs, stellar remnants), is cosmologically insignificant.

Dark matter cannot consist of light (sub-keV-mass) particles unless theywere created via a
phase transition in the early Universe (like QCD axions [5]). This is because light particles are
relativistic at early times, and thus fly out of small-scale density perturbations. If particles were
created thermally or via neutrino oscillations, the speed of the particles, and hence the distance
they stream out of density perturbations, should be correlated with their mass. Thus, one may
map the smallest distance scale on which one sees clumpy structure to set a lower limit on the
dark-matter particle mass (low mass == high speed == large distance traveled == scale on which
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density perturbations are washed out). Current measurements of the Lyman-α forest, a probe of
small-scale structures atz∼ 3, constrain the particle mass to bem& 2 keV [6].

Electromagnetic neutrality: There are strong constraints on the electromagnetics of dark
matter [7]. If dark matter had either a small charge or a small electric or magneticdipole moment,
it would couple to the photon-baryon fluid before recombination, thus altering the sub-degree-scale
features of the cosmic microwave background as well as the matter power spectrum.

Self-interaction constraints: Dark matter is part of a new sector of physics. We may gener-
ically expect that dark-matter particles might interact with themselves or other new particles, me-
diated by new, dark gauge bosons. Even if the particles in the dark sectorhave no coupling to the
Standard Model (i.e., the particles and forces we know of), such interactions will affect the struc-
tures of dark-matter halos, since dark-matter particles may transfer energy and angular momentum
in the scatters [8]. For hard-sphere elastic scattering, the constraints are at the level of cross section
per unit particle massσ/m. 1 cm2/g from observations of the structure of galaxy clusters [9].

Clumping on small scales: There is evidence for virialized structures of dark matter down to
scales of∼ 107−109M⊙ halos. Vegetti et al. have used sophisticated modeling of perturbations to
Einstein rings by subhalos in lens galaxies to estimate the masses of subhalos. They have identified
several subhalos with masses 108−1010M⊙ [10]. The Milky Way dwarf galaxies are both the most
dark-matter-dominated structures known (see [11] and references therein). Within their half-light
radii of ∼ 30− 800 pc, they contain∼ 106 − 108M⊙ of dark matter, with a mass-to-light ratio
ϒ1/2 ∼ 10−4000ϒ⊙. These galaxies are hosted by halos that were of order 109−1010M⊙ before
accretion onto the Milky Way.

In this admittedly biased walk through the state of the dark-matter identification landscape, I
start in Sec. 2 by introducing popular dark-matter candidates. In Sec. 3,I describe dark-matter
searches that rely on dark matter’s non-gravitational interactions with the Standard Model. In Sec.
4, I describe how to further exploit astronomical observations to uncover dark-matter physics. In
Sec. 5, I show how a synthesis of these approaches is needed to characterize dark matter.

2. The particle zoo

The only major non-particle candidate for dark matter is the primordial black hole, which
would have collapsed directly from highly overdense regions of the earlyUniverse, the existence
of which requires funky physics [12]. At the risk of offending some ofmy colleagues, I claim that
the onlyreally plausibledark-matter candidates are new particles.

I sometimes joke, there must be at least one candidate per particle model builder. Nevertheless,
there is a hierarchy among the particle candidates. The top tier of candidatesare called “natural”
dark-matter candidates. I call them the “buy one, get one free” candidates because we get these
candidates “for free” from theories that solve other deep problems in physics. Here are the most
popular “buy one, get one free” candidates or classes of candidate:

Weakly-interacting massive particles (WIMPs): This class of candidate, or at least its de-
lightful moniker, was originally introduced by Steigman & Turner [13] (although some of the
relevant ideas had been around for a while, e.g., [14]). The key features of this particle class are
exactly as described: interactions around or near typical weak-forceinteractions (the fine-structure
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constantα near the weak-scale coupling∼ 10−2), particle masses near the weak scale (m∼ 100
GeV in particle-physics units [15], similar to the mass of a silver atom).

Candidates in the WIMP class include the supersymmetric neutralino (the lowest-mass eigen-
state of the supersymmetric partners of neutral Standard Model gauge bosons) and the Kaluza-
Klein photon [17]. Both of these candidates emerge out of theories to introduce new physics at the
electroweak breaking scale (the minimal supersymmetric standard model [MSSM] and universal
extra dimensions [UED]), and possibly to explain why that scale is so much lower than the Planck
scale. Other particles in these theories could be dark matter if they were the lightest of the new par-
ticles (and satisfied cosmological and collider constraints), which dependson where exactly we sit
in the rather large theoretical parameter space, but the neutralino and Kaluza-Klein (UED) photon
are typically the lightest stable new particles.

The WIMP candidate class has the additional feature that it may “naturally” make up all the
dark matter, thus making it more “Black Friday sale” dark matter than the “buy one, get one free”
candidate. This feature of WIMPs is called the “WIMP miracle”. If WIMPs are in a thermal bath in
the early Universe with other particles, having been born out of decaysof the inflaton or something
of the like, we can solve Boltzmann equations to find that WIMPs “freeze out”(i.e., stop being cre-
ated/destroyed through annihilations with other particles) at a comoving density that is inversely
proportional to the WIMP annihilation cross sectionσann. Unless decays are important, this co-
moving number density is fixed for all future time. By dimensional analysis (recalling that mass is
inversely proportional to the length scale in particle-physics units), the annihilation cross section
should beσann ∝ α2/m2. If you put this dimensional-analysis cross section into early-Universe
Boltzmann equations, the comoving number density of WIMPs matches the numberdensity in-
ferred from cosmological observations [1, 2]. A miracle indeed!

Axions: Axions’ “buy one, get one free” claim to fame is that they emerge out of a solution
to the strong-CP problem in particle physics. In the quantum chromodynamics(QCD) Lagrangian,
there exists a term which allows significant but as-yet unobserved CP violation in QCD and con-
tributes to the electric dipole moment of the neutron. Upper limits on the neutron electric dipole
moment suggest that the coefficient for this term should be. 10−9, which smacks of fine tuning
[18]. Now, there is in principle nothing wrong with a parameter having a small value—on the
neutrino side, the active neutrinos are at least six orders of magnitude smaller in mass than the
next-lightest Standard Model particle, the electron [19]. But, usually when a parameter that could
be huge is nearly zero, it implies that some sort of protective symmetry is at work. The Peccei-
Quinn solution to making this coefficient small is to turn that coefficient into a dynamical field, and
add a global symmetry that, when broken, drives the offending term in the QCD Lagrangian to be
precisely zero. The new field’s fluctuations about the new vacuum of thebroken theory are axions,
the pseudo-Nambu-Goldstone bosons of the broken symmetry.

Axions are in some ways less natural than WIMPs because it is tricky to get their comoving
number density to match the observed dark-matter density. There are a number of axion production
mechanisms (all of which must be present to some extent), but the preferred way to produce dark-
matter axions is through non-thermal coherent oscillations of the axion field near the QCD phase
transition. In that case, axions are light (∼ 10µeV) and are born with no momentum. See Chapter
10 of Ref. [16] for a review of axion production mechanisms.

Gravitinos: While supersymmetric neutralinos are the dark-matter candidate of choice in
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some swaths of the MSSM, the gravitino, the supersymmetric partner of the graviton, may be dark
matter in other swaths. Depending on exactly how supersymmetry is broken, the gravitino could
be anywhere in the mass range of∼eV to TeV, although masses.keV are disfavored because
they wash out too much small-scale structure (see Sec. 4; [20]). In order for lighter gravitinos to
be dark matter, one typically must introduce some non-standard cosmology lest the Universe be
overclosed [21]. Heavy gravitinos are, in my opinion, more interesting. Ifthe next-lightest su-
persymmetric particle (NLSP) is only barely more massive than the gravitino, that particle species
may be thermally produced and then decay at a later time to gravitinos. Thus, even though grav-
itinos basically do not interact with the Standard Model (and thus would not typically be born as
thermal relics), they can inherit the WIMP miracle from the NLSP. The gravitino in this scenario
is a “superWIMP” [22]. Because these massive gravitinos are born out of decays at relatively high
momentum, they can smear out primordial density perturbations on small scales.Gravitinos are
not nearly as beloved as WIMPs as dark-matter candidates because of the difficulty of getting the
abundance just right and because they are much harder to detect usingconventional methods.

There are other dark-matter candidates that are plausible and solve some other problems in
physics, although they do not provide quite the same bargain-hunting thrill of the previously dis-
cussed candidates. I will list only two classes of candidate.

Sterile neutrinos: Sterile neutrinos are neutrinos that do not interact electroweakly. Since
mass eigenstates are not the same as the electroweak eigenstates (i.e.,νe,νµ ,ντ ), sterile neutrinos
may mix with electroweak, or active, neutrinos. Sterile neutrinos have been proposed in a number
of contexts; they can be a mass-generating mechanism for the active neutrinos, they can simply be
the right-handed counterparts to the active species, or explain certain neutrino-experiment anoma-
lies [23]. As dark matter, sterile neutrinos may be created in the early Universe in a variety of ways.
Depending on their creation mechanism, they can be constrained by their effects on smaller-scale
structure in the Universe [6]. Because sterile neutrinos mix with active neutrinos, they have a small
decay probability to an active neutrino and a photon [24]. The simplest model of sterile neutrino
dark matter (Dodelson-Widrow neutrinos) are excluded by a combination ofsmall-scale structure
observations and non-detections of X-rays from galaxies [6, 24] (for an alternative view, see [25]).

Hidden-sector dark matter: There is no reason to expect that the dark sector consists of only
one or a handful of boring particles; after all, the Standard Model has richly interesting physics.
Extensions to the Standard Model open the door to other sectors of physics that may not have
much contact with the Standard Model. For example, supersymmetry has to be abroken theory,
and the MSSM (the simplest supersymmetric extension to the Standard Model) is not going to
break itself; new fields are needed to break supersymmetry and communicatethat to the Standard
Model. Those fields may also communicate supersymmetry breaking to other sectors. Sectors that
have little communication with the Standard Model are called “hidden” or “dark”sectors. A lot of
interesting physics is allowed in the hidden sector, including the existence of “dark photons” [26].

At the far other end of the spectrum, there are dark-matter candidates thatare considered “ex-
otic” or “cooked up”. These are typically highly specialized models designed to interpret so-called
anomalies in cosmic-ray observations or particle-physics experiments as dark matter [27]. These
candidates tend to have short lives but lead to interesting insights and new directions, especially in
hidden-sector model building.
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Figure 2: Sketch of the different types of astroparticle search strategies for dark-matter detection. The
central figure is a toy Feynman diagram, and the search strategies depend on the direction in which one
looks at the diagram. See text for details.

Good reviews on particle dark-matter candidates are given in Refs. [16,20]. For an introduc-
tion to particle physics, I recommend Griffiths’ book [28].

3. Astroparticle searches for dark matter

Astroparticle searches depend on the type and strength of the interaction between dark matter
and the Standard Model. There are three main strategies for exploiting this interaction, as illustrated
in Fig. 2. Going bottom-to-top in the diagram, we produce dark-matter particles through collisions
with Standard-Model particles. This method is most commonly employed at large colliders (e.g.,
the Large Hadron Collider [LHC]) or using specialized experiments. Reading Fig. 2 sideways,
we look for the effects on Standard-Model particles induced by their interactions with dark-matter
particles. If we look at Fig. 2 top-to-bottom, we look for Standard-Model particles emerging from
dark-matter annihilation or decays.

3.1 WIMP searches

Since WIMPs are the most popular class of dark-matter candidate (or at least the class which
gets the most experiments), I will describe WIMP searches first and in the most detail.

3.1.1 Colliders

WIMPs will not directly be observed if they are created at colliders–given that they are neutral
and weakly interacting, they are like gigantic neutrinos in terms of detection prospects. However,
it is possible to infer their existence. The quarks and gluons in the protons smashed together at
the LHC typically do not annihilate directly to WIMPs—since WIMPs belong to entire theories
beyond the Standard Model, there are a panoply of other extra particles towhich quarks and gluons
may annihilate (e.g., colored particles like squarks and gluinos in the MSSM). Those other particles
may eventually decay to WIMPs inside the detector, the signature of which is missing energy when

6



P
o
S
(
B
a
s
h
1
1
)
0
1
4

Dark Matter Annika H. G. Peter

one tries to reconstruct the chain of events. There has been a huge amount of effort to figure out
which types of events (characterized by the number and types of jets, leptons, geometry, timing) are
likely to lead to the best constraints on different WIMP models [29]. There isnot yet experimental
evidence of physics beyond the Standard Model [30]. Even if evidence for a WIMP is eventually
found, we will not know if that particle is stable on timescales longer than a nanosecond.

3.1.2 Direct detection

Galactic WIMPs can ram into nuclei in the lab, depositing of order tens to hundreds of keV
of kinetic energy to a single nucleus. This is of order 107 times less than the kinetic energy of a
fruit fly, and the event rate is many orders of magnitude less than the ambientflux of cosmic rays,
posing unique challenges to detection. Nevertheless, there are dozens of experiments planned or
underway to look for WIMPs this way [31].

The DAMA/LIBRA, CRESST, and CoGeNT experiments claim (sometimes in mild terms)
WIMP detections [32]. It would be fair to say that these claims are not widelybelieved, especially
given the null detections of other experiments. Pretty much every experimentalist I have met has
his or her own theory of the origin of the DAMA/LIBRA signal [33]. The DM-Ice collaboration
is in the process of performing a DAMA-like experiment at the South Pole, ingeniously using the
IceCube Neutrino Observatory as a cosmic-ray veto [34]. The best constraints from experiments
that do not find significant events above background are XENON100,CDMS-II, and COUPP, and
are cutting through swaths of WIMP model space [35]. Currently, experiments are making rapid
gains in sensitivity because it is possible (through great effort!) to do nearly zero-background
searches, but soon (in the next decade) experiments will hit the wall of irreducible astrophysical
neutrino backgrounds [36].Neutrinos!

3.1.3 Annihilation

The best places to look for WIMP annihilation are in dark-matter-dense objects, since the an-
nihilation rate goes as the square of the density, and for which there are few other contaminating
fore/backgrounds (or signals, depending on your point of view!). Such objects include galaxy clus-
ters, Milky Way dwarf galaxies, the Milky Way halo, the diffuse gamma-ray background (both the
average signal and anisotropies), possible nearby dark-matter subhalos, and the center of the Sun
[27, 37, 38, 39]. WIMPs annihilate to a wide variety of Standard-Model particles, but some of
those particles are easier to search for than others. There are some searches for WIMP annihila-
tions to charged particles [27]. The two big problems with charged-particle searches are that even
astrophysical emission mechanisms of charged particles are poorly understood and that charged
particles have complicated diffusion histories, which are not nearly as wellunderstood as it is
sometimes made out to be. I personally won’t touch most charged-particle probes of dark matter
with a 30-foot pole, but some people have done interesting work in this field (in particular, work
on locally-produced anti-matter hadrons is quite exciting [40]).

Gamma rays and neutrinos point directly back to their sources, and are thuseasier to interpret
than charged particles (with the exception of inverse-Compton gamma rays).Currently the most
interesting constraints come from gamma-ray observations of the Milky Way halo and of the dwarf
galaxies therein, and neutrino-telescope observations of the Sun [38, 39]. The Milky Way dwarf
galaxies are the most dark-matter-dense objects known, have few baryons, and are nearby, thus
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making them the perfect targets for WIMP-annihilation searches [11]. The gamma-ray flux limits
from the Fermi Gamma-ray Space Telescope indicates that we are starting to cut through interesting
WIMP parameter space. The limits on gamma-ray annihilation in the Milky Way halo coming from
Fermi and the ground-based H.E.S.S. telescope are only somewhat weaker and span a larger WIMP
mass range than the current dwarf limits [38].

The Sun accumulates Galactic WIMPs when they scatter off solar nuclei to energies below
the escape velocity of the Sun. If the capture and annihilation rates of WIMPs in the Sun are in
equilibrium, the annihilation rate is exactly half the capture rate, making solar WIMP searches
sensitive to the elastic-scattering cross section. Current constraints arecompetitive with direct-
detection searches, even if there is still uncertainty in the capture-rate calculation [39].

3.2 Other

Dark-matter axions could be detected in laboratory experiments, exploiting the(quite weak)
axions coupling to photons. While axion-production and indirect-detection experiments do not yet
probe cosmologically significant axion parameter space [41], direct-detection searches will soon.
The ADMX experiment will be upgrading to Phase 2 this year; an underappreciated fact about this
experiment is that it should be able to rule in or out the most popular models of QCD axions as
dark matter unless we areincrediblyunlucky with the vacuum misalignment angle [42].

The APEX experiment is searching for a light hidden-sector gauge boson that mixes with
photons, currently reporting null results (although these are early daysfor the experiment) [43].

4. The nature of dark matter through astronomical searches

However, if dark matter has only extremely weak couplings to the Standard Model, the as-
troparticle searches are dead on arrival. We will not necessarily be able to rule out candidates,
merely rule out parts of their parameter space. Thus, it would be great if we had some way of char-
acterizing dark-matter physics that did not depend on Standard-Model interactions. Fortunately,
we have just such a thing! Astronomical observations of the effects of thegravity of dark matter
on baryons! Recall that all we know about dark matter comes from exactlythose “gravitational
probes” of dark-matter physics (Sec. 1 and [44]).

4.1 Mapping dark-sector physics to observables

In order to use astronomical observations to constrain dark-matter physics, we need to find a
mapping between the two. It is more useful to consider general dark-matterphenomenology than
specific dark-matter models, at least at the present. One way to classify dark-matter phenomenol-
ogy is by physics important at early or late times. This means of dark-matter classification is
defined and explored in Ref. [44].

In the early Universe, the physics that matters most is the velocity distribution function of dark
matter at its birth or freeze-out epoch. Dark matter that freezes out or is created non-relativistic
is called cold dark matter (CDM). WIMPs and non-thermally-produced axions are CDM. Inflation
lays down density fluctuations (more precisely: fluctuations in the gravitational potential) on an
incredibly wide range of scales, and the non-relativistic nature of CDM means that these fluctu-
ations are left largely intact except on tiny scales related to the free-streaming length. Hot dark
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matter (HDM) is dark matter that is born highly relativistic. Because of its high speed, HDM can
escape from and thus wash out density perturbations on large scales in the early Universe. HDM
is constrained to make up a tiny percentage of the mass-energy density of theUniverse [19]. In
between these two extremes is warm dark matter (WDM). Examples of WDM include gravitinos
and sterile neutrinos. We should see evidence for the temperature of darkmatter at all observable
epochs in the Universe.

The other dimension to dark-matter classification is its late-time behavior. The dark-matter
phenomenology that is important at late times is its stability to decays and self-interactions involv-
ing a hidden sector. Self-interactions are more important at late times than earlytimes because the
self-interaction rate scales as the square of the dark-matter density. There are simply more places in
the Universe with high density at late times than early times. Late-time effects can be distinguished
from early-time effects because of the arrow of time.

The stable CDM paradigm isthe top dogamong astrophysicists; nearly all structure-formation
predictions are really stable CDM predictions (see [45] for reviews and references). From simula-
tions, we know how CDM structure evolves (at least in the absence of baryons) and how dark-matter
halos cluster. We find that dark-matter halos have cuspy density profiles,that halos are triaxial, and
that the central density of halos depends on the mass of the halo. Dark-matter halos have subhalo
mass functions that extend down beyond the smallest simulated scales.

Stable WDM looks like stable CDM on scales& 10 Mpc, but deviates below those scales as the
speediness of WDM particles in the early Universe creates a cutoff in the matter power spectrum
[46]. At late times, the evolution of the matter power spectrum is more subtle as halos form. Large
dark-matter halos are virtually indistinguishable from stable CDM halos except that they may be
somewhat less concentrated, but smaller halos, which form out of densityperturbations near the
cutoff scale in the power spectrum, look fluffier and less cuspy than CDM halos. The subhalo mass
function drops significantly on mass scales corresponding to that cutoff scale.

Unstable CDM deviates from stable CDM on large scales as well as small [47]. If unstable
CDM decays to relativistic particles, it changes the background evolution of the Universe. Even
if unstable CDM decays to non-relativistic particles, the particles stream outof dark-matter halos,
causing the growth function of structure to acquire a scale dependence.On smaller scales, halos
are less dense than stable CDM halos due to the injection of kinetic energy into the halos from the
decays. The properties of subhalos have not been studied in great detail yet.

Stable self-interacting CDM has made a bit of a theoretical comeback of late aspart of the
hidden-sector paradigm [8, 26]. Self-interacting CDM looks like stable CDM on large scales
through cosmic time. One finds deviations from CDM predictions only in the innerparts of dark-
matter halos at late times. The inner parts of halos to become cored and rounder because of the
exchange of energy and angular momentum among particles. It is hypothesized that there will be a
deficit of subhalos in the central regions of halos, but this prediction remains poorly quantified.

4.2 Observations

Currently, observations of large-scale structure (scales& 10 Mpc) across cosmic time are
consistent with a stable, cold-dark-matter picture [1, 2, 6]. Since self-interactions and WDM only
show deviations from stable CDM on small scales, this implies that the observations on large
scales arejust asconsistent with the self-interacting CDM and WDM pictures as with the CDM
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paradigm. Large-scale structure observations indicate that the lifetime of theparent dark-matter
particle must be& 3 times the Hubble time for recoil speeds of the daughter dark-matter particle of
& 100 km s−1 [47]. Most of the constraints on decaying dark matter emerge from the Sloan Digital
Sky Survey and X-ray cluster counts. Future large galaxy surveys, especially ones designed with
dark-energy constraints in mind, will also constrain dark-matter models [47,48]. Next-generation
galaxy surveys will probe large redshifts, thus allowing for tomographic studies of the late-time
physics of dark matter.

Observations of small-scale structure (i.e., on scales of individual dark-matter halos) have
the potential to be quite constraining, although in practice such observationsare often difficult to
interpret. Observations of galaxy clusters and individual galaxies usingstrong lensing or galaxy-
galaxy weak lensing indicate that dark-matter halos are indeed ellipsoidal, although a quantitative
comparison with theoretical expectations is tricky [49]. There are hints from the smallest observed
dark-matter halos (the halos of Milky Way dwarf galaxies) to the largest (galaxy clusters) that the
density profiles are not well described by those found in stable CDM simulations without baryons
[50]. It is not clear yet if those deviations are a result of baryonic or dark-matter physics.

The subhalo mass function and subhalo central densities ought to be interesting probes of
dark-matter physics [51]. For (sub)halo masses smaller than∼ 1010M⊙, there are really only two
ways to probe their mass function and central densities. First, next-generation deep galaxy surveys
should reveal more dwarf companions of the Milky Way, which may be characterized using existing
techniques [11, 48]. However, this method relies on the existence of a decent number of stars in
small dark-matter subhalos. We do not really know how star formation proceeds in small halos.
It is better to not have to depend on baryons to probe such small halos. Fortunately, we may look
for subhalos using gravitational lensing. In strong lenses, subhalos in the lens can change the
positions and magnifications of the images, and perturb the light travel times [10, 52]. I am part of
the science team for the Observatory for Multi-Epoch Gravitational Lens Astrophysics (OMEGA)
Explorer mission concept to monitor multiply-lensed active galactic nuclei for magnification and
light arrival-time anomalies associated with subhalos in the lens galaxy [53]. This is a unique way
of probing dark-matter physics, and highly complementary to other dark-matter searches. NASA
shoulddefinitelyfund us in the next Explorer-class mission call!

4.3 Caveats

Any interpretation of observations in the context of dark matter depends ona careful and accu-
rate mapping of dark-matter physics to astronomical observables. A HUGE source of systematics
for this mapping is our ignorance of the specific ways in which galaxy evolution alters dark-matter
halos and measures of the matter power spectrum [54]. Most of the predictions discussed in this
section were made using dark-matter-only simulations. However, we do not know the relative im-
portance of various processes in galaxy evolution for dark-matter-haloevolution [55]. Even when
a subset of the physics we think must be important for galaxy evolution is included in simulations,
the effects on dark-matter halos is extremely sensitive to the implementation of the galaxy physics
in the codes [54]. One thing that appears to be important both for getting the dark-matter-halo mor-
phologies as well as galaxy properties right is to resolve giant-molecular-cloud-sized regions [55].
This is somewhat depressing because it is currently only possible to resolve such small scales for
individual dwarf galaxies. On the other hand, it implies job security for computational physicists.
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5. Conclusion

Neither astroparticle nor astronomical searches for dark matter are goingto characterize dark
matter on their own. For example, say that in the next five years we find some sort of new, massive,
neutral particle at the LHC, but do not see anything in direct-detection experiments or in neutrino
telescopes or gamma-ray telescopes. Is this new particle stable, and can it be all the dark matter?

Astronomical observations can answer these questions, or at least provide some guidance. If
the next generation of giant galaxy surveys sees some evidence of an anomalous scale-dependent
growth of structure, it could hint that the dark matter is unstable but with a longlifetime. Thus the
conventional WIMP model might be dead, but variants thereof may be alive. On the other hand,
if the largest scales of the Universe evolve as they would for stable CDM but dark-matter halos
continue to look somewhat cored, and if OMEGA finds a suppressed subhalo mass function in lens
galaxies, then this might indicate a significant amount of self interaction in a hidden-sector model.
Or it is possible that there is no deviation from stable CDM predictions, and weconclude that even
if the particle found at the LHC is not all of the dark matter, dark matter must be pretty stable, fairly
weakly interacting, and cold.

The next decade should be an exciting time for dark-matter identification efforts. However, I
think it is important to be on guard for two essentially sociological phenomena inthe dark-matter
community, which I will illustrate with quotes from famous scientists. From Steven Weinberg, “It
seems that scientists are often attracted to beautiful theories in the way that insects are attracted to
flowers—not by logical deduction, but by something like a sense of smell.” A(very) large segment
of the community is thoroughly captivated by stable WIMP CDM. But just because WIMPs are
beautiful dark-matter candidates does not mean that dark mattermustconsist of WIMPs, especially
in light of null detections in every flavor of dark-matter detection method. WhileWIMPs are well-
motivated dark-matter candidates, and in some sense our best bet, it sometimesworries me just
how deeply entrenched they are in the canon of physics ideas, to the pointwhere some data (e.g.,
the rotation curves of dwarf galaxies) are pooh-poohed if they do not match certain WIMP CDM
calculations.

On the other hand, it is possible to fall too far on the other extreme. To illustratethis point, I
present a few words of wisdom from Carl Sagan, “With insufficient data it is easy to go wrong.”
Every time an experimental or observational “anomoly” appears on arXiv, there is an immediate
rush to create some new, highly specialized dark-matter model interpretation before the data have
necessarily been vetted. There is then another rush to rule out models that,frankly, no one believed
in the first place. I think this phenomenon is a sign both of the lack of “conventional” signals and a
need for even deeper ties among different segments of the dark-matter community. We all hope that
we will soon be in an era of abundant data. The key will be to see how all these different searches
really fit together to present a unified picture of the nature of dark matter.
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