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Progress on double-logarithmic large-x and small-x resummations A. Vogt

1. Introduction: splitting and coefficient functions and their endpoint behaviour

(Semi-) inclusive lepton-hadron processes, see Refs. [1,2], provide benchmark observables in high-
energy lepton-nucleon, electron-positron and proton-(anti-)proton collisions. We mainly report on
the first two cases here, and specifically consider structurefunctions in inclusive deep-inelastic
scattering (DIS) and fragmentation functions in single-hadron inclusive (semi-inclusive) electron-
positron annihilation (SIA),e+e− → γ ∗, Z, H(q) → h(p)+X, in massless perturbative QCD.

Disregarding contributions suppressed by powers ofQ, these one-scale quantities are given by

F h
a (x,Q2) =

[
Ca,i (αs(µ2),µ2/Q2)⊗ f h

i (µ2)
]
(x) (1.1)

in terms of theircoefficient functions Ca,i and the parton or fragmentation distributionsf h
i of the

hadronh. HereQ2 is the physical hard scale,Q2 = σ q2 with σ = −1 for DIS andσ = 1 for SIA,
whereq is the momentum of the exchanged gauge or Higgs boson,x is the corresponding scaling
variable,x = [(2p ·q)/Q2]σ , and⊗ abbreviates the Mellin convolution. The dependence off h

i on
the renormalization and factorization scaleµ is given by the renormalization-group equations

d
d ln µ2 fi(x,µ2) = [PS,T

ik,ki(αs(µ2))⊗ fk(µ2) ](x) , (1.2)

wherePS,T are the ‘spacelike’ (σ = −1) and ‘timelike’ (σ = 1) splitting functionsand x now
represents momentum fractions. Appropriate summations over i in Eq. (1.1) andk in Eq. (1.2) are
understood. Choosingµ2 = Q2 without loss of information, theαs-expansions ofCa andP read

Ca(x,αs) = ∑
n=0

an+na
s

c(n)
a (x) , P(x,αs) = ∑

n=0

an+1
s

P(n)(x) with 0 < x < 1 . (1.3)

We normalize the strong coupling asas = αs(Q2)/(4π). The contributions up toc(ℓ)
a andP(ℓ) form

the NℓLO (leading order, next-to-leading order, . . . ) ‘fixed-order’ approximation forFa.

The initial-state splitting functionsPS and the coefficient functions for the DIS structure func-
tionsFL,2,3,φ , whereFφ denotes the Higgs-exchange structure function in the heavytop-quark limit,
are known to orderα 3

s
from the diagram calculations in Refs. [3–7]. The corresponding results for

the final-state quantitiesPT have been derived only by indirect means so far [8–10]; in fact, the
latter results still include an uncertainty which needs to be addressed by future calculations (but
is not relevant in the present context). The coefficient functions for the fragmentation functions
FL,T,A,φ , cf. Ref. [2], are completely known only at orderα 2

s
[10–13].

Generically, theαs-coefficients in Eq. (1.3) can be expanded aroundx= 1 andx= 0 in the form

{
c(n)

a , P(n)
}

=
∞

∑
r =−1

Xr (Ar,0 ln2n−n0 X + Ar,1 ln2n−n0−1X + . . .
)

(1.4)

with X = 1−x or X = x, whereX ≪1 respectively represents the threshold (large-x) and high-
energy (small-x) limits. The important exceptions to thisdouble-logarithmic enhancement(i.e., two
additional powers of lnX occur per order inαs) are the diagonal splitting functionsPS,T

qq andPS,T
gg ,

which show no large-x enhancement atr = −1 andr = 0 in the standardMS scheme [14,15], and
the flavour-singlet splitting functionsPS and DIS coefficient functions, which are only single-log
(‘BFKL’) enhanced in ther = −1 terms dominating the small-x behaviour [16, 17]. The dominant
r = −1 large-x contributions to the coefficient functions can be resummed in the framework of the
soft-gluon exponentiation, see, e.g., Refs. [18,19] and for the present status Refs. [20–22].
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In the remainder of this contribution we briefly summarize results derived for all other cases
in Refs. [23–33] with some emphasis on the phenomenologically directly relevant cases ofr = 0
at largex in DIS andr = −1 at smallx in SIA. This relevance is illustrated in Fig. 1: the left
panel shows, after transformation to Mellin-N space, that the soft and virtual contributions do not
sufficiently dominate the N3LO non-singlet quark coefficient function forF2 at ‘large’ N; the right
panel illustrates the dramatic small-x instability of the known fixed-order approximations forPT

gg.
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Figure 1: Left: the third-order coefficient function forF2,ns [5] compared to large-N approximations by
only the soft+virtualN0 terms and by those plus the (r = 0) N−1 contributions. Right: the LO, NLO and
NNLO [9] approximations to the timelike splitting functionPT

gg for five flavours at a typical scaleQ2 ≃ M 2
Z.

2. Fourth- and all-order ln k(1-x) predictions from physical kernels

It can be useful to eliminate the parton or fragmentation distributions, and the associated choice
of a factorization scheme and scale, from the description ofthe dependence of observables on the
physical scaleQ2. This leads tophysical evolution kernels Ka, which generically can be written as

dFh
a

d lnQ2 =
d

d lnQ2

(
Ca⊗ f h)

=
(
β (as)

dCa
das

+ Ca⊗P
)
⊗C−1

a ⊗F h
a ≡ Ka⊗F h

a , (2.1)

whereβ (as) = −β0a2
s
− β1a3

s
− . . . , with β0 = 11

3 CA−
2
3 nf in our normalization, is the (four-

dimensional) beta function of QCD.CA = 3 andCF = 4
3 are the usual SU(ncolours=3) group factors,

andnf denotes the number of effectively massless flavours.

Forflavour non-singlet casessuch as, e.g., the structure functionF3, (2.1) is a scalar equation.
The first term then represents a logarithmic derivative inN-space, and the second is reduced to
a combination of quark-(anti-)quark splitting functions.The resummations discussed here were
initiated by observing that theKa,ns in DIS aresingle-log enhancednot only for the(1−x)−1

terms, as guaranteed by the soft-gluon exponentiation, cf.Ref. [34], but at all powers in(1−x),

Ka
∣∣
an+1
s

=
∞

∑
r =−1

(1−x)r(K (r,0)
a lnn (1−x) + K (r,1)

a lnn−1(1−x) + . . .
)

. (2.2)
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If this behaviour holds also beyond the orders covered by Refs. [4–6], as suggested by the all-
order leading large-nf result of Refs. [35], it implies aresummation of the double-logarithmic
contributionsto the coefficient functionsCa,ns due to the non-enhancement ofPqq mentioned above.

A closer look, see also Ref. [36] for an introductory overview, reveals that the third-order co-
efficient functions are sufficient to fix the coefficients of the highest three logarithmsin Eq. (1.4)
for (the non-singlet components of)Ca,q. The resulting all-orderN−1 [r = 0 in Eq. (1.4)] predic-
tions have been presented in Ref. [23] fora = L [with nL = 1 andn0 = 0 in Eqs. (1.3) and (1.4)]
and in section 5 of Ref. [24] fora = 1,2,3 [wherena = 0 andn0 = 1]. In the latter cases, only
one parameter, denoted byξDIS4

, is missing for the fourth logarithms. Section 5 of Ref. [24]also
includes the highest three logarithms at orderα 4

s
for all these cases at all powers in 1−x, written

down in a closed form using suitably modified harmonic polylogarithms [37] up to weight 3.

Completely analogous results for the fragmentation functions FL,T,I ,A in SIA can be found
in section 6 of Ref. [24]. As mentioned above, the third-order coefficient functions are not fully
known for these quantities. However, it was possible to derive the highest three large-x logarithms
to all orders in 1−xusing the (generally non-trivial) analytic-continuation(A C ) or Drell-Yan-Levy
relation between inclusive DIS and SIA, cf. also Ref. [38] and references therein; the results are
given in section 3 of Ref. [24]. Finally the same approach canbe applied to the quark-antiquark
annihilation contribution to the total cross section forDrell-Yan lepton-pair production, pp/pp̄ →

l+l− + X. In this case the fixed-order information is limited to orderα 2
s

[39], hence only the
coefficients of thehighest two logarithmsin Eq. (1.4) are completely determined by the single-
logarithmic enhancement of the corresponding physical kernel. The resulting all-orderN−1 and
third- and fourth-order all-r predictions can also be found in section 6 of Ref. [24].

The single-log enhancement (2.2) also holds for the 2×2 matrices offlavour-singlet kernels
for combinations such asF2φ = (F2, Fφ ) andF2L = (F2, FL) in DIS and their counterparts in SIA.
In these cases both the coefficient and splitting functions contribute double-log enhanced terms on
the r.h.s. of Eq. (2.1), hence Eq. (2.2) does not imply an all-order resummation. It is, however,
possible to use this equation forF2φ at n = 3 to derive the highest three large-x logarithms of the

(otherwise unknown) N3LO singlet splitting functions P(3)S
ik from the N3LO coefficient functions

computed in Refs. [5, 7]. This calculation has been carried out in Ref. [25] to all orders inr.
A surprising, at the time, outcome was that the coefficient ofall four leading logarithms, ln6 (1−x)
for P(3)

i 6=k(x) and ln5 (1−x) for P(3)
i=k(x), were found to vanish to all orders in 1−x.

With the highest three logarithms determined forP(3)S
ik , it became possible to employ Eq. (2.2)

for F2L to derive corresponding results for the [four-loop, due tona = 1 in Eq. (1.3)] N3LO singlet
coefficient functions for FL. This has been done in Ref. [26], but only for the leading-r contributions,
with new results forc(3)

L,g at r = 1. The all-r generalization, which would also yield results beyond
those of Refs. [23,24] also for the quark coefficient function, is not available in the literature yet.

No new large-x results have been derived (only) from physical evolution kernels after Ref. [26].
The limitations of this approach – the need to conjecture theall-n validity of Eq. (2.2) and lack of
all-order predictions for the singlet splitting and coefficient functions – have been overcome since
then by starting from the unfactorized structure and fragmentation functions as discussed below.
However, the physical kernels still represent the easiest route to all-r results at orderα 4

s
, and they

can provide invaluable hints for the functional forms of theall-order large-x coefficient functions.

4



P
o
S
(
L
L
2
0
1
2
)
0
0
4

Progress on double-logarithmic large-x and small-x resummations A. Vogt

3. Double logarithmic endpoint resummations via unfactorized quantities

The splitting functions and the coefficient functions for the (combinations of) DIS and SIA observ-
ables discussed above originate in theunfactorized expressionsin D = 4−2ε̄ dimensions,

F̂a = C̃a⊗Z with P = βD(as)
dZ
das

⊗Z−1 . (3.1)

HereC̃a, the D-dimensional coefficient functions, are given by Taylor series in ε (which differs
from ε̄ by some ‘artefacts’ of dimensional regularization) with the ε 0 coefficient leading to the
‘physical’ (MS-scheme) coefficient function in Eqs. (1.1) and (1.3).βD(as) is theD-dimensional
beta function,βD(as) = −εas + β (as) with β (as) defined below Eq. (2.1). For non-singlet cases
all quantities in Eq. (3.1) are scalars, for flavour-singletcombinationsF̂a, C̃a, P andZ are 2× 2
matrices [unlike in Eq. (1.1), the quark and gluon contributions toFa are considered separately in
Eq. (3.1)]. Z consists of 1/ε poles up toε −n at orderan

s
, and itsα n

s
ε −n+ℓ coefficients include

endpoint logarithms up to lnn+ℓ−1X with X = 1−x andX = x. Hence we have, generically,

F̂a
∣∣
an
s

ε −n+ℓ =
∞

∑
r =−1

Xr (
F

(0)
a,n,ℓ,r lnn+ℓ−1X + F

(1)
a,n,ℓ,r lnn+ℓ−2X + . . .

)
. (3.2)

The second equation in (3.1) can be iteratively inverted to yield Z in terms of the expansion
coefficient ofP(x,αs) andβ (as). The resulting dependence onP(n) andβn can be summarized as

an
s
ε −n : P(0), β0 , an

s
ε −n+1 : +P(1), β1 , an

s
ε −n+2 : +P(2), β2 , . . . , an

s
ε −1 : P(n−1) .

(3.3)
Explicit all-order expressions forr = 0, recall Eq. (1.4), in the large-x case have been presented in
section 2 of Ref. [28]. Beyond this accuracy and for the small-x case,Z(αs,ε) has been evaluated
iteratively to a high but finite order inαs. Eq. (3.3) implies that a fixed-order knowledge at NmLO,
recall Eq. (1.3), determine the firstm+1 non-vanishing coefficients in theε expansion ofF̂a at
all orders inas. If this determination can be extended, at a certain logarithmic accuracy, to all
orders inε , then theall-order mass factorizationcan be performed at this accuracy, yielding a
resummation of the splitting and coefficient functions. In practice this is done order by order inαs;
we have employed recent developments in FORM [40] to reach as high an order as possible.

One way to obtain all-n and all-ε expressions for coefficientsF (k) in Eq. (3.2) is by expressing
the coefficientŝF (n)

a in terms of known lower-order results, i.e., by finding an all-orderiteration of
the unfactorized expressionŝF(n)

a at a given logarithmic accuracy. This approach has been used
for the r = 0 large-x structure functionsin Refs. [27, 28] atk = 0 andk = 1. For example, the
unfactorized gluon contributions to the structure function F2 can be expressed as

F̂ (n)
2,g =

1
n

F̂ (1)
2,g

{ n−1

∑
i=0

f2,g(n, i,ε) F̂ (i)
φ ,g F̂ (n−i−1)

2,q −
β0

ε

n−2

∑
i=0

g2,g(n, i) F̂ (i)
φ ,g F̂ (n−i−2)

2,q

}
(3.4)

with

f2,g(n, i,ε) =

(
n−1

i

)−1 [
1 + ε f (1)

2,g (n, i)
]

, g2,g(n, i) =

(
n

i +1

)−1

(3.5)

at next-to-leading logarithmic (NLL) accuracy. Ther=−1 ‘diagonal’ quantitieŝF (k)
2,q , F̂ (k)

φ ,g required
in Eq. (3.4) are known to a high accuracy from the soft-gluon exponentiation, see Ref. [28].

5



P
o
S
(
L
L
2
0
1
2
)
0
0
4

Progress on double-logarithmic large-x and small-x resummations A. Vogt

Especially the non-LL parts of this result (the functionf (1)
2,g (n, i) can be found in section 3

of Ref. [28]) have rather been ‘engineered’ and verified – using results in Section 2 the ensuing
system of linear equations is overconstrained by two equations per order inαs – than derived from
first principles. Since a second approach turned out to be clearer and more convenient, we have not
attempted to generalize Eq. (3.4) to the third (NNL) logarithms. Still, the iteration of unfactorized
observables might offer access to resummations of quantities outside the scope of Refs. [28–33].

That second approach is todecompose thenth-order unfactorized expressionsat x < 1,
without any reference to lower-order counterparts, inn terms ofD-dimensional exponentials, e.g.,

(
An,k ε −2n+1 + Bn,k ε −2n+2 + Cn,k ε −2n+3 + . . .

)
Xr−(η0+kη1)ε , k = 1, . . . , n . (3.6)

For thelarge-x logarithms, X = 1−x, this structure arises at allr in inclusive DIS and SIA from
the phase-space integrations for the undetected final-state particles and the loop integrals of the
virtual corrections [12, 41] withη0 = 0 andη1 = 1. The decomposition (3.6) is related, but not
identical to that into contributions with 1, . . . , n undetected partons in the final state. In the soft-
gluon limit, r =−1, it has been employed before to ‘reverse-engineer’ theα 3

s
ε −n pole terms of the

γ∗qqandHgg form factors (and thenf α 3
s

ε 0 contributions in the former case) from the calculations
for Refs. [5, 7] in Refs. [42] and to extend the soft-gluon resummation to N3LL accuracy for SIA,
Drell-Yan lepton-pair production and the total cross section for Higgs production via gluon-gluon
fusion [23, 43]. It may be worthwhile to note that the resultsof Refs. [42] were confirmed (and
substantially extended, to orderα 3

s
ε 2) by direct diagram calculations in Refs. [44,45].

The situation is far more complicated for thesmall-x logarithms, X = x. Here we focus on
contributions that do not vanish forx → 0, i.e., r = 0 andr = −1. In the former case Eq. (3.6)
is found to hold withη0 = 0 andη1 = −1 in DIS andη0 = 1 andη1 = 1 in SIA, as one might
have ‘naively’ expected from Refs. [12,41], but only for ‘even-N’ quantities such asFL,1,2,φ in DIS
and their SIA counterparts. Forg1 in polarized DIS andF3, where the operator-product expansion
provides the odd Mellin moments, and the corresponding asymmetric fragmentation functionFA

already the colour structure of the leading logarithms [6, 46, 47] excludes such a decomposition.
On the other hand, Eq. (3.6) is applicable all orders atr = −1 in SIA, but withη0 = 0 andη1 = 2,
another structure that has been discovered and verified but still lacks a proper explanation.

After expanding inε , theε −2n+1, . . . , ε −n−1 terms in Eq. (3.6) have to cancel in the sum (3.1).
This implies n−1 relations between the LL coefficientsAn,k which lead to the constantsF (0)

n,ℓ in

Eq. (3.2), n−2 relations between the NLL coefficientsBn,k determiningF
(1)
n,ℓ etc. As discussed

above, a NmLO calculation fixes the (non-vanishing) coefficients ofε −n, . . . , ε −n+m at all orders
n, addingm+ 1 more relations between the coefficients in Eq. (3.6). Consequently the highest
m+1 double logarithms, i.e.,theNmLL approximation, can be determined from theNmLO results
wherever an equation like (3.6) (the expression forFL, e.g., is slightly different) is applicable.

Therefore the present fixed-order results allow the determination, to all orders inαs, of the
highest fourr = 0 large-x logarithms for the coefficient functions in non-singlet DIS(where the
accuracy effectively is N3LO due to the non-enhancement of the splitting functions) and SIA (due
to its close relation to the DIS case, see Ref. [24]), and of the corresponding highest three large-x
and small-x logarithms in the flavour singlet splitting and coefficient functions, including the phe-
nomenologically most importantx−1 terms in SIA illustrated above.

6
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4. Selected recent results on large-x and small-x double logarithms

We now show a small subset of the results derived by the methods described in Section 3. In
the non-singlet large-x cases the physical-kernel results have been verified, and the previously
missing parameter has been determined asξDIS4

= ξSIA4
= 100

3 , a result that has been obtained
independently in Ref. [49]. Except for the numerical impactof the thus known fourr = 0 logs on the
fourth-order coefficient functionC(4)

2,ns, which will be illustrated in Fig. 2 below, we will focus on the
large-x singlet and small-x cases, where progress has been made since the Wernigerode workshop.

The highest threer = 0 large-x logarithmsin the off-diagonal splitting functionsPS and coef-
ficient functions forFL,2,φ in DIS have now been cast in closed all-order forms that supersede the
tables in the appendix of Ref. [28]. Also the NNLL contributions can be expressed inN-space in
terms of the apparently newBernoulli functionsBn(x) introduced and discussed in Refs. [27,28],

Bk(x) =
∞

∑
n=0

Bn

n!(n+k)!
xn and B−k(x) =

∞

∑
n=k

Bn

n!(n−k)!
xn , (4.1)

whereBn are the Bernoulli numbers in the normalization of Ref. [48].As an example, we show the
NNLL approximation to the spacelike gluon-quark splittingfunction which can be written as

NPS
qg(N,αs) = 2as nf B0(ãs)

+ a2
s

ln Ñ nf

{
(6CF −β0)

(
B1(ãs)+2ã−1

s B−1(ãs)
)

+ β0 ã−1
s B−2(ãs)

}
(4.2)

+
a2
s
nf

48CAF

{
β 2

0

[
2ãsB2(ãs)−12B1(ãs)+12B0(ãs)−6B−1(ãs)−12ã−1

s B−2(ãs)

−4ã−1
s B−3(ãs)+3ã−1

s B−4(ãs)
]
− 36β0CF

[
ãsB2(ãs)− 3B1(ãs)+4B0(ãs)−B−1(ãs)

+ ã−1
s

(
2B−1(ãs)+B−2(ãs)−2B−3(ãs)

)]
+ 108C2

F

[
2ãsB2(ãs)− 4B1(ãs)+5B0(ãs)

+ ã−1
s

(
2B−1(ãs)+4B−2(ãs)

)]
+ 80CAFβ0

[
ãsB2(ãs)− 4B1(ãs)+ 4B0(ãs)+B−1(ãs)

]

−32CAFCF

[
(19−3ζ2)ãsB2(ãs)−34B1(ãs)+ (13+6ζ2)B0(ãs)− (2−3ζ2)B−1(ãs)

]

+32C2
AF

[
(2+3ζ2)ãsB2(ãs)+ (4+12ζ2)B1(ãs)+ (2−12ζ2)B0(ãs)+ (2−3ζ2)B−1(ãs)

]}

with ln Ñ = lnN + γe, ãs = 4asCAF ln2Ñ andCAF = CA −CF , whereγe is the Euler constant.
Corresponding results forPS

gq, their timelike counterparts with, e.g.,C−1
F PT

gq = n−1
f PS

qg at LL accu-
racy, and the related coefficient functions will be presented in Ref. [32]. These results explain the
vanishing LL coefficients at orderα 4

s
as the start of an all-order pattern due toB2n+1 = 0 for n≥ 1.

We now turn to ther = −1 small-x resummation in SIA, where even more results were only
known via tables of expansion coefficients in Ref. [29]. Thissituation changed dramatically as
a consequence of discussions which, in all likelihood, would not have occurred without the 2012
Loops & Legs workshop. All results of Ref. [29], and more, arenow known in closed form, e.g.,

PT
qq(N) =

4
3

CF nf
CA

as

{ 1
2ξ (S−1)(L +1)+1

}

+
1
18

CF nf

C3
A

asN̄
{
(−11C2

A +6CAnf −20CFnf )
1

2ξ (S−1+2ξ )+10C2
A

1
ξ (S−1)L

− (51C2
A −6CAnf +12CFnf )

1
2(S−1)+ (11C2

A +2CAnf −4CFnf )S−1
L

+(5C2
A −2CAnf +6CFnf )

1
ξ (S−1)L 2 +(51C2

A −14CAnf +36CFnf )L
}

, (4.3)

7
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PT
gg(N) =

1
4N̄(S−1) − PT

qq(N) − 1
6CA

as (11C2
A +2CAnf −4CFnf )(S

−1−1)

+ 1
576C3

A
asN̄

{(
[1193−576ζ2]C

4
A −140C3

A nf +4C2
A n2

f −56C2
ACFnf −48C2

Fn2
f

+16CACFn2
f

)
(S−1) +

(
[830−576ζ2]C

4
A +96C3

A nf −8C2
An2

f −208C2
ACFnf

+64CACFn2
f −96C2

Fn2
f

)
(S−1−1) + (11C2

A +2CAnf −4CFnf )
2(S−3−1)

}
(4.4)

with S = (1−4ξ )1/2 , L = ln
( 1

2(1+ S)
)
, ξ = −8CAasN̄−2 andN̄ ≡ N−1 . The first term in

Eq. (4.4) is the well-known leading-logarithmic result of Refs. [50]. Beyond this accuracy, the
splitting functions were unknown in theMS scheme, see Refs. [51], before Ref. [29]. The crucial
step towards the closed forms illustrated above was the derivation of the first line of Eq. (4.3) which
made use of Ref. [52] as described in appendix A of Ref. [31].

Expressions such as Eq. (4.4) allow the evaluation of the oscillating combined NLO+NNLL
splitting functions down to extremely smallx, see Fig. 2, and atN = 1 in Mellin space, e.g.,

PT
gg(N = 1) = (2CAas)

1/2 −
1

6CA
(11C2

A +2CAnf +12CFnf )as

+
1

144C3
A

(
[1193−576ζ2]C

4
A −140C3

A nf +4C2
A n2

f +760C2
ACFnf

−80CACFn2
f +144C2

Fn2
f

)
(2CAa3

s
)1/2 + O(a2

s
)

∼= 0.6910α1/2
s − 0.9240αs + 0.6490α 3/2

s + O(α 2
s
) for nf = 5 . (4.5)

The latter results have already been used in an analysis of multiplicities in quark and gluon jets [53].
See Ref. [31] for more results on timelike splitting functions and SIA coefficient functions, includ-
ing a first step towards a higher logarithmic accuracy forPT

gg based on Ref. [15], see also Ref. [54].

Similar results have been derived for thesmall-x logarithms of even-N DIS quantities, e.g.,

Pns+
qq (N) = −

1
2 N(S−1) +

1
2as(2CF −β0)(S

−1−1)

+
1

96CF
asN

{(
[156−960ζ2]C

2
F − [80−1152ζ2]CACF −360ζ2C

2
A −100β0CF

+3β 2
0

)
(S−1) + 2

(
[12−576ζ2]C

2
F +[40+576ζ2]CACF −180ζ2C

2
A

+56β0CF −3β 2
0

)
(S−1−1) + 3(2CF −β0)

2(S−3−1)
}

(4.6)

with S = (1− 4ξ̄ )1/2 and ξ̄ = 2CFasN−2, of which only the leading-logarithmic first term was
known before [46]. While Eq. (4.6) is formally analogous to Eq. (4.4), the different sign of̄ξ as
compared toξ leads to a qualitatively differentx-space behaviour, see Ref. [33] where also the
resummed coefficient functionsF2,ns andFL,ns and the flavour-singlet results will be presented.

5. Summary and Outlook

We have derived all-order results for the highest three (in afew cases four) large-x and small-x
double-logarithmic contributions to spacelike and timelike splitting functions and to coefficient
functions for inclusive DIS and SIA. These results have beenobtained from NNLO (in a few cases
effectively N3LO) fixed-order results in a ‘bottom-up’ approach using the large-x behaviour of
physical evolution kernels, large-x iterations of unfactorized structure and fragmentation functions,
and KLN-related large-x and small-x decompositions of the unfactorized expressions in dimen-
sional regularization combined with constraints imposed by the mass-factorization relations.
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N
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Figure 2: Left: the fourth-order coefficient function for the structure functionF2,ns. Shown are the large
N estimates by the known seven (of eight) lnnN soft-gluon contributions and by adding the highest four (of
seven)N−1 lnnN corrections. Right: the timelike gluon-gluon splitting functions (multiplied byx) for a very
wide range of the momentum fractionx at a value ofαs corresponding toQ2 ≃ M 2

Z. The all-x (N=1 finite)
LO+LL and NLO+NNLL results are compared to the LO and NLO approximations valid only at largex.

At least in the form presented above, the last and so far most powerful approach is applicable
neither to inclusive lepton-pair and Higgs production at large x, nor to the odd Mellin-N based
structure functions such asFν+ν̄

3 in charge-current DIS andg1 in polarized DIS. In the former
cases, Eq. (3.6) holds in the(1−x)−1 soft-gluon limit with n0 = 0 andn1 = 2 [41, 43] but, for
example, additional odd-kη1 terms which spoil most of the predictivity are found to be required
in the qg channel of the Drell-Yan process [55]. Without additional theoretical insight, which
may come from the more rigorous approaches pursued in Refs. [56], it will also not be possible to
improve upon our present ‘NnLO implies NnLL’ accuracy in cases for which Eq. (3.6) is applicable.

Most of the results in Refs. [23–33] will not have a direct phenomenological impact, but will
hopefully prove useful in conjunction with future developments such as, e.g., a computation of
fourth-order moments of structure functions analogous to Refs. [57]. The exception are the(1−x)0

contributions to the non-singlet DIS coefficient functions, which should be of interest for high-
precision analyses of structure functions at largex, and thex−1 small-x timelike splitting functions
as discussed above. In both cases the relative size of the known NnLL contributions indicates that
an improvement on the present accuracy is required for quantitatively reliable results.
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