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1. Introduction: splitting and coefficient functions and their endpoint behaviour

(Semi-)inclusive lepton-hadron processes, see Refq, fir&/ide benchmark observables in high-
energy lepton-nucleon, electron-positron and prototi-jgmoton collisions. We mainly report on

the first two cases here, and specifically consider strudturetions in inclusive deep-inelastic

scattering (DIS) and fragmentation functions in singleoa inclusive (semi-inclusive) electron-
positron annihilation (SIA)e"e” — y*, Z, H(q) — h(p) + X, in massless perturbative QCD.

Disregarding contributions suppressed by powel®,dhese one-scale quantities are given by

F'(x. Q%) = [Cai(as(p®), u?/Q) @ f'(1?)] (%) (1.1)

in terms of theircoefficient functions £ and the parton or fragmentation distributiof]% of the
hadronh. HereQ? is the physical hard scal€? = og? with o = —1 for DIS ando = 1 for SIA,
whereq is the momentum of the exchanged gauge or Higgs bosimthe corresponding scaling
variable,x = [(2p-q)/Q?|%, and® abbreviates the Mellin convolution. The dependencéon
the renormalization and factorization scalés given by the renormalization-group equations

iz f0cm?) = RS @ T AIX) 12

where PST are the ‘spacelike’ ¢ = —1) and ‘timelike’ (0 = 1) splitting functionsand x now
represents momentum fractions. Appropriate summatioasion Eq. (1.1) andk in Eq. (1.2) are
understood. Choosing? = Q? without loss of information, thers-expansions o€, andP read

Caas) = 5 aMc’(x), Pxas) = 5 a™'PV(x) with 0<x<1. (1.3)
n=0 n=0

We normalize the strong coupling as= a(Q?)/(4m). The contributions up tof’ andP(®) form
the N'LO (leading order, next-to-leading order, .. .) ‘fixed-ardepproximation forFs.

The initial-state splitting functionB® and the coefficient functions for the DIS structure func-
tionsF_> 3 ¢, WhereF, denotes the Higgs-exchange structure function in the hiesguark limit,
are known to ordea 3 from the diagram calculations in Refs. [3—7]. The corresjig results for
the final-state quantitieB”™ have been derived only by indirect means so far [8—10]; im, fiwe
latter results still include an uncertainty which needs ¢oadldressed by future calculations (but
is not relevant in the present context). The coefficient fions for the fragmentation functions
FL1 A0 cf. Ref. [2], are completely known only at orde¢ [10-13].

Generically, thexs-coefficients in Eq. (1.3) can be expanded aroxiadl andx = 0 in the form

[ PO} = S X (AgIn® o X 4 AgIn® o IX .. (1.4)
r=—1

with X = 1—x or X = x, whereX <« 1 respectively represents the threshold (latfgend high-
energy (smalk) limits. The important exceptions to thd®uble-logarithmic enhanceme(ik., two
additional powers of I)X occur per order irw) are the diagonal splitting functiorﬁ%T and PgSgT,
which show no largecenhancement at= —1 andr = 0 in the standarS scheme [14, 15], and
the flavour-singlet splitting functionBS and DIS coefficient functions, which are only single-log
(‘BFKL) enhanced in the = —1 terms dominating the smaltlbehaviour [16,17]. The dominant
r = —1 largex contributions to the coefficient functions can be resummettie framework of the
soft-gluon exponentiation, see, e.g., Refs. [18, 19] andhi® present status Refs. [20-22].
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In the remainder of this contribution we briefly summarizsules derived for all other cases
in Refs. [23—33] with some emphasis on the phenomenoldgidakectly relevant cases af=0
at largex in DIS andr = —1 at smallx in SIA. This relevance is illustrated in Fig. 1: the left
panel shows, after transformation to Mellihspace, that the soft and virtual contributions do not
sufficiently dominate the RLO non-singlet quark coefficient function f& at ‘large’ N; the right
panel illustrates the dramatic smallnstability of the known fixed-order approximations IQ}Q,
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Figure 1: Left: the third-order coefficient function fdf, ns [5] compared to largéd approximations by
only the soft+virtuaN® terms and by those plus the £ 0) N~ contributions. Right: the LO, NLO and
NNLO [9] approximations to the timelike splitting functicFl'aTg for five flavours at a typical sca@? ~ M2.

2. Fourth- and all-order In K(1-x) predictions from physical kernels

It can be useful to eliminate the parton or fragmentatiortridistions, and the associated choice
of a factorization scheme and scale, from the descriptidhetiependence of observables on the
physical scal&?. This leads tghysical evolution kernels{which generically can be written as

diy _ _d (Ca M) = (B( 9%, ¢ ®P) ®C,toF! = KaoF, (2.1)
din@ ~ din@ \~a = P&/ g Tta a” @Fa = Ra®ha’ :
whereB(a;) = —foaZ — pra — ..., with By = £ Ca— Z n; in our normalization, is the (four-

dimensional) beta function of QCa = 3 andCg = % are the usual SW(gours=3) group factors,
andn; denotes the number of effectively massless flavours.

Forflavour non-singlet casesuch as, e.g., the structure functies (2.1) is a scalar equation.
The first term then represents a logarithmic derivativéigspace, and the second is reduced to
a combination of quark-(anti-)quark splitting functionshe resummations discussed here were
initiated by observing that th&, s in DIS aresingle-log enhancedot only for the(l—x)‘1
terms, as guaranteed by the soft-gluon exponentiatioReff.[34], but at all powers ii1—x),

[

=5 (10" (KN (1) + K It 1-x) + ) (2.2)
r=-—1

Ka
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If this behaviour holds also beyond the orders covered by .Réf6], as suggested by the all-
order leading largex result of Refs. [35], it implies aesummation of the double-logarithmic
contributionsto the coefficient function€, ns due to the non-enhancementRgf; mentioned above.

A closer look, see also Ref. [36] for an introductory ovenwjiesveals that the third-order co-
efficient functions are sufficient to fix the coefficients oé thighest three logarithmm Eq. (1.4)
for (the non-singlet components &) 4. The resulting all-ordeN ~1[r=0in Eq. (1.4)] predic-
tions have been presented in Ref. [23] fo& L [with n,. =1 andny =0 in Egs. (1.3) and (1.4)]
and in section 5 of Ref. [24] foa = 1,2,3 [wheren, = 0 andn, = 1]. In the latter cases, only
one parameter, denoted Bys,, is missing for the fourth logarithms. Section 5 of Ref. [2d40
includes the highest three logarithms at ordérfor all these cases at all powers i, written
down in a closed form using suitably modified harmonic pagiithms [37] up to weight 3.

Completely analogous results for the fragmentation femstiF_ 1 o in SIA can be found
in section 6 of Ref. [24]. As mentioned above, the third-ordeefficient functions are not fully
known for these quantities. However, it was possible tovedtie highest three largelogarithms
to all orders in -x using the (generally non-trivial) analytic-continuati@®'@’) or Drell-Yan-Levy
relation between inclusive DIS and SIA, cf. also Ref. [38fl aaferences therein; the results are
given in section 3 of Ref. [24]. Finally the same approach lbarapplied to the quark-antiquark
annihilation contribution to the total cross section Boell-Yan lepton-pair productionpp/pp —
I*1= 4+ X. In this case the fixed-order information is limited to oraef [39], hence only the
coefficients of thehighest two logarithmsn Eq. (1.4) are completely determined by the single-
logarithmic enhancement of the corresponding physicaiéderThe resulting all-ordeN 1 and
third- and fourth-order ali-predictions can also be found in section 6 of Ref. [24].

The single-log enhancement (2.2) also holds for the22matrices oflavour-singlet kernels
for combinations such &, = (F,, Fy) andF, = (F2, F) in DIS and their counterparts in SIA.
In these cases both the coefficient and splitting functiamdribute double-log enhanced terms on
the r.h.s. of Eq. (2.1), hence Eq. (2.2) does not imply ammer resummation. It is, however,
possible to use this equation fBg, at n = 3 to derive the highest three largdogarithms of the
(otherwise unknown) RLO singlet splitting functions iEg)sfrom the N'LO coefficient functions
computed in Refs. [5, 7]. This calculation has been carriedim Ref. [25] to all orders irr.

A surprising, at the time, outcome was that the coefficiertlidbur leading logarithms, I?](l—x)
for Pi;fli(x) and IrP (1—x) for Pifﬁ(x), were found to vanish to all orders in-k.

With the highest three logarithms determined P>, it became possible to employ Eq. (2.2)
for Fo to derive corresponding results for the [four-loop, duegte= 1 in Eq. (1.3)] NLO singlet
coefficient functions for\F- This has been done in Ref. [26], but only for the leadirapntributions,
with new results foc') atr = 1. The allf generalization, which would also yield results beyond

L7g
those of Refs. [23, 24] also for the quark coefficient functiis not available in the literature yet.

No new largex results have been derived (only) from physical evolutiomé&ts after Ref. [26].
The limitations of this approach — the need to conjectureathe validity of Eq. (2.2) and lack of
all-order predictions for the singlet splitting and coeéfict functions — have been overcome since
then by starting from the unfactorized structure and fragaten functions as discussed below.
However, the physical kernels still represent the eastegerto allf results at ordea?, and they
can provide invaluable hints for the functional forms of #ileorder largex coefficient functions.
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3. Double logarithmic endpoint resummations via unfactorzed quantities

The splitting functions and the coefficient functions foe lcombinations of) DIS and SIA observ-
ables discussed above originate in tinfactorized expressionis D = 4 — 2& dimensions,

dz

®Z71t. (3.1)
HereC,, the D-dimensional coefficient functions, are given by Tayloriesin € (which differs
from € by some ‘artefacts’ of dimensional regularization) witle #P coefficient leading to the
‘physical’ (MS-scheme) coefficient function in Egs. (1.1) and (18)(as) is the D-dimensional
beta functionBy(as) = —¢€as + B(as) with B(as) defined below Eq. (2.1). For non-singlet cases
all quantities in Eq. (3.1) are scalars, for flavour-singlembinations,, C,, P andZ are 2x 2
matrices [unlike in Eq. (1.1), the quark and gluon contiitmg toF, are considered separately in
Eqg. (3.1)]. Z consists of 1e poles up toe " at orderal’, and itsa e ~"* coefficients include
endpoint logarithms up to [F~1X with X = 1—x andX = x. Hence we have, generically,

Rl z XT(Z, et 2 e ) (3.2)

asn.e*n” - anlr

The second equation in (3.1) can be iteratively invertedietdyZ in terms of the expansion
coefficient ofP(x, as) andB(as). The resulting dependence BY and 3, can be summarized as

-1 p-1)

(3.3)

Explicit all-order expressions far= 0, recall Eq. (1.4), in the large€ase have been presented in
section 2 of Ref. [28]. Beyond this accuracy and for the smakseZ(as, €) has been evaluated
iteratively to a high but finite order ins. Eqg. (3.3) implies that a fixed-order knowledge &tlO,
recall Eqg. (1.3), determine the firat+1 non-vanishing coefficients in the expansion ofF, at
all orders inas. If this determination can be extended, at a certain Idgaiit accuracy, to all
orders ing, then theall-order mass factorizatiortan be performed at this accuracy, yielding a
resummation of the splitting and coefficient functions. tagtice this is done order by orderan;
we have employed recent developments @RM [40] to reach as high an order as possible.

One way to obtain aliand all€ expressions for coefficientg ¥ in Eq. (3.2) is by expressing
the coeﬂ‘icientz’.fa(n> in terms of known lower-order results, i.e., by finding aratieriteration of
the unfactorized (—:‘xpressionslfaﬁn> at a given logarithmic accuracy. This approach has been used
for ther = 0 large-x structure functionin Refs. [27, 28] ak = 0 andk = 1. For example, the
unfactorized gluon contributions to the structure funtfe can be expressed as

ale " PO By, Ale ™ 4 PW B, ale P 4 PRB, L, A

-1
= ( Lo/ " N0 ) 2
F273> — ﬁF27g>{ i; f27g(n,|,s)F(ngzg =) _ & ;gzg n,i) (ngzz - } (3.4)

with

_1 -1
fog(ni,e) = <n71> [1+sf§_1g>(n,i)} . Gpg(nii) = <i£1> (3.5)

at next-to-leading logarithmic (NLL) accuracy. The —1 ‘diagonal’ quantitiestfz%), ﬁq;';) required

in Eq. (3.4) are known to a high accuracy from the soft-glugpoaentiation, see Ref. [28].
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Especially the non-LL parts of this result (the functiaﬁg(n,i) can be found in section 3
of Ref. [28]) have rather been ‘engineered’ and verified -Agisesults in Section 2 the ensuing
system of linear equations is overconstrained by two eguatper order i s — than derived from
first principles. Since a second approach turned out to laeesi@and more convenient, we have not
attempted to generalize Eq. (3.4) to the third (NNL) lodaris. Still, the iteration of unfactorized
observables might offer access to resummations of queshtititside the scope of Refs. [28-33].

That second approach is tlecompose then'"-order unfactorized expressionsat x < 1,
without any reference to lower-order counterparts) tarms ofD-dimensional exponentials, e.g.,

(Ane 2" 4 Boke 22 4 Coye 23 L)X MotkmE k=1 n . (3.6)

For thelarge-x logarithms X = 1—X, this structure arises at allin inclusive DIS and SIA from
the phase-space integrations for the undetected final-ptaticles and the loop integrals of the
virtual corrections [12, 41] witlmy, = 0 andn,; = 1. The decomposition (3.6) is related, but not
identical to that into contributions with, 1.., n undetected partons in the final state. In the soft-
gluon limit,r = —1, it has been employed before to ‘reverse-engineertrtfe " pole terms of the
y*qgandHggform factors (and they a 3¢ contributions in the former case) from the calculations
for Refs. [5, 7] in Refs. [42] and to extend the soft-gluonurasnation to NLL accuracy for SIA,
Drell-Yan lepton-pair production and the total cross secfor Higgs production via gluon-gluon
fusion [23, 43]. It may be worthwhile to note that the reswitsRefs. [42] were confirmed (and
substantially extended, to ordefe?) by direct diagram calculations in Refs. [44,45].

The situation is far more complicated for temall-x logarithms X = x. Here we focus on
contributions that do not vanish for— 0, i.e.,r = 0 andr = —1. In the former case Eq. (3.6)
is found to hold withn, = 0 andn; = —1 in DIS andn, = 1 andn,; = 1 in SIA, as one might
have ‘naively’ expected from Refs. [12,41], but only for&a#\’ quantities such aB 1, in DIS
and their SIA counterparts. Fgy in polarized DIS andrs, where the operator-product expansion
provides the odd Mellin moments, and the corresponding awstnc fragmentation functiofa
already the colour structure of the leading logarithms § 4] excludes such a decomposition.
On the other hand, Eq. (3.6) is applicable all ordens-at—1 in SIA, but withn, =0 andn, = 2,
another structure that has been discovered and verifiedilblacks a proper explanation.

After expanding ire, thee =21 ... e "ltermsin Eq. (3.6) have to cancel in the sum (3.1).
This implies n—1 relations between the LL coefficiends « which lead to the constant@’rﬂ) in

Eqg. (3.2),n—2 relations between the NLL coefficienss k determiningﬁrfl} etc. As discussed
above, a N'LO calculation fixes the (non-vanishing) coefficientseof", ... , g~ at all orders
n, addingm+ 1 more relations between the coefficients in Eq. (3.6). Cagunsetly the highest
m+ 1 double logarithms, i.ethe NMLL approximation, can be determined from tHELO results
wherever an equation like (3.6) (the expressionHgre.g., is slightly different) is applicable.

Therefore the present fixed-order results allow the deteatian, to all orders i, of the
highest fourr = 0 largex logarithms for the coefficient functions in non-singlet D\@here the
accuracy effectively is RLO due to the non-enhancement of the splitting functions) 8 (due
to its close relation to the DIS case, see Ref. [24]), and @fcthrresponding highest three large-
and smalix logarithms in the flavour singlet splitting and coefficieanétions, including the phe-
nomenologically most important—* terms in SIA illustrated above.
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4. Selected recent results on larg&-and small-x double logarithms

We now show a small subset of the results derived by the mstdedcribed in Section 3. In
the non-singlet large-cases the physical-kernel results have been verified, angriwviously
missing parameter has been determinedgs, = égia, = %00, a result that has been obtained
independently in Ref. [49]. Except for the numerical impafdhe thus known four = 0 logs on the
fourth-order coefficient functloﬁz( n)s, which will be illustrated in Fig. 2 below, we will focus ongh
largex singlet and smalk cases, where progress has been made since the Wernigerndchoym

The highest three = 0 large-x logarithmsn the off-diagonal splitting functionBS and coef-
ficient functions forF_» o in DIS have now been cast in closed all-order forms that sgoler the
tables in the appendix of Ref. [28]. Also the NNLL contrilmris can be expressedMispace in
terms of the apparently neBernoulli functions%,(x) introduced and discussed in Refs. [27, 28],
c Bn °° Bn

Bi(X) = Zo TGl x" and ZB_y(x) = Zk STeH x| (4.1)

whereB,, are the Bernoulli numbers in the normalization of Ref. [48§.an example, we show the
NNLL approximation to the spacelike gluon-quark splittilmgpction which can be written as

N%%(N,as) = 2a,n; Bo(&s)

+a2inN y { (6Cr — Bo) (#1(8) + 285 41(&)) + B " -2(8) } (4.2)

+4a85C;F{Bo [Zas%z(as)—lwl(és)ﬂwo(as) 6%_1(8s) — 1285 % _5(8s)

4817 5(8) + 38 7 4(8)| — I6BCr [Aa(&) — 3%1(8) + 4%0(&) — B ()
) - )

+ 812 1(&) + B-2(8) — 2% 3(&)) | + 108CE | 28:%5(8) — 4%1(&) + 5504

a1 (2% 1(8) +42- (as>)]+8ocAFBo[ésgsz<és>—4931<és>+4930<as>+93 1(8)|
— 32Cur C [ (19— 32,)a Ba(As) — 34%1(5) + (13+ 6,) Bo(E) — (2 30) B 1(55)|
+32C; [ (2+30,)8%(8) + (4 120) #1(85) + (2— 124,) Fol ) + (2— 38,) B 1(5s )}}

with INN = InN + Ve, & = 4a;Car IN°N andCar = Ca — Cg, Wherey, is the Euler constant.
Corresponding results fd?, gq, their timelike counterparts with, e.@g 1PT =ng 1PS at LL accu-
racy, and the related coefficient functions will be presgmteRef. [32]. These results explain the
vanishing LL coefficients at order? as the start of an all-order pattern duetg 1 = 0 forn > 1.
We now turn to the = —1 small-x resummation in SJAvhere even more results were only
known via tables of expansion coefficients in Ref. [29]. Téitsiation changed dramatically as
a consequence of discussions which, in all likelihood, wodt have occurred without the 2012
Loops & Legs workshop. All results of Ref. [29], and more, aosv known in closed form, e.g.,
PCL(N) — gCF”f {25 (S—1)(L+1)+1)
8 N{ —11C2 JrGCAnf—ZOCan)ZE (S—1+2&)+10C4 E(S 1.
(5ch 6CAN; + 12Cr ) 5 (S— 1) + (11C2 + 2Can; — 4Ceny) S L2

+ (5C2— 2Can; + 6Ceny) % (S—1).22+ (51G2 — 14Can; +36Cen,).2} . (4.3)
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1g 1 -
Pag(N) = ZN(S—1) — Pyg(N) — g5 a (L1GF +2Can; —4Ceny) (SH - 1)

+ goag &N{([1193— 5767,]Cy — 140G3n; +4CZnf — 56CLCr 1y — 48CEN?
A
+16CaCr1?) (S— 1) + ([830—5764,|Cx + 96C2n; — 8C2nZ — 208CLCrny

+64CACENF — 96CEN?) (S1— 1) + (11C2 +2Can; —4Cenp)A(S 2~ 1)}  (4.4)

with S= (1-4&)Y?, ¥ = In(%(1+8)), § = —8CGaasN2andN = N—1. The first term in

Eq. (4.4) is the well-known leading-logarithmic result oéfR [50]. Beyond this accuracy, the
splitting functions were unknown in tHdS scheme, see Refs. [51], before Ref. [29]. The crucial
step towards the closed forms illustrated above was theadenn of the first line of Eq. (4.3) which
made use of Ref. [52] as described in appendix A of Ref. [31].

Expressions such as Eq. (4.4) allow the evaluation of thi#latsty combined NLO+NNLL
splitting functions down to extremely smailsee Fig. 2, and &l = 1 in Mellin space, e.g.,

1
PR(N=1) = (2Caas)¥? — @(1105 +2Can; 4 12Ckny) ag

1
144C;

- ([1193— 576, Cx — 140C3n; + 4CZnZ + 760CLCrny

— 80CACeN? + 144C2n?) (2Caad)Y? + 0(a2)
~ 0.691002/% — 0.92400, + 0.649007% + ¢(a2) for n,=5. (4.5)

The latter results have already been used in an analysislophuities in quark and gluon jets [53].

See Ref. [31] for more results on timelike splitting funasoand SIA coefficient functions, includ-

ing a first step towards a higher logarithmic accuracﬁ)@rbased on Ref. [15], see also Ref. [54].
Similar results have been derived for tfraall-x logarithms of even-N DIS quantitjesg.,

P (N) = _% N(S—1) + %as(ZCF ~Bo)(ST-1)

+ ﬁ aN { ([156— 9607,] C# — [80— 1152(,] CaCr — 3607,CZ — 100B,Cr
+3B8)(S—1) + 2([12—576,] CZ + [40+ 576,] CACr — 1807,C2
+566,C —363)(S 1 - 1) +3(2Cr — Bp) (S 1)} (4.6)

with S = (1-4&)Y/2 and& = 2Cra;N 2, of which only the leading-logarithmic first term was
known before [46]. While Eq. (4.6) is formally analogous tq.4.4), the different sign of as
compared tc¢ leads to a qualitatively different-space behaviour, see Ref. [33] where also the
resummed coefficient functiorks s andF_ s and the flavour-singlet results will be presented.

5. Summary and Outlook

We have derived all-order results for the highest three (fevacases four) largg-and smallx
double-logarithmic contributions to spacelike and tikelsplitting functions and to coefficient
functions for inclusive DIS and SIA. These results have @#ained from NNLO (in a few cases
effectively N°LO) fixed-order results in a ‘bottom-up’ approach using taeyéx behaviour of
physical evolution kernels, largekerations of unfactorized structure and fragmentatiarcfions,

and KLN-related largec and smallx decompositions of the unfactorized expressions in dimen-
sional regularization combined with constraints imposgthle mass-factorization relations.
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Figure 2: Left: the fourth-order coefficient function for the struafunctionF, hs. Shown are the large
N estimates by the known seven (of eight) Msoft-gluon contributions and by adding the highest four (of
sevenN ~1In"N corrections. Right: the timelike gluon-gluon splittingiittions (multiplied byk) for a very
wide range of the momentum fractiarat a value ofx, corresponding t®? ~ M2. The allx (N =1 finite)
LO+LL and NLO+ NNLL results are compared to the LO and NLO approximatiorisihanly at largex.

At least in the form presented above, the last and so far noveeiul approach is applicable
neither to inclusive lepton-pair and Higgs production agédex, nor to the odd MellinN based
structure functions such ag”“ in charge-current DIS ang, in polarized DIS. In the former
cases, Eq. (3.6) holds in tr(&—x)‘l soft-gluon limit withny = 0 andn; = 2 [41, 43] but, for
example, additional odiR; terms which spoil most of the predictivity are found to beuieed
in the gg channel of the Drell-Yan process [55]. Without additionaédretical insight, which
may come from the more rigorous approaches pursued in Féfs.if will also not be possible to
improve upon our present 'NLO implies N'LL’ accuracy in cases for which Eq. (3.6) is applicable.

Most of the results in Refs. [23—33] will not have a direct pomenological impact, but will
hopefully prove useful in conjunction with future developnts such as, e.g., a computation of
fourth-order moments of structure functions analogousefs57]. The exception are théz—x)o
contributions to the non-singlet DIS coefficient functipméhich should be of interest for high-
precision analyses of structure functions at latgend thex—* smallx timelike splitting functions
as discussed above. In both cases the relative size of tlenkNELL contributions indicates that
an improvement on the present accuracy is required for datwely reliable results.
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