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1. Introduction

Recent years have seen a resurgence of interest in the study of the ultraviolet properties
of supergravity theories. The consensus opinion from the late 70’s and early 80’s was that
all such theories would likely diverge by three loops. (See ref. [1] for a review of the situation
in that era). However, recent years have made it clear that the supergravity amplitudes
are much better behaved, though it is not yet clear if a perturbatively finite supergravity
theory is possible or not.

In the past few years significant progress has been made on this question, especially
for the cases of N'=8 [2] and N = 4 supergravity [3]. In particular, there have been major
advances in developing powerful tools for carrying out the explicit computations needed
for unraveling the ultraviolet behavior. These include the unitarity method [4, 5] and its
refinement known as the method of maximal cuts [6]. These tools have played a central
role in uncovering a duality between color and kinematics [7, 8|, which was then used in
a variety of new supergravity calculations [9, 10, 11, 12]. There has also been enormous
progress in carrying out the loop integration needed to determine the explicit values of the
divergences. (See e.g. ref. [13]|.) There has also been enormous progress in understanding
the role of supersymmetry and duality symmetry in constraining the counterterms (see e.g.
ref. [14].)

In this talk we focus on the divergence properties of the three-loop four-point amplitudes
of half-maximal N =4 supergravity [11]. This case is especially interesting because the
potential R* counterterm [15] does appear to be fully consistent with all known symmetry
constraints even if not expressible as a full superspace integral [16].

The question of whether supergravity theories diverge in perturbation theory is still
an open one. (For a recent optimistic opinion in favor of ultraviolet finiteness of N' =8
supergravity see ref. [17|. For a recent pessimistic opinion see ref. [18].) While conventional
counterterm symmetry considerations suggest that all supergravity amplitudes will diverge
at some loop order, studies of multiloop scattering amplitudes suggest that additional ul-
traviolet cancellations exist beyond these [19]|. Surprisingly, even pure Einstein gravity at
one loop exhibits remarkable cancellations as the number of external legs increases [20].
The double-copy structure also implies that gravity amplitudes are much more highly con-
strained than implied by the standard symmetries.

To settle the debate on the question of perturbative finiteness, we need to carry out
further explicit calculations. Such calculations of expected divergences would either prove
divergences or demonstrate their absence. This type of information is obviously very useful
in guiding further studies. While there has been some recent progress on understanding
the general structure of ultraviolet cancellations in gravity amplitudes by linking them
to cancellations in gauge-theory amplitudes [12], more work is needed before the general
structure can be unraveled.

2. Duality between color and kinematics

The duality between color and kinematics uncovered by Carrasco, Johansson and one
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Figure 1: The twelve graphs of the N' =4 sYM three-loop four-point amplitude in a representation
satisfying the duality between color and kinematics [8].

of the authors (BCJ) |7, 8| allows us to convert gauge-theory amplitudes into gravity ones
via a double-copy formula [7, 8]. Whenever a representation of the gauge-theory amplitude
can be found that satisfies the duality [21, 10, 11], it enormously simplifies the construction
of gravity amplitudes, especially in the context of unitarity based computations [4, 6],

Any m-point L-loop gauge-theory amplitude with all particles in the adjoint represen-
tation can be written in the form,

(—i) dPp; 1 njey
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where the sum labeled by j runs over the set of distinct m-point L-loop graphs with only
cubic vertices, including distinct relabelings of external legs. The factor S; is the symmetry
factor of graph j which removes overcounts from internal symmetry. In this representation
contact terms are absorbed into graphs with cubic vertices by multiplying and dividing
by appropriate inverse propagators. The integrals are over L independent D-dimensional
loop momenta. The product in the denominator runs over all Feynman propagators of
graph j. The ¢; are the color factors obtained by dressing every three-vertex with a group-
theory structure constant, ?abc =iv/2£%¢ and the n; are kinematic numerators of graph j
depending on momenta, polarizations and spinors. We note that there is enormous freedom
in the choice of finding valid numerators due to generalized gauge invariance [7, 8, 22, 23|.

According to the duality conjecture of refs. [7, 8|, a representation of L-loop m-point
amplitudes should exist where kinematic numerators satisfy the same algebraic properties
as color factors. For Yang-Mills theory this amounts to imposing the same Jacobi identities
on the kinematic numerators as satisfied by the color factors,

Ci =Cj—Ck = Ny =MNj — Nk, (2.2)
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where the indices 7, j, k denote the graph to which the color factors and numerators belong.
Moreover, the numerator factors are required to have the same antisymmetry properties as
color factors under interchange of any two legs attached to a cubic vertex. As explained in
some detail in refs. [21, 10], the numerator relations are functional equations. For four-point
tree amplitudes such relations were noticed long ago using Feynman diagrams |24]|. Beyond
the four-point tree level, the relations are highly nontrivial and hold only after appropriate
rearrangements of the amplitudes.

At tree level, explicit forms of amplitudes satisfying the duality have been found for an
arbitrary number of legs [25]. An interesting consequence of the duality is that color-ordered
partial tree amplitudes satisfy nontrivial relations [7], proven in gauge theory and in string
theory [26, 23|. Although we do not yet have a satisfactory Lagrangian understanding,
some progress in this direction can be found in refs. |22, 27|. The duality (2.2) has also
been expressed in terms of an alternative trace-based representation [28]|. Progress has
also been made in understanding the underlying infinite-dimensional Lie algebra [27, 29|
responsible for the duality. The duality between color and kinematics also appears to hold
in three-dimensional theories based on three algebras [30], as well as in some cases with
higher-dimension operators [31].

At loop level, the duality has been confirmed to hold up to four loops for the four-point
amplitudes of N' = 4 super-Yang-Mills (sYM) theory [8, 10], and for the five-point one- and
two-loop amplitudes of this theory [32]. Moreover, the infrared singularities do appear to
be consistent with BCJ duality to all loop orders [33]. The duality is also known to hold for
the identical-helicity one- and two-loop four-point amplitudes of pure Yang-Mills theory [8].
There has also been progress in understanding more general one-loop amplitudes [34].

Associated with the conjectured duality between color and kinematics is a double-copy
formula for gravity amplitudes given by [8|

Ll dPp; 1 n]ﬁj
(H§2)2 o Mn ™ = Z/H QﬁpleS M., 72, (2.3)

where n; and 7; are kinematic numerator factors from gauge-theory amplitudes and « is the
gravitational coupling. The particular gravity theory obtained by the double-copy formula
(2.3) is dictated by the choice of numerators. In eq. (2.3) only one of the two copies needs
to satisfy duality (2.2) [8, 22]. The other gauge-theory amplitude can be any convenient
representation arranged into graphs with only cubic vertices. At tree level, eq. (2.3) encodes
the Kawai-Lewellen-Tye [35] relations between gravity and gauge theory [7].

3. Constructing the integrand

We obtain pure N =4 supergravity amplitudes with no additional matter by taking
one component gauge theory to be N'=4 sYM theory and the second component to be
nonsupersymmetric pure Yang-Mills theory [9, 3]. The N'=4 sYM copy is obtained from
ref. [8], which contains a representation with BCJ duality manifest. This representation
of the N'=4 sYM amplitude is described by the twelve graphs displayed in fig. 1. As
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Figure 2: A basis of vacuum integrals used in the three-loop calculation of ref. [11].

discussed in ref. [11], for the pure Yang-Mills copy, a convenient representation is to use
ordinary Feynman gauge Feynman diagrams. Any contact contributions are assigned to
diagrams with only cubic vertices according to their color factor. In this construction, most
Feynman graphs are irrelevant because in the double-copy formula, they get multiplied by
vanishing ' =4 sYM graph numerators. In this way, the complete three-loop four-point
integrand of N =4 supergravity was determined in ref. [11] for all external states of the
theory.

4. Extracting ultraviolet divergences

As discussed in ref. [11], to extract the ultraviolet divergences from the constructed
integrand, we expand in large loop momenta or equivalently in small external momenta.
This gives a set of vacuum graphs containing both infrared and ultraviolet divergences. We
use the four-dimensional-helicity regularization scheme [36] variant of dimensional regular-
ization because it preserves supersymmetry and has been used in analogous multiloop pure
gluon and supersymmetric amplitudes [37]. In this scheme, the number of states circulating
in the loops remain at their four-dimensional values. To separate out the infrared diver-
gences at the level of the vacuum integrals, we introduce a uniform mass m, following the
procedure in ref. |[38]. Although ultimately there are no one- and two-loop ultraviolet di-
vergences in N = 4 supergravity, individual integrals generally will contain subdivergences.
Extractions of ultraviolet divergences in higher-dimensional N = 8 supergravity were dis-
cussed recently in refs. [39, 10].

The introduced mass regulator induces unphysical regulator dependence in individual
integrals arising entirely from subdivergences. However, after systematically subtracting
the subdivergences we obtain results independent of the details of the regulator choice [38].
Further details can be found in ref. [11]

The next task is to calculate the ultraviolet divergences of the vacuum integrals. To
evaluate these integrals, we first use Lorentz invariance to replace tensors composed of loop
momenta in the numerators by linear combinations of products of metric tensors n** and
dot products of momenta amongst themselves. (See ref. [10] for a more detailed discussion
of simplifying tensor vacuum integrals.) To carry out the reduction of the scalar integrals
to a basis, we use integration by parts as implemented in FIRE [40]. The resulting basis
is given by the scalar vacuum integrals shown in fig. 2 (along with products of lower-loop
integrals), with a single massive propagator corresponding to each line. As cross checks we
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Table 1: The divergences for each graph in the four-graviton amplitude with helicities (17273%47)
as computed in ref. [11]. Each expression includes a permutation sum over external legs, with the
symmetry factor appropriate to the graph. To simplify the expression, spinor helicity with the
choice of reference momenta ¢, = g2 = k3 and q3 = q4 = k1 is used.

also used MB |41] and FIESTA [42]|. The resulting scalar integrals shown in fig. 2 have been
evaluated in refs. [43].

In table 1, we collect the derived divergences of the three-loop four-graviton amplitude
for each graph in fig. 1 for external gravitons with the indicated choices of spinor-helicity
reference momenta (defined in, e.g., ref. [44]). The individual graphs are not gauge invariant;
in particular, the vanishing the contribution (a)-(d) in table 1 is due to the choice of spinor-
helicity reference momenta. The results shown in the table for each graph are summed over
independent permutations and include symmetry factors. We have divided out a prefactor
depending on the four-point color-ordered sYM tree amplitude, spinor inner products and
the usual Mandelstam invariants s and ¢. If we sum the contributions of all graphs they
vanish, so the three-loop four-graviton amplitude is ultraviolet finite. The actual calculation
in ref. [11] does not rely on spinor helicity and makes use of formal polarization vectors and is
valid for all states in the theory, proving that there are no three-loop four-point divergences
in N = 4 supergravity.

5. Conclusions and outlook

The calculation of the coefficient of the potential three-loop four-point divergence of
N =4 supergravity [11] gives us a concrete example of an ultraviolet cancellation in su-
pergravity that has not yet been understood from symmetry considerations [16]. The key
future tasks are to find further examples of unexpected ultraviolet cancellations in su-
pergravity theories and to see whether they can plausibly be explained by the standard
symmetries of supergravity. For example, it may turn out that the inability to write the
counterterm as a full superspace integral [16] might ultimately lead to an explanation for
its finiteness. On the other hand, the two-loop counterterm of half-maximal supergravity in
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D =5 does appear to be expressible as a full superspace integral [45], yet the corresponding
divergence vanishes [46, 12]. (The counterterm is apparently also duality invariant after
integration [45].) A novel explanation for these supergravity cancellations was proposed in
ref. [12] by tying them to cancellations of divergences in forbidden color factors of gauge
theories. An alternative proposal based on a hidden superconformal symmetry of N' =4
supergravity has also been given in ref. [47]. These results emphasize the importance of
carrying out further explicit computations to determine if potential divergences are present.
Obvious next steps are to determine the ultraviolet properties of A/ = 8 supergravity at five
loops and NV = 4 supergravity at four loops.

We thank John Joseph Carrasco, Henrik Johansson, Lance Dixon, Harald Ita and Radu
Roiban for discussions and collaboration on topics closely related to those described in this
talk. This research was supported in part by the US Department of Energy under contract
DE-FG03-91ER40662.
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