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N = 4 supergravity Z. Bern

1. Introdu
tion

Re
ent years have seen a resurgen
e of interest in the study of the ultraviolet properties

of supergravity theories. The 
onsensus opinion from the late 70's and early 80's was that

all su
h theories would likely diverge by three loops. (See ref. [1℄ for a review of the situation

in that era). However, re
ent years have made it 
lear that the supergravity amplitudes

are mu
h better behaved, though it is not yet 
lear if a perturbatively �nite supergravity

theory is possible or not.

In the past few years signi�
ant progress has been made on this question, espe
ially

for the 
ases of N = 8 [2℄ and N = 4 supergravity [3℄. In parti
ular, there have been major

advan
es in developing powerful tools for 
arrying out the expli
it 
omputations needed

for unraveling the ultraviolet behavior. These in
lude the unitarity method [4, 5℄ and its

re�nement known as the method of maximal 
uts [6℄. These tools have played a 
entral

role in un
overing a duality between 
olor and kinemati
s [7, 8℄, whi
h was then used in

a variety of new supergravity 
al
ulations [9, 10, 11, 12℄. There has also been enormous

progress in 
arrying out the loop integration needed to determine the expli
it values of the

divergen
es. (See e.g. ref. [13℄.) There has also been enormous progress in understanding

the role of supersymmetry and duality symmetry in 
onstraining the 
ounterterms (see e.g.

ref. [14℄.)

In this talk we fo
us on the divergen
e properties of the three-loop four-point amplitudes

of half-maximal N = 4 supergravity [11℄. This 
ase is espe
ially interesting be
ause the

potential R4 
ounterterm [15℄ does appear to be fully 
onsistent with all known symmetry


onstraints even if not expressible as a full superspa
e integral [16℄.

The question of whether supergravity theories diverge in perturbation theory is still

an open one. (For a re
ent optimisti
 opinion in favor of ultraviolet �niteness of N = 8

supergravity see ref. [17℄. For a re
ent pessimisti
 opinion see ref. [18℄.) While 
onventional


ounterterm symmetry 
onsiderations suggest that all supergravity amplitudes will diverge

at some loop order, studies of multiloop s
attering amplitudes suggest that additional ul-

traviolet 
an
ellations exist beyond these [19℄. Surprisingly, even pure Einstein gravity at

one loop exhibits remarkable 
an
ellations as the number of external legs in
reases [20℄.

The double-
opy stru
ture also implies that gravity amplitudes are mu
h more highly 
on-

strained than implied by the standard symmetries.

To settle the debate on the question of perturbative �niteness, we need to 
arry out

further expli
it 
al
ulations. Su
h 
al
ulations of expe
ted divergen
es would either prove

divergen
es or demonstrate their absen
e. This type of information is obviously very useful

in guiding further studies. While there has been some re
ent progress on understanding

the general stru
ture of ultraviolet 
an
ellations in gravity amplitudes by linking them

to 
an
ellations in gauge-theory amplitudes [12℄, more work is needed before the general

stru
ture 
an be unraveled.

2. Duality between 
olor and kinemati
s

The duality between 
olor and kinemati
s un
overed by Carras
o, Johansson and one
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Figure 1: The twelve graphs of the N = 4 sYM three-loop four-point amplitude in a representation

satisfying the duality between 
olor and kinemati
s [8℄.

of the authors (BCJ) [7, 8℄ allows us to 
onvert gauge-theory amplitudes into gravity ones

via a double-
opy formula [7, 8℄. Whenever a representation of the gauge-theory amplitude


an be found that satis�es the duality [21, 10, 11℄, it enormously simpli�es the 
onstru
tion

of gravity amplitudes, espe
ially in the 
ontext of unitarity based 
omputations [4, 6℄,

Any m-point L-loop gauge-theory amplitude with all parti
les in the adjoint represen-

tation 
an be written in the form,

(−i)L

gm−2+2L
AL−loop

m =
∑

j

∫ L∏

l=1

dDpl

(2π)D

1

Sj

njcj∏
αj

p2
αj

, (2.1)

where the sum labeled by j runs over the set of distin
t m-point L-loop graphs with only


ubi
 verti
es, in
luding distin
t relabelings of external legs. The fa
tor Sj is the symmetry

fa
tor of graph j whi
h removes over
ounts from internal symmetry. In this representation


onta
t terms are absorbed into graphs with 
ubi
 verti
es by multiplying and dividing

by appropriate inverse propagators. The integrals are over L independent D-dimensional

loop momenta. The produ
t in the denominator runs over all Feynman propagators of

graph j. The cj are the 
olor fa
tors obtained by dressing every three-vertex with a group-

theory stru
ture 
onstant, f̃abc = i
√

2fabc, and the nj are kinemati
 numerators of graph j

depending on momenta, polarizations and spinors. We note that there is enormous freedom

in the 
hoi
e of �nding valid numerators due to generalized gauge invarian
e [7, 8, 22, 23℄.

A

ording to the duality 
onje
ture of refs. [7, 8℄, a representation of L-loop m-point

amplitudes should exist where kinemati
 numerators satisfy the same algebrai
 properties

as 
olor fa
tors. For Yang-Mills theory this amounts to imposing the same Ja
obi identities

on the kinemati
 numerators as satis�ed by the 
olor fa
tors,

ci = cj − ck ⇒ ni = nj −nk , (2.2)
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where the indi
es i, j,k denote the graph to whi
h the 
olor fa
tors and numerators belong.

Moreover, the numerator fa
tors are required to have the same antisymmetry properties as


olor fa
tors under inter
hange of any two legs atta
hed to a 
ubi
 vertex. As explained in

some detail in refs. [21, 10℄, the numerator relations are fun
tional equations. For four-point

tree amplitudes su
h relations were noti
ed long ago using Feynman diagrams [24℄. Beyond

the four-point tree level, the relations are highly nontrivial and hold only after appropriate

rearrangements of the amplitudes.

At tree level, expli
it forms of amplitudes satisfying the duality have been found for an

arbitrary number of legs [25℄. An interesting 
onsequen
e of the duality is that 
olor-ordered

partial tree amplitudes satisfy nontrivial relations [7℄, proven in gauge theory and in string

theory [26, 23℄. Although we do not yet have a satisfa
tory Lagrangian understanding,

some progress in this dire
tion 
an be found in refs. [22, 27℄. The duality (2.2) has also

been expressed in terms of an alternative tra
e-based representation [28℄. Progress has

also been made in understanding the underlying in�nite-dimensional Lie algebra [27, 29℄

responsible for the duality. The duality between 
olor and kinemati
s also appears to hold

in three-dimensional theories based on three algebras [30℄, as well as in some 
ases with

higher-dimension operators [31℄.

At loop level, the duality has been 
on�rmed to hold up to four loops for the four-point

amplitudes of N = 4 super-Yang-Mills (sYM) theory [8, 10℄, and for the �ve-point one- and

two-loop amplitudes of this theory [32℄. Moreover, the infrared singularities do appear to

be 
onsistent with BCJ duality to all loop orders [33℄. The duality is also known to hold for

the identi
al-heli
ity one- and two-loop four-point amplitudes of pure Yang-Mills theory [8℄.

There has also been progress in understanding more general one-loop amplitudes [34℄.

Asso
iated with the 
onje
tured duality between 
olor and kinemati
s is a double-
opy

formula for gravity amplitudes given by [8℄

(−i)L+1

(κ/2)n−2+2L
Mloop

n =
∑

j

∫ L∏

l=1

dDpl

(2π)D

1

Sj

njñj∏
αj

p2
αj

, (2.3)

where nj and ñj are kinemati
 numerator fa
tors from gauge-theory amplitudes and κ is the

gravitational 
oupling. The parti
ular gravity theory obtained by the double-
opy formula

(2.3) is di
tated by the 
hoi
e of numerators. In eq. (2.3) only one of the two 
opies needs

to satisfy duality (2.2) [8, 22℄. The other gauge-theory amplitude 
an be any 
onvenient

representation arranged into graphs with only 
ubi
 verti
es. At tree level, eq. (2.3) en
odes

the Kawai-Lewellen-Tye [35℄ relations between gravity and gauge theory [7℄.

3. Constru
ting the integrand

We obtain pure N = 4 supergravity amplitudes with no additional matter by taking

one 
omponent gauge theory to be N = 4 sYM theory and the se
ond 
omponent to be

nonsupersymmetri
 pure Yang-Mills theory [9, 3℄. The N = 4 sYM 
opy is obtained from

ref. [8℄, whi
h 
ontains a representation with BCJ duality manifest. This representation

of the N = 4 sYM amplitude is des
ribed by the twelve graphs displayed in �g. 1. As
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Figure 2: A basis of va
uum integrals used in the three-loop 
al
ulation of ref. [11℄.

dis
ussed in ref. [11℄, for the pure Yang-Mills 
opy, a 
onvenient representation is to use

ordinary Feynman gauge Feynman diagrams. Any 
onta
t 
ontributions are assigned to

diagrams with only 
ubi
 verti
es a

ording to their 
olor fa
tor. In this 
onstru
tion, most

Feynman graphs are irrelevant be
ause in the double-
opy formula, they get multiplied by

vanishing N = 4 sYM graph numerators. In this way, the 
omplete three-loop four-point

integrand of N = 4 supergravity was determined in ref. [11℄ for all external states of the

theory.

4. Extra
ting ultraviolet divergen
es

As dis
ussed in ref. [11℄, to extra
t the ultraviolet divergen
es from the 
onstru
ted

integrand, we expand in large loop momenta or equivalently in small external momenta.

This gives a set of va
uum graphs 
ontaining both infrared and ultraviolet divergen
es. We

use the four-dimensional-heli
ity regularization s
heme [36℄ variant of dimensional regular-

ization be
ause it preserves supersymmetry and has been used in analogous multiloop pure

gluon and supersymmetri
 amplitudes [37℄. In this s
heme, the number of states 
ir
ulating

in the loops remain at their four-dimensional values. To separate out the infrared diver-

gen
es at the level of the va
uum integrals, we introdu
e a uniform mass m, following the

pro
edure in ref. [38℄. Although ultimately there are no one- and two-loop ultraviolet di-

vergen
es in N = 4 supergravity, individual integrals generally will 
ontain subdivergen
es.

Extra
tions of ultraviolet divergen
es in higher-dimensional N = 8 supergravity were dis-


ussed re
ently in refs. [39, 10℄.

The introdu
ed mass regulator indu
es unphysi
al regulator dependen
e in individual

integrals arising entirely from subdivergen
es. However, after systemati
ally subtra
ting

the subdivergen
es we obtain results independent of the details of the regulator 
hoi
e [38℄.

Further details 
an be found in ref. [11℄

The next task is to 
al
ulate the ultraviolet divergen
es of the va
uum integrals. To

evaluate these integrals, we �rst use Lorentz invarian
e to repla
e tensors 
omposed of loop

momenta in the numerators by linear 
ombinations of produ
ts of metri
 tensors ηµν and

dot produ
ts of momenta amongst themselves. (See ref. [10℄ for a more detailed dis
ussion

of simplifying tensor va
uum integrals.) To 
arry out the redu
tion of the s
alar integrals

to a basis, we use integration by parts as implemented in FIRE [40℄. The resulting basis

is given by the s
alar va
uum integrals shown in �g. 2 (along with produ
ts of lower-loop

integrals), with a single massive propagator 
orresponding to ea
h line. As 
ross 
he
ks we

5
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Graph (divergence)/(〈12〉2[34]2stAtree(κ
2
)8)

(a)-(d) 0

(e) 263
768

1
ǫ3

+ 205
27648

1
ǫ2

+
(
−5551

768
ζ3 + 326317

110592

)
1
ǫ

(f) − 175
2304

1
ǫ3
− 1

4
1
ǫ2

+
(

593
288

ζ3− 217571
165888

)
1
ǫ

(g) −11
36

1
ǫ3

+ 2057
6912

1
ǫ2

+
(

10769
2304

ζ3− 226201
165888

)
1
ǫ

(h) − 3
32

1
ǫ3
− 41

1536
1
ǫ2

+
(

3227
2304

ζ3− 3329
18432

)
1
ǫ

(i) 17
128

1
ǫ3
− 29

1024
1
ǫ2

+
(
−2087

2304
ζ3− 10495

110592

)
1
ǫ

(j) −15
32

1
ǫ3

+ 9
64

1
ǫ2

+
(

101
12

ζ3− 3227
1152

)
1
ǫ

(k) 5
64

1
ǫ3

+ 89
1152

1
ǫ2

+
(
−377

144
ζ3 + 287

432

)
1
ǫ

(l) 25
64

1
ǫ3
− 251

1152
1
ǫ2

+
(
−835

144
ζ3 + 7385

3456

)
1
ǫ

Table 1: The divergen
es for ea
h graph in the four-graviton amplitude with heli
ities (1−2−3+4+)

as 
omputed in ref. [11℄. Ea
h expression in
ludes a permutation sum over external legs, with the

symmetry fa
tor appropriate to the graph. To simplify the expression, spinor heli
ity with the


hoi
e of referen
e momenta q1 = q2 = k3 and q3 = q4 = k1 is used.

also used MB [41℄ and FIESTA [42℄. The resulting s
alar integrals shown in �g. 2 have been

evaluated in refs. [43℄.

In table 1, we 
olle
t the derived divergen
es of the three-loop four-graviton amplitude

for ea
h graph in �g. 1 for external gravitons with the indi
ated 
hoi
es of spinor-heli
ity

referen
e momenta (de�ned in, e.g., ref. [44℄). The individual graphs are not gauge invariant;

in parti
ular, the vanishing the 
ontribution (a)-(d) in table 1 is due to the 
hoi
e of spinor-

heli
ity referen
e momenta. The results shown in the table for ea
h graph are summed over

independent permutations and in
lude symmetry fa
tors. We have divided out a prefa
tor

depending on the four-point 
olor-ordered sYM tree amplitude, spinor inner produ
ts and

the usual Mandelstam invariants s and t. If we sum the 
ontributions of all graphs they

vanish, so the three-loop four-graviton amplitude is ultraviolet �nite. The a
tual 
al
ulation

in ref. [11℄ does not rely on spinor heli
ity and makes use of formal polarization ve
tors and is

valid for all states in the theory, proving that there are no three-loop four-point divergen
es

in N = 4 supergravity.

5. Con
lusions and outlook

The 
al
ulation of the 
oe�
ient of the potential three-loop four-point divergen
e of

N = 4 supergravity [11℄ gives us a 
on
rete example of an ultraviolet 
an
ellation in su-

pergravity that has not yet been understood from symmetry 
onsiderations [16℄. The key

future tasks are to �nd further examples of unexpe
ted ultraviolet 
an
ellations in su-

pergravity theories and to see whether they 
an plausibly be explained by the standard

symmetries of supergravity. For example, it may turn out that the inability to write the


ounterterm as a full superspa
e integral [16℄ might ultimately lead to an explanation for

its �niteness. On the other hand, the two-loop 
ounterterm of half-maximal supergravity in

6
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D = 5 does appear to be expressible as a full superspa
e integral [45℄, yet the 
orresponding

divergen
e vanishes [46, 12℄. (The 
ounterterm is apparently also duality invariant after

integration [45℄.) A novel explanation for these supergravity 
an
ellations was proposed in

ref. [12℄ by tying them to 
an
ellations of divergen
es in forbidden 
olor fa
tors of gauge

theories. An alternative proposal based on a hidden super
onformal symmetry of N = 4

supergravity has also been given in ref. [47℄. These results emphasize the importan
e of


arrying out further expli
it 
omputations to determine if potential divergen
es are present.

Obvious next steps are to determine the ultraviolet properties of N = 8 supergravity at �ve

loops and N = 4 supergravity at four loops.

We thank John Joseph Carras
o, Henrik Johansson, Lan
e Dixon, Harald Ita and Radu

Roiban for dis
ussions and 
ollaboration on topi
s 
losely related to those des
ribed in this

talk. This resear
h was supported in part by the US Department of Energy under 
ontra
t

DE�FG03�91ER40662.
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