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H. Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences,
ul. Radzikowskiego 152, 31-342 Krakow, Poland
E-mail: Magdalena.Slawinska@ifj.edu.pl

The new methodology of adding QCD NLO corrections in the initial state Monte Carlo parton
shower (hard process part) is presented using process of the heavy boson production at the LHC
as an example. Despite the simplified model of the process, presented numerical results prove
that the basic concept of the new methodology works correctly in the numerical environment of
the Monte Carlo parton shower event generator. The presented method is an alternative to the
well established methods, MC@NLO and POWHEG. Refinements of the new method with better
computer CPU time efficiency are also discussed.

“Loops and Legs in Quantum Field Theory ” 11th DESY Workshop on Elementary Particle Physics,
April 15-20, 2012, Wernigerode, Germany

∗Speaker.
†The partial support of the TH Unit of the CERN PH Division for this author is acknowledged.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:Stanislaw.Jadach@ifj.edu.pl
mailto:akusina@smu.edu
mailto:Maciej.Skrzypek@ifj.edu.pl
mailto:Magdalena.Slawinska@ifj.edu.pl


P
o
S
(
L
L
2
0
1
2
)
0
1
9

NLO parton shower for LHC physics - hard processes and beyond S. Jadach

1. Introduction

The Large Hadron Collider (LHC) at CERN provides rich harvest of experimental data. The
proper understanding and interpretation of these data, possibly leading to discovery of new phe-
nomena, requires perfect mastering of the “trivial” effects due to the multiple emissions of soft and
collinear gluons and quarks. Perturbative Quantum Chromodynamics (pQCD) [1, 2, 3], supple-
mented with clever modelling of the low energy nonperturbative effects, is an indispensable tool
for disentangling the Standard Model physics component in the data. This work presents part of
the global effort of improving quality of the pQCD calculations for LHC experiments.

Most of the results presented here are described in refs. [4] and [5]. Although this work elab-
orates on the improved method of the pQCD calculation combining NLO-corrected hard process
and LO parton shower Monte Carlo (MC), it should be regarded as the first step towards NNLO-
corrected hard process combined with the NLO parton shower MC [6].

2. Basic LO parton shower MC

The multigluon distribution of the single initial state ladder, which is a building block of our
parton shower MC, is represented by the integrand of the “exclusive/unintegrated PDF”, which in
the LO approximation is the following:

D(t,x) =
∫

dx0 dZ δx=x0Z d0(t̂0,x0) G(t, t̂0− lnx0|Z),

G(t, t0|Z) = e−SF
∞

∑
n=0

( n

∏
i=1

∫
d3E (k̄i) θξi>ξi−1

2CFαs

π2 P̄(zi)
)

×θt>ξnδZ=∏
n
j=1 z j ,

(2.1)

where evolution kernel is P̄(z) = 1
2(1+z2), evolution time is t̂0 = ln(q0/Λ) and the “eikonal” phase

space integration element is d3E (k) = d3k
2k0

1
k2 = π

dφ

2π

dk+

k+ dξ and k± = k0 ± k3. We use rapidities

ξi = 1
2 ln k−i

k+
i

∣∣
Rh in the hadron beam rest frame (Rh), and ηi = 1

2 ln k+
i

k−i

∣∣
RFHP defined in hard process

rest frame (RFHP). They are related by ξi = ln
√

s
mh
−ηi. Rapidity ordering is now t = ξmax > ξn >

· · ·> ξi > ξi−1 > · · ·> ξ0 = t0, where t0 = ξ0 = ln(q0/mh)− lnx0. The direction of the z axis in the
RFHP is pointing out towards the hadron momentum. A lightcone variable of the emitted gluon is
defined as αi = 2k+

i√
s and of the emitter parton (quark) as xi = x0−∑

i
j=0 α j (after i emissions). We

also use fractions zi = xi/xi−1. The Sudakov formfactor SF comes from the “unitarity” condition1∫ 1
0 dZ G(t, t0|Z) = 1, which is also instrumental in the Markovian MC implementation used to

obtain D(t,x) at any value of t > t0.
The initial distribution d0(q0,x0) related to experiment, to previous steps in the MC ladder, or

to PDF in the standard MS system is not essential for the following discussion, we only note that the
unitarity condition provides baryon number conservation sum rule

∫ 1
0 dx D(t,x) =

∫ 1
0 dx0 d0(t0,x0).

For testing our new method of correcting hard process to the NLO level we use the follow-
ing simplified MC parton shower, implementing the DY process with two ladders and the hard

1The usual cutoff 1− z < ε regularizing the IR singularity is implicit.
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Figure 1: The upper plot shows the LO distribution of η∗
W = 1

2 ln(xF/xB) from the CMC LO parton shower
(purple) and from the strictly collinear formula (green). The lower plot shows the ratio of the two.

process:2

σ0 =
∫

dx0Fdx0B d0(t̂0,x0F)d0(t̂0,x0B)
∞

∑
n1=0

∞

∑
n2=0

∫
dxF dxB

× e−SF

∫
Ξ<ηn1

( n1

∏
i=1

d3E (k̄i)θηi<ηi−1

2CFαs

π2 P̄(zFi)
)

δxF=x0F ∏
n1
i=1 zFi

× e−SB

∫
Ξ>ηn2

( n2

∏
j=1

d3E (k̄ j)θη j>η j−1

2CFαs

π2 P̄(zB j)
)

δxB=x0B ∏
n2
j=1 zB j

×dτ2(P−
n1+n2

∑
j=1

k j;q1,q2)
dσB

dΩ
(sxFxB, θ̂) W NLO

MC .

(2.2)

In the LO approximation W NLO
MC = 1. Rapidity ξ is translated into η – the center of mass system

rapidity, in the forward part (F) of the phase space as ξi = ln
√

s
mh
−ηi, η0F > ηi > Ξ, and in the

backward (B) part as ξi = − ln
√

s
mh

+ ηi, Ξ > ηi > η0B. The rapidity boundary between the two
hemispheres Ξ = 0 is used, until a more sophisticated version related to rapidity of the produced
W/Z is introduced.

Analytical integration of eq. (2.2) results in the standard factorization formula (W NLO
MC = 1)

σ0 =
∫ 1

0
dxF dxB DF(t,xF) DB(t,xB) σB(sxFxB). (2.3)

The distributions DF(t,xF) = (d0⊗GF)(t,xF) and DB(t,xB) = (d0⊗GB)(t,xB) are obtained from
separate Markovian LO Monte Carlo runs. The above LO formula is exact, and can be tested with
an arbitrary numerical precision.

Figure 1 represents a “calibration benchmark” for the overall normalization at the LO level.
We show there the properly normalized distribution of the variable η∗

W = 1
2 ln(xF/xB), which in the

2Following ref. [4], we adopt dτ2(P;q1,q2) = δ (4)(P−q1−q2)
d3q1
2q0

1

d3q2
2q0

2
.
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collinear limit approximates the rapidity of W boson. The distribution in the upper plot of Fig. 1,
representing eq. (2.3), is obtained using the general purpose MC program FOAM [7]. The collinear
PDF D(t,x) there has been obtained from a separate high statistics run (1010 events) of a Markovian
MC (MMC), creating D(t,x) in a form of the 2-dimensional look-up table3. The other distribution
in the upper plot of Fig. 1 represents eq. (2.2) in LO approximation. It comes from the full scale
MC generation (with four-momenta conservation). The MC run with 108 events was used. The
constrained MC (CMC) technique of ref. [10] is used here because of the narrow Breit-Wigner
peak due to a heavy boson propagator4. Two CMC modules and FOAM are combined into one MC
generating gluon emissions and the W boson production. FOAM is taking care of the generation of
the variables xF ,xB,xF0,xB0 and the sharp Breit-Wigner peak in ŝ = sxFxB, then two CMC modules
are initialized and generate the gluon four-momenta k̄µ

j . They are mapped into kµ

j , following the
prescription defined in ref. [4], such that the overall energy-momentum conservation is achieved.
Figure 1 demonstrates a very good numerical agreement between dσ/dη∗

W from our full scale LO
parton shower MC of eq. (2.2) and the simple formula of eq. (2.3), to within 0.5%, as seen from
the ratio of the two results in the lower part of the figure.

3. Introducing NLO corrections to hard process

The NLO corrections to hard process are imposed on top of the LO distributions of eq. (2.2)
using a single “monolithic” weight W NLO

MC defined exactly as in ref. [4]:

W NLO
MC = 1+∆S+V + ∑

j∈F

β̃1(q1,q2, k̄ j)
P̄(zF j) dσB(ŝ, θ̂)/dΩ

+ ∑
j∈B

β̃1(q1,q2, k̄ j)
P̄(zB j) dσB(ŝ, θ̂)/dΩ

, (3.1)

the NLO soft+virtual correction is ∆V+S = CF αs
π

(2
3 π2− 5

4

)
, and the real correction reads:

β̃1(q1,q2,k) =
[(1−β )2

2
dσB

dΩq
(ŝ,θF)+

(1−α)2

2
dσB

dΩq
(ŝ,θB)

]
−θα>β

1+(1−α−β )2

2
dσB

dΩq
(ŝ, θ̂)−θα<β

1+(1−α−β )2

2
dσB

dΩq
(ŝ, θ̂).

(3.2)

The above is the exact ME of the quark-antiquark annihilation into a heavy vector boson with
additional single real gluon emission5. The LO component, which is already included in the LO
MC, is subtracted here. The variable ŝ = sxFxB = (q1 + q2)2 is the effective mass squared of the
heavy vector boson. The definition of angle θ̂ in the LO component is rather arbitrary. We define
it in the rest frame of the heavy boson, where ~q1 +~q2 = 0, as an angle between the decay lepton
momentum~q1 and the difference of momenta of the incoming quark and antiquark θ̂ = ∠(~q1,~p0F−
~p0B). On the other hand the two angles in the NLO ME are defined quite unambiguously as θ̂F =
∠(~q1,−~p0B) and θ̂B = ∠(~q1,~p0F). In the above we only need directions of the ~p0F and ~p0B vectors,
which are the same as the directions of the hadron beams. The lightcone variables α j and β j of the

3This MMC run solves the LO DGLAP equation using the MC method, as in refs. [8, 9].
4A backward evolution algorithm of ref. [11] could be also used here.
5We employ here the compact representation of ref. [12], which has also been used in POWHEG [13].
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Figure 2: The upper plot shows (−) NLO correction (alone) to the distribution of η∗
W = 1

2 ln(xF/xB) from
the parton shower (purple) and from the the strictly collinear formula (green). Their ratio is plotted below.

emitted gluon are defined in the F and B parts of the phase space as follows6:

α j = 1− zF j, β j = α j e2(η j−Ξ), for j ∈ F,

β j = 1− zB j, α j = β j e−2(η j−Ξ), for j ∈ B.

Again, the exact phase space integration of eq. (2.2) including W NLO
MC of eq. (3.1) is feasible,

and the resulting compact expression for the total cross section is obtained [4]:

σ1 =
∫ 1

0
dxF dxB dz DF(t,xF) DB(t,xB) σB(szxFxB)

{
δz=1(1+∆S+V )+C2r(z)

}
, (3.3)

where C2r(z) = 2CF αs
π

[
−1

2(1− z)
]
.

3.1 Numerical test of NLO correction

Figure 2 represents a principal proof of concept of our new methodology for implementing
the NLO corrections to the hard process in the parton shower MC. The plotted NLO correction
to the η∗

W distribution7 comes from the parton shower MC with the NLO-corrected hard process
according to eqs. (2.2) and (3.1). Additionally we also plot there result of a simple collinear formula
of eq. (3.3), where two collinear PDFs are convoluted with the analytical coefficient function C2r(z)
for the hard process. Both results coincide within the statistical error, see their ratio in the lower
part of Fig. 2.

Technically, the inclusion of the NLO correction in our parton shower MC is rather straight-
forward, and is obtained by including W NLO

MC weight of eq. (3.1). MC is providing both LO and
NLO-corrected results in a single run with weighted events. The NLO weight is strongly peaked
near W NLO

MC = 1, positive, and without long-range tails. Its distribution is shown in Fig. 3.

6See ref. [4] for more explanations.
7Extra minus sign introduced to facilitate visualization.
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Figure 3: The distribution of the NLO weight W NLO
MC of eq. (3.1).

In all numerical results we have set ∆V+S = 0, as it is completely unimportant for the presented
analysis. The initial distributions d0(q0,x0) are defined in ref. [5].

4. Simplification of the method and comparison with other methodologies

Figure 4: The inclusive distribution of gluons on the log Sudakov plane of rapidity t = ξ and v = ln(1− z)
(LHS). Contributions from all gluons weighted with the component weight W NLO

j (RHS).

Our new method for introducing NLO corrections in the hard process, proposed in ref. [4] and
tested in ref. [5], is an alternative to the two well established MC@NLO [14] and POWHEG [15,
16] methodologies. With MC numerical implementation at hand, let us elaborate on the differences
with the above two techniques in particular with the POWHEG technique. We shall also see that it is
possible to make our method more efficient in terms of CPU time consumption. This improvement
is not so critical in the present case of NLO corrected hard process, but may be quite useful in the
case of correcting evolution kernels to the NLO in the ladder parts of the MC [6].

The most important differences with the POWHEG and MC@NLO techniques are:

• The summation over all emitted gluons, without deciding which gluon is the one involved in
the NLO correction and which ones are merely “LO spectators” in the parton shower.

6
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• The absence of (1/(1−z))+ distributions in the real part of the NLO corrections (virtual+soft
correction is kinematically independent).

To explain more clearly how W NLO
MC of eq. (3.1) is distributed over the multigluon phase space, we

restrict now to single ladder (hemisphere) with a simplified weight:

W NLO
MC = 1+ ∑

j∈F
W NLO

j , W NLO
j =

β̃1(q1,q2, k̄ j)
P̄(zF j) dσB(ŝ, θ̂)/dΩ

. (4.1)

In order to find out the phase space regions specific for NLO corrections we consider inclusive
distributions of gluons on the Sudakov logarithmic plane of rapidity ξ and variable v = ln(1− z).
In the left hand side (LHS) of Fig. 4 we show gluons inclusive distribution in the LO approximation.
The flat plateau there represents IR/collinear singularity8 2CF

αS
π

dξ
dz

1−z with the drop by factor 1/2

towards z = 0, due to 1+z2

2 factor in the LO kernel. In the right hand side (RHS) of Fig. 4 we show
contributions from all gluons weighted with the component weight9 −W NLO

j of eq. (4.1). The NLO
contribution is concentrated in the area near the hard process rapidity t = ξmax, which has to be
true for the genuine NLO contribution10. The completeness of the phase space near this important
region (z = 0, ξmax) is critical for the completeness of the NLO corrections. Both POWHEG and
MC@NLO use standard LO MCs which feature an empty “dead zone” in this phase space corner.

Figure 4 suggests that the dominant contribution to ∑ j W NLO
j could be from the gluon with the

maximum lnkT
j ∼ ξ j + ln(1− z j), which is closest to the hard process phase space corner. In the

MC we may easily relabel generated gluons using new index K such that they are ordered in the
variable κK = ξK + ln(1− zK), κK+1 < κK with K = 1 being the hardest one.

Figure 5: The inclusive LO distribution of Fig. 4 split into the hardest gluon (left) and the rest (right).

Figure 5 demonstrates a split of the LO inclusive distribution of Fig. 4 into the K = 1 compo-
nent and the rest K > 1. The important point is that the K = 1 component reproduces the original
complete distribution over the whole region where the NLO correction is non-negligible! This is
exactly the observation on which POWHEG technique is built. According to the POWHEG au-
thors, taking the K = 1 component is sufficient to reproduce the complete NLO correction (modulo
NNLO).

8We use constant αS.
9We again insert a minus sign in order to facilitate visualization.

10It also vanishes towards the soft limit z→ 1.
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Figure 6: The original NLO correction from ∑ j W NLO
j and its two hardest gluon components, from W NLO

K=1
and W NLO

K=2 , as a function of x = ∏ j z j.

The above statement is checked numerically in Fig. 6, where we compare the NLO correction
to the x = ∏ j z j distribution from the complete sum ∑ j W NLO

j and from W NLO
K=1 . As we see the K = 1

component saturates the complete sum very well, with the K = 2 component being negligible in
the first approximation.

We can therefore speed up the calculation by means of taking only the K = 1 contribution. The
price will be that the formula of eq. (3.3) will not be exact any more. Our method differs, however,
from the POWHEG scheme, where the K = 1 gluon is generated separately in the first step, and
other gluons are generated (by the LO parton shower MC) in the next step. That is easy for LO MC
with kT -ordering, while in case of the LO MC with angular-ordering POWHEG requires additional
effort of generating the so called vetoed and truncated showers. In our method, there is no need for
such vetoed/truncated showers in case of angular ordering.

Figure 7: The distribution of gluons ordered in rapidity, as in our basic LO MC.

The reason why POWHEG technique is complicated in case of the angular ordering is illus-
trated in Fig. 7. We show there the distribution of gluons ordered in rapidity, starting from the
gluon with the maximum rapidity, the closest to hard process. The gluon distribution with the

8
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highest rapidity ξ ∼ ξmax (J = 1) has a ridge extending towards the soft region. Notice that, when
the IR cut-off ε → 0 in (1− z) < ε , the width of this ridge also goes to zero. Consequently, the
gluon with the highest ξ is unable to reproduce the gluon distribution in the NLO corner, close to
hard process. This is why in this case POWHEG requires truncated and vetoed showers, which are
not needed in our method.

5. Summary and outlook

A new method of adding the QCD NLO corrections to the hard process in the initial state
Monte Carlo parton shower is tested numerically showing that the basic concept of the new method-
ology works correctly in the numerical environment of a Monte Carlo parton shower. The differ-
ences with the well established methods of MC@NLO and POWHEG are briefly discussed. Also,
variants of the new method with better efficiency in terms of CPU time are proposed.
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