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1. Introduction

The stable numerical evaluation of tensor integrals is one of the central ingredients of one
loop Feynman diagram calculations. It can also be efficiently applied in modern techniques like
tensorial reconstruction at integrand level [4] or the Open Loops method [5].

The classic Passarino-Veltman reduction scheme allows to express tensor integrals in terms of
a basis of (4-2¢)-dimensional scalar 1-, 2-, 3- and 4-point integrals with kinematic coefficients [6 —
8]. While it works well for processes with up to 4 external states, for 5 and more legs the numerical
stability of the reduction coefficients is spoiled by the appearance of inverse Gram determinants.
A number of methods have been proposed to avoid inverse Gram determinants and to improve the
numerical stability [9 - 16, 3].

In this contribution we introduce the open-source tensor reduction package PJFry which avoids
Gram determinant instability problems by using dimensional recurrence-based algorithms devel-
opedin [1-3, 14-22].

2. The reduction algorithm

We define dimensionally regulated n-point 1-loop tensor integral of rank R as
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where the chords g; are defined by the external momenta, see Fig. 2:
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Any one loop tensor integral can be rewritten in terms of scalar tensor form-factors separating
the Lorentz structure into products of external momenta and metric tensors:

n n
[t = Y gh R Y gliegls gl p) (2.3)
I]yee0IR 3,..,0R
where square brackets denote non-equivalent symmetrization, which gives the set of all non-
equivalent permutations.
Following Ref. [18] tensor form-factors can be mapped to scalar integrals in higher dimension
and shifted powers of denominators:
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where I,Ezlll] ;152 is a generalized scalar loop integral in shifted dimension:
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The symbols n;,;,... in (2.4) are shorthand notations for combinatorial factors introduced in [16].
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Now one can use dimensional recurrence relations derived in Ref. [19, 20] to express tensor
form-factors in terms of (4-2€)-dimensional scalar integrals:
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where s~ is s™ denominator power lowering operator, j* is j® denominator power raising operator
and v; is the power of the 7" denominator.

However the direct application of eqs. (2.6) and (2.7) introduces inverse Gram determinants
()» which will spoil numerical accuracy in large regions of the physical phase space.

The problem of inverse 5-point Gram determinants has been addressed, among others, in [3]
where expressions for tensor pentagons have been derived using signed minor algebraic relations.

The basis shown in Fig. 1 can be further reduced using an additional recurrence relation:
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With the help of the above relation one can reduce powers of all denominators to 1 without intro-
duction of inverse Gram determinants, however it does not reduce the dimension. Thus we cannot
recurse all the way down to standard (4-2¢)-dimensional scalar integrals and we have to extend our
integral basis:
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For the numerical evaluation of these additional integrals (2.9) we employ a series expansion
in the small Gram region [3]. This method treats all mass-kinematic combinations uniformly with
dimensional recurrence, therefore works equally well for both massive and massless cases.
Our expansion formula is easily derived from (2.6), which can be written in the following
form:
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solving the recurrence we get
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where (a),, = I'(m+a)/T'(a) is the Pochhammer symbol.
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Figure 1: Basis integrals for the tensor reduction of pentagons




New developments in PJFry Valery Yundin

3. The PJFry reduction library

The PJFry package [1, 2] is an open source library for the numerical evaluation of one loop
tensor integrals. Is is licensed under the GNU Lesser General Public License. The latest version
can be obtained from the program webpage at https://github.com/Vayu/PJFry/.

The program needs an external library for the evaluation of (4-2¢)-dimensional scalar integrals.
Currently QCDLoop [23] and OneLLOop [24] are supported. The tensor reduction formulae of the
PJFry package rely essentially on Ref. [3], where the dimensional recurrence algorithms developed
in Refs. [19, 20] were explored. Due to the recursive nature of the numerical algorithms in PJFry,
one can greatly benefit from reusing building blocks throughout the calculation.

The main features of the current public version are:

e Reduction of up to rank 5 pentagon tensor integrals

Any combination of real internal or external masses

Leading Gram determinants are avoided by the reduction procedure

Subleading small Gram determinants are treated with asymptotic expansions

A cache system gives lower point tensor integrals at no extra cost

Interfaces for C, FORTRAN, C++, Mathematica and GoSam [25].

The different algorithms used in the program are schematically illustrated for tensor pentagon
form factors of ranks 2 and 3 in Fig. 3. The blue lines correspond to the reduction formulae
of [3]. In the reduction of 4-point functions teal lines represent direct downward recursions for
large Gram determinant (2.6), while the solid red paths represent an alternative scheme with Cayley
determinants (2.8). Relations which are shared by both schemes are drawn with two-colored dashed
lines. The small Gram series expansion procedure (2.11) is depicted for boxes by dotted red lines.
Similarly for 3-point functions we use green lines for (2.6), solid magenta lines for (2.8) of 13[2} and
dotted magenta lines for the series expansions of scalar 13[2[] in the small Gram case.

Due to the 4-dimensionality of space-time the problem of inverse Gram determinants does
not appear beyond the 5-point case. Therefore after establishing stable numerical methods for the
evaluation of pentagons we can use them to construct higher point functions without additional
effort.

In PJFry we implemented a well known expression [14, 15, 20-22, 26] for tensor hexagons
up to rank 6 written in terms of pentagons up to rank 5:
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Similar representations exist also for 7 and 8-point functions [27, 28]. For higher point functions
one might consider using optimized expressions based on contracted tensors [29].
In addition to six point functions the upcoming version of PJFry supports complex internal

masses and extended precision via the qd library [30]. Both options are available only if using
OneLOop [24].


https://github.com/Vayu/PJFry/
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Figure 2: Momenta labeling

The installation is done via a configure script. See the INSTALL file for a detailed de-
scription of available options.

The Mathematica interface follows the conventions of LoopTools [31] (see Fig. 2) and can be
called from a Mathematica session:

In:= Install ["PJFry"]
Out:= PJFry MathLink
Out:= Type Names["PJFry'x"] to show exported names

The list of exported functions can be obtained by typing

In:= Names ["PJFry **"]

Out:= {"AOvO", "BOvO", "BOvl", "BOv2", "COvO", "COvl", "cCOv2",
"COv3", "ClearCache", "DOvO", "DOv1l", "DOv2", "DOv3",
"DOv4", "EOvO", "EQOv1", "EOv2", "EOv3", "EOv4", "EOv5",
"F¥OvO", "FOv1", "FQv2", "FOv3", "FOv4", "FOv5", "FOve",
"GetMu2", "SetMu2"}

All functions have a short help message which can be accessed by prepending the function name
in a call with a question mark (e.g. ?F0v1).

As an example we demonstrate a hexagon tensor form-factor evaluation for one selected phase-
space point shown in Table 1.

The scalar hexagon Fg:

In:= k6 = Sequence (@@ {psl, ps2, ps3, psd4, ps5, ps6, sl2, s23, s34,
s45, s56, sl6, s234, s345, s456, ml, m2, m3, m4, m5, m6};

In:= Table[FOvO0[k6, epl, {ep, 0, 2}]

Out:= {-30.3579 - 205.8213 I, -48.17500 - 42.76719 I, -10.58591}
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Figure 3: Rank 2 and 3 pentagon form-factors calculation flowchart

p1 | 2.1774554 0 0 2.1774554

p2 | 2.1774554 0 0 -2.1774554

p3 | -2.0369414560538 -0.4757951224  0.4212682252  0.8409718065

pa | -2.0907236589150 0.5521596147  -0.466920343 -0.9001008672

ps | -0.068463307640486 0.0530631952  0.02969826743  -0.03145687079

Do | -0.15878243799973  -0.1294276875 0.01595385037 0.09058593149
my = 0, my = 0, ms3 = 0, my = 3.038049, ms = O, me = 0

Table 1: An example phase-space point.

The vector hexagon components F*:

In:= Transpose[Table]

gl FOv1[1l, k6, ep] + g2 FOv1[2, k6, ep] + g3 FOv1[3, k6, ep]
+ g4 FOv1l[4, k6, ep] + g5 FOv1l[5, k6, epl, {ep, 0, 2}1]

Out:= {{4.76115 + 38.31618 I, 8.400862 + 7.559091 I, 1.748247},
{5.93303 + 20.79025 I, 5.326493 + 4.122928 1, 1.080011},
{0.162103 - 6.809284 I, -1.119560 - 1.201034 I, -0.2433933},
{-4.02995 - 15.03100 I, -3.642480 - 3.047085 I, -0.7563652}}
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