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The integrand-level methods for the reduction of scattering amplitudes are well-established tech-
niques, which have already proven their effectiveness in several applications at one-loop. In
addition to the automation and refinement of tools for one-loop calculations, during the past year
we observed very interesting progress in developing new techniques for amplitudes at two- and
higher-loops, based on similar principles. In this presentation, we review the main features of
integrand-level approaches with a particular focus on algebraic techniques, such as Laurent se-
ries expansion which we used to improve the one-loop reduction, and multivariate polynomial
division which unveils the structure of multi-loop amplitudes.
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1. Overview

Scattering amplitudes are analytic functions of the momenta of the particles involved and they
can be studied by exploring their singularity structure [1, 2]. The investigation of the residues at
the poles, which correspond to particles going on their mass-shell, led to the discovery of new
important relations. The BCFW recurrence relation [3], its link to the leading singularity of one-
loop amplitudes [4], and the OPP integrand-decomposition formula for one-loop integrals [5] have
shown the underlying simplicity beneath the rich mathematical structure of quantum field theory.
Moreover they provided the theoretical framework to develop efficient computational techniques at
the next-to-leading order in perturbation theory [6–13].

The integrand reduction methods, originally developed for one-loop diagrams [5], use the sin-
gularity structure of the integrands to decompose the (integrated) amplitudes in terms of Master
Integrals (MI’s). The multi-particle pole expansion of the integrand is equivalent to the decom-
position of the numerator in terms of products of denominators, multiplied by polynomials which
correspond to the residues at the multiple-cuts.

The parametric form of the polynomial residues is process-independent and can be determined
once and for all from the structure of the corresponding multiple cut. The actual value of the
coefficients which appear in the residues is instead process-dependent and, in the framework of the
integrand-reduction their determination is achieved by polynomial fitting, through the evaluation of
the (known) integrand at values of the loop-momenta fulfilling the cut conditions [14].

Extensions of the integrand reduction method beyond one-loop, first proposed in [14, 15],
have been systematized within the mathematical framework of multivariate polynomial division
and basic principles of algebraic geometry [16,17]. Recently they become the target of several new
developments [18–20], thus giving birth to a new direction in the study of multi-loop amplitudes.
An alternative approach to two-loop calculations based on maximal unitarity has been pursued
in [21–24].

2. Automation of One-Loop Calculations

The continuous improvement of new techniques for one-loop computations led to tremendous
progress in the field of NLO QCD corrections [25]. Calculations of increasing complexity have
been performed with improved algebraic reduction methods based on Feynman-diagrammatic al-
gorithms, as well as with new numerical techniques based on the idea of reconstructing one-loop
amplitudes from their unitarity cuts. These theoretical developments found an ideal counterpart in
the integrand-level reduction algorithm.

The GoSam framework [10,26] combines the automated algebraic generation of d-dimensional
unintegrated amplitudes obtained via Feynman diagrams, with the numerical integrand-level reduc-
tion. Concerning the reduction, GoSam allows to choose at run-time (namely without regenerat-
ing the code) among integrand-level d-dimensional reduction [5, 27], as implemented in SAMU-
RAI [28], or traditional tensor reduction interfaced through tensorial reconstruction [29, 30]. The
coefficients determined by the reduction are then multiplied by the corresponding scalar (master)
integrals [31]. Recent examples of full NLO QCD calculations performed within this framework
include pp→ bb̄bb̄ [32] and pp→W+W−+2 jet [33] at the LHC.
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3. Integrand-Reduction via Laurent Expansion

An improved version of integrand-reduction method for one-loop amplitudes was presented
in [34], elaborating on the the techniques proposed in [35, 36]. This method allows, whenever
the analytic form of the numerator is known, to extract the unknown coefficients of the integrand
decomposition by performing a Laurent expansion.

In general, the multiple-cut conditions constrain the loop momentum. Therefore, the on-shell
solutions are parametrized by those components which are not completely determined in terms of
the external kinematics.

The original reduction algorithm [5] requires, in these cases: to sample the numerator on a
finite subset solutions; to subtract from the integrand all the non-vanishing contributions coming
from higher-point residues; and finally to solve a linear system of equations in order to find the
value of the unknown coefficients parametrizing the residue of the cut.

This algorithm can be simplified by exploiting the knowledge of the analytic expression of the
integrand. Indeed, by performing a Laurent expansion with respect to one of the free parameters
which appear in the solutions of the cut, both the integrand and the subtraction terms exhibit the
same polynomial behavior of the residue. Moreover, the contributions coming from the subtraction
terms can be implemented as corrections at the coefficient level, hence replacing the subtractions
at the integrand level of the original algorithm. The parametric form of this corrections can be
computed once and for all, in terms of a subset of the higher-point coefficients. With this method
the number of coefficients entering in each subtraction term is significantly reduced. For instance,
box and pentagons do not affect at all the computation of lower-points coefficients.

In summary, this method identifies the coefficients of a residue with the ones of the Laurent
expansion of the numerator (with respect to one of the free components of the loop momentum
which are not fixed by the cut conditions). The result must be corrected by a subtraction term
which is a known function of the higher point coefficients. If either the analytic expression of the
integrand or the tensor structure of the numerator is known, this procedure can also be implemented
in a semi-numerical algorithm. Indeed, the coefficients of the Laurent expansion of a rational
function can be computed, either analytically or numerically, by performing a polynomial division
between the numerator and the denominator. This method has been implemented in a C++ library,
and preliminary tests show an improvement in the computational performance with respect to the
standard algorithm.

4. Higher-rank integrands

The integrand decomposition was originally developed for renormalizable gauge theories,
where, at one-loop, the rank r of the numerator cannot be greater than the number of external
legs n. In [34], we extended the decomposition to the case where the rank becomes larger than n.
This extension is required, for instance, for applying the integrand reduction to the production of
Higgs in combination with jets, in the gluon-fusion channel via effective-gluon vertex, generated
by the large top-mass limit. As a first step along this direction, we implemented within SAMURAI

the extension of the polynomial residues and the corresponding additional sampling required to fit
their coefficients.
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5. Integrand-Reduction for Two-Loop Scattering Amplitudes and beyond

The first extension of the integrand reduction method beyond one-loop was proposed in [14].
A key point of the higher-loop extension is the proper parametrization of the residues at the multi-
particle poles. We define irreducible scalar products (ISP’s) the set of scalar products, among the
loop momenta and either external momenta or polarization vectors constructed out of them, which
cannot be expressed in terms of denominators. Residues at the multi-particle poles can be written
as a multivariate polynomial in the ISP’s. Hence, a systematic classification of the polynomial
structures of the residues is mandatory.

This task has been successfully achieved in [17], where we have shown that the shape of the
residues is uniquely determined by the on-shell conditions alone, without any additional constraint.
We have derived a simple integrand recurrence relation that generates the required multi-particle
pole decomposition for arbitrary amplitudes, independently of the number of loops. The algorithm
presented in [17] relies on general properties of the loop integrands

Ii1···in =
Ni1···in

Di1 · · ·Din
. (5.1)

• When the number n of denominators Di is larger than the total number of the components
of the loop momenta, the weak Nullstellensatz theorem yields the trivial reduction of an
n-denominator integrand in terms integrands with (n−1) denominators.

• When n is equal or less than the total number of components of the loop momenta, we divide
the numerator Ni1···in modulo the Gröbner basis of the n-ple cut, namely modulo a set of
polynomials vanishing on the same on-shell solutions as the cut denominators. The remain-
der of the division is the residue ∆i1···in of the n-ple cut. The quotients generate integrands
with (n−1) denominators which should undergo the same decomposition.

This allows us to cast the each numerator Ni1···in , sitting on a set of denominators Di, in the
form

Ni1···in =
n

∑
κ=1

Ni1···iκ−1iκ+1···in Diκ +∆i1···in , (5.2)

which inserted in the expression for the generic the n-denominator integrand, provides the
aforementioned recurrence relation

Ii1···in =
k

∑
κ=1

Ii1···iκ−1iκ+1in +
∆i1···in

Di1 · · ·Din
. (5.3)

We remark that the procedure, together with Eqs.(5.2) and (5.3), hold for any number of
loops and in all dimensions.

• By iteration, we extract the polynomial forms of all residues. The algorithm will stop when
all cuts are exhausted, and no denominator is left, leaving us with the complete integrand
reduction formula.

In [17], we have also proved a theorem on the maximum-cuts, i.e. the cuts defined by the max-
imum number of on-shell conditions which can be simultaneously satisfied by the loop momenta.
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The on-shell conditions of a maximum cut lead to a zero-dimensional system. The Finiteness
Theorem and the Shape Lemma ensure that the residue at the maximum-cut is parametrized by
ns coefficients, where ns is the number of solutions of the multiple cut-conditions. This guaran-
tees that the corresponding residue can always be reconstructed by evaluating the numerator at
the solutions of the cut. The maximum cut theorem generalizes at any loop the simplicity of the
one-loop quadruple-cut [4,5], where the only two solutions of the cut univocally determine the two
coefficients needed to parametrize the residue.

As a first application, we applied the algorithm to a generic one-loop integrand, reproducing
the well-known d-dimensional integrand decomposition formula [5, 27]. Very recently [37], we
have applied our algorithm to the two-loop five-point planar and non-planar amplitudes in N = 4
Super Yang-Mills (SYM) and N = 8 Supergravity (SUGRA). The numerators of the integrals have
at most rank two in the integration momenta. In particular we perform the integrand reduction both
semi-numerically, by polynomial fitting, and analytically. The latter computation has been per-
formed generalizing the method of integrand reduction through Laurent expansion [34] discussed
above.

6. Conclusions

The integrand reduction methods, which use the singularity structure of the integrands to de-
compose the (integrated) amplitudes in terms of Master Integrals, already proved their effectiveness
in applications at the one-loop level. Several efforts are under way in order to extend this formalism
to higher orders, starting with two-loop amplitudes.

We recently proposed a new approach for the reduction of scattering amplitudes, based on
multivariate polynomial division. This technique yields the complete integrand decomposition for
arbitrary amplitudes, regardless of the number of loops. We have shown that the shape of the
residues is uniquely determined by the on-shell conditions, and we have derived a simple integrand
recurrence relation that generates the multi-particle pole decomposition for arbitrary multi-loop
amplitudes. We have successfully applied the new reduction algorithm to one-loop and two-loop
examples.

The method is well suited for a numerical implementation, but it also allows for the extrac-
tion of full analytic results, thus providing a universal and powerful tool for the generalization of
integrand-level reduction techniques to all orders in perturbation theory.
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