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1. Introduction

One of the most precise determinations of the strong coupling constantαs(MZ) relies on the next-to-
next-to-leading order (NNLO) QCD analysis of the world deep-inelastic data [1,2]. Here currently
the heavy flavor corrections to the structure functionF2(x,Q2) and transversity are known for the
first Mellin momentsN = 2, ..,10(14) [3, 4].1 In the asymptotic regionQ2 ≫ m2 the heavy flavor
Wilson coefficients can be represented in form of convolutions [7] of massive operator matrix
elements (OMEs) and the massless Wilson coefficients [8]. Incase of the charm quark contribution
the corresponding region is given byQ2/m2

c
>∼10. To carry out complete NNLO QCD analyses in

this region the heavy flavor Wilson coefficients have to be known for general values ofN. This also
applies to precision measurements of the charm quark mass using the world deep-inelastic data [9].

Since 2010 the systematic calculation of the asymptotic massive Wilson coefficients at gen-
eral values ofN have been carried out. Five massive Wilson coefficients contribute toF2(x,Q2)

at NNLO [3]. Furthermore, there are other massive OMEs needed to compute the matching coef-
ficients in the variable flavor number scheme in which the heavy quarks are assumed to decouple
singly [3, 10, 11]. There are yet other contributions at NNLOfrom graphs containing both a mas-
sive charm and a bottom quark line, which extend the former representation in Ref. [3] and are
necessary because of the fact that charm quarks do not yet become massless at the mass scale of
bottom quarks sincem2

c/m2
b ≈ 1/10 only. Results on first moments for these contributions areob-

tained in [12–14]. The extension of the renormalization of the massive OMEs is given in [14].
The logarithmic contributions at general values ofN for the contributions toF2(x,Q2) are avail-
able [15–17].2 Furthermore, the NNLO heavy flavor Wilson coefficients in theasymptotic region
were calculated for the structure functionFL(x,Q2) [3,20].

Two of the five massive Wilson coefficients contributing toF2(x,Q2) at NNLO are known
completely [21]. They are ofO(nf T2

FCF,A). Likewise, these contributions to the further three
Wilson coefficients and transversity were calculated for these color coefficients in [21]. Also the
complete contributionO(T2

FCA,F) for the OMEsAPS
Qq,A

NS
qq,Q,A

TR
qq,Q are available [12].

In these proceedings we report on the calculation of the gluonic OMEsO(nf T2
FCF,A) [22] in

Section 2 and on first results inO(T2
FCF,A) for this channel in Section 3. Furthermore, the scalar 3-

loop integrals for all ladder type integrals were calculated [23,24]. An extension of the method [25]
to calculate finite Feynman integrals to the case of massive quark lines with local operator insertions
has been used to calculate ladder- and Benz-topologies [23,24], also leading to new types of finite
nested sums extending the harmonic [26], generalized harmonic [27,28], and cyclotomic sums [29]
and the associated polylogarithms, cf. Section 4. Section 5contains the conclusions.

2. Gluonic OMEs O(nfT2
FCF,A)

The calculation of allO(nf T2
FCF,A) contributions to the massive OMEs has been completed with

the computation ofAgg,Q andAgq,Q at this order in [22]. In these and other computations described

1Present analyses use the NLO corrections inx-space [5] or Mellin space implementations [6].
2TheO(α2

s ) andO(α2
s ε) contributions, withε = D−4 the dimensional parameter, needed in the renormalization

were given in [7,18,19].
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below we used the codesQGRAF [30], Form andtform [31], andcolor [32]. For the check of
individual moments of the expressions derived we also usedMATAD [33].

In the calculation of theO(nf T2
FCF,A)-terms large amounts of nested sums emerge. An im-

portant step in the calculation consists in merging these individual sums to a smaller amount of
sums containing very voluminous summands which are then solved with the codes used within
the packageSigma [34], like EvaluateMultiSum andSumProduction, [35], written in
mathematica [36], cf. also [37]. Moreover, this compactification shall be performed for whole
diagrams to avoid the intermediate emergence of a larger amount of generalized harmonic sums as
was observed in [21]. Generalized harmonic sums do not contribute in this case.

The constant contributions to the unrenormalized massive OMEs Agg,Q andAgq,Q, a(3)g j,Q, j =
q,g, read :

a
(3),nf T2

F
gq,Q = CFT2

F nf

{

− 16
(
N2+N+2

)

9(N−1)N(N+1)

(
1
3

S3
1+S2S1+

2
3

S3+14ζ3+3S1ζ2

)

+
16

(
8N3+13N2+27N+16

)

27(N−1)N(N+1)2

(
3ζ2+S2

1+S2
)

−32
(
35N4+97N3+178N2+180N+70

)

27(N−1)N(N+1)3 S1

+
32

(
1138N5+4237N4+8861N3+11668N2+8236N+2276

)

243(N−1)N(N+1)4

}

, (2.1)

a
(3),nf T2

F
gg,Q = nf T

2
F

{

CA
1

(N−1)(N+2)

[

4P1

27N2(N+1)2S2
1+

8P2

729N3(N+1)3S1

+
160
27

(N−1)(N+2)ζ2S1−
448
27

(N−1)(N+2)ζ3S1+
P3

729N4(N+1)4

− 2P4

27N2(N+1)2 ζ2+
56

(
3N4+6N3+13N2+10N+16

)

27N(N+1)
ζ3−

4P5

27N2(N+1)2 S2

]

+CF
1

(N−1)(N+2)

[

112
(
N2+N+2

)2

27N2(N+1)2 S3
1−

16P6

27N3(N+1)3S2
1

+
32P7

81N4(N+1)4 S1+
16

(
N2+N+2

)2

3N2(N+1)2 ζ2S1+
16

(
N2+N+2

)2

3N2(N+1)2 S2S1

− 32P8

243N5(N+1)5 −
16P9

9N3(N+1)3ζ2+
448

(
N2+N+2

)2

9N2(N+1)2 ζ3+
16P10

9N3(N+1)3 S2

−160
(
N2+N+2

)2

27N2(N+1)2 S3

]}

. (2.2)

The corresponding 1/ε terms contain contributions of the 3-loop anomalous dimensions [38] which
we have verified by an independent calculation. Moreover a prediction made in [39] has been
confirmed.

The gluonic OMEsAgg,Q andAgq,Q are needed for correct flavor matching in case of the tran-
sition of asingleheavy quark becoming light, cf. [3, 10]. Here the correct choice of the matching
scale is of importance [40].
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In extending the above calculation the computation of some topological classes of diagrams
has been automated mapping the graph to expressions involving hypergeometricp+1Fp-functions.
The ε-expansion leads to nested sums being calculated using the packageSigma [34]. The au-
tomation will cover other classes soon, requiring more involved ways to match the initial functions.

3. Gluonic OMEs O(T2
FCF,A) and OMEs with massive fermion lines of two different

masses

All basic scalar topologies contributing to theO(T2
FCF,A) of Agg,Q andAgq,Q have been calculated.

An example is given in (3.1) for the graph containing two massive triangles withm1 = m2,

ID2(N,ε) = (−1)N

{

− 1
12Nε

+

(
27N2−5N+16

)

1440N(N+1)(2N−1)4N

(
2N
N

)







N

∑
i1=1

4i1

i21

S1
(
i1−1

)

(
2i1
i1

) −7ζ3







−(S2,1−S3−7ζ3)

90N
−

(
S2

1−S2
)

90(N−1)N2(N+1)

+

(
60N3−19N2−85N+60

)

720(N−1)N(N+1)(2N−1)
S1+

(
−162N3+281N2−187N+30

)

720(N−1)N2(2N−1)

}

. (3.1)

Here we chose a minimal representation of sums being pairwise transcendent, which is proven by
Sigma [34]. In these and similar diagrams sums of the kind

N

∑
i=1

4i

i3
1

(
2i
i

) =

∫ 1

0
dx

xN −1
x−1

H∗
0w3

(x) (3.2)

N

∑
i=1

4i

i2
1

(
2i
i

)S1(i) =
∫ 1

0
dx

xN −1
x−1

[
H∗
0w3

(x)−H∗
w30

(x)−H∗
w31

(x)−2ln(2)H∗
w3
(x)

]
(3.3)

emerge, which can be represented as Mellin transforms of iterated integrals, extending the usual
harmonic polylogarithms (HPLs) [41], where H∗/0(x)= 1,H∗

b,c̃(x)=
∫ 1

x dy fb(y)H∗
c̃
(y),H∗

1(x)= ln(1−
x), and fw3

(x) = 1/(x
√

1−x), cf. [42]. The relative transcendence of the respective HPLs is proven
using differential field methods [43], cf. also [44]. In exceptional cases they may be obtained in
terms of HPLs with root arguments. Eq. (3.1) obviously is recurrent inN. The asymptotic expan-
sions of (3.2, 3.3) are given by

N

∑
i=1

4i

i3
1

(
2i
i

) = 6ζ2 ln(2)− 7
2

ζ3−
√

π
N

{

2
3

1
N
− 9

20
1

N2 +
199
1344

1
N3 +O

(
1

N4

)}

(3.4)

N

∑
i=1

4i

i2
1

(
2i
i

)S1(i) = 6ζ2 ln(2)+
7
2

ζ3+

√
π
N

{

4+
7
18

1
N
− 817

2400
1

N2 +
3835
37632

1
N3 +O

(
1

N4

)}

− ln(N)√
N

{

2− 5
12

1
N
+

21
320

1
N2 +

223
10752

1
N3 +O

(
1

N4

)}

, (3.5)
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with N=NeγE andγE the Euler-Mascheroni number. The poles in the complex planeare situated at
non-positive integers and half-integers and (3.1) is thus ameromorphic function. The half-integer
poles emerge algebraically and from structures like

(
2N
N

)
1

4N =
Γ(N+1/2)√

πΓ(N+1)
. (3.6)

With these properties it can be defined in the complexN-plane. By similar arguments the analytic
continuation for the wholeT2

FCF,A-contribution toAgg,Q is obtained.
First results on massive OMEs with two fermion lines form1 6= m2 have been reported in

[12, 13] for the momentsN = 2,4,6 for AQg. The calculation has been performed by mapping the
OMEs to tadpoles which were computed usingqexp [45]. The renormalization of these matrix
elements generalizes the case ofnf massless and one massive fermion [3] and is given in Ref. [14].
Sincem2

c/m2
b ∼ 1/10, charm cannot be treated as massless at the scalem2

b, which makes the use
of the variable flavor scheme, see [3], built on this assumption, very problematic in case of these
contributions. On the other hand, the fixed flavor number scheme which can be used in precision
deep-inelastic world data analyses, cf. [1], can naturallyaccommodate these terms. The corre-
sponding calculation in case of general values ofN is underway [46].

4. Ladder and Benz Topologies

In the following we discuss higher topologies which contribute to the massive OMEsAi j at 3–loop
order. These are ladder-, Benz-, and crossed box topologieswith the respective local operator
insertions (of up to four lines). The basic ladder topologies have been calculated in Ref. [23] up to
3-leg operator insertions. Here we consider the case of onlyone massive fermion line. As has been
described in [47] the Feynman diagrams can be represented asmultiply nested sums. The ladder
diagrams with six massive propagators have representations in terms of the Appell functionF1 [48].
Most of the integrals can be solved usingSigma [34], including the pole structure inε . This is
presently more involved in case of operator insertions withmore than two legs at six massive lines.

For the non-divergent graphs the extension of the method [25] to local operators and massive
lines allows the calculation. We consider the diagram shownin Fig. 1.

4

Figure 1: 3-loop ladder diagram containing a 3-vertex local operatorinsertion.

The local operator insertion can be resummed introducing a subsidiary parameterx

N

∑
j=0

TN− j
4a T j

4b →
∞

∑
N=0

N

∑
j=0

xNTN− j
4a T j

4b =
∞

∑
N=0

(T4ax)N − (T4bx)N

T4a−T4b

=
1

T4a−T4b

[
1

1−xT4a
− 1

1−xT4b

]

=
x

(1−xT4a)(1−xT4b)
. (4.1)
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The integral may then be performed using the method [25] and is expressed in terms of hyperloga-
rithms L~a(x). They obey the relations

Lb,~a(x) =
∫ x

0

dy
y−b

L~a(y), L /0(y) = 1; L0, . . . ,0
︸ ︷︷ ︸

n

(x) =
1
n!

lnn(x), ai ,b∈ R . (4.2)

As an intermediary result one obtains

Ĩ4(x) =

[

−1+x
x3 L−1−

2x−1
x3 L1/2−

3(1−x)
x3 L1−

1−2x+x2

(1−x)x3 L0,−1+
1−2x2

x3 L0,1/2

−3−4x−3x2+3x3

(1−x)x3 L0,1−
1−2x2

x3 L1,1/2+
(1−x)(2+3x)

x3 L1,1

]

ζ3

+
(1+x)

2x3 (3L−1,0,0,1−2L−1,0,1,1−3L1,0,0,1)+
1
x2 (6L0,0,1,1−4L0,1,0,1−L0,1,1,1)

−(−1+2x)
2x3

[
3L1/2,0,0,1−L1/2,0,1,1−3L1/2,1,0,1+L1/2,1,1,1

]

− 3
2x2 L1,0,1,1+

2
x2 L1,1,0,1−

(−1+x)
2x3 L1,1,1,1+

2
x2 (L0,1,1−L1,0,1)

+

(
−1+2x+x2

)

2(−1+x)x3 [3L0,−1,0,0,1−2L0,−1,0,1,1]

− 5
−1+x

L0,0,0,1,1−
5

2(−1+x)
L0,0,1,0,1+

3(3+x)
2(−1+x)x

L0,0,1,1,1

−
(
−1+2x2

)

2x3

[
3L0,1/2,0,0,1 +L0,1/2,0,1,1+3L0,1/2,1,0,1 −L0,1/2,1,1,1

]

+
3
(
1−3x2+3x3

)

2(−1+x)x3 L0,1,0,0,1+
8−14x+5x2+3x3

2(−1+x)x3 L0,1,0,1,1

+
8−15x+3x2

2(−1+x)x3 L0,1,1,0,1−
3(−3+2x)

2x3 L0,1,1,1,1+
−6+3x+5x2

x3 L1,0,0,1,1

+
2(−1+x)

x3 L1,1,1,0,1+
4−2x+5x2

2x3 L1,0,1,0,1−
−4+6x+3x2

2x3 L1,0,1,1,1

+

(
−1+2x2

)

2x3

[
3L1,1/2,0,0,1 −L1,1/2,0,1,1

]
− 3(−1+x)(4+3x)

2x3 L1,1,0,0,1

−
(
−1+2x2

)

2x3

[
L1,1/2,1,0,1+L1,1/2,1,1,1

]
− (−1+x)(5+3x)

2x3 L1,1,0,1,1 . (4.3)

Here iterated integrals over the alphabet{0,1,−1,1/2} contribute. Now theNth Taylor coefficient
has to be obtained for̃I4(x), which is possible using the packageHarmonicSums [28] :

Î4(N) =
P1

2(1+N)5(2+N)5(3+N)5 +
P2

(1+N)2(2+N)2(3+N)2ζ3

+
(−1)N

(
65+101N+56N2+13N3+N4

)

2(1+N)2(2+N)2(3+N)2 S−3+

(
−24−5N+2N2

)

12(2+N)2(3+N)2S3
1

− 1
2(1+N)(2+N)(3+N)

S2
2+

1
(2+N)(3+N)

S2
1S2

+
314+631N+578N2+288N3+68N4+5N5

4(1+N)3(2+N)2(3+N)2 S2
1−

3
2

S5
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−
(
399+2069N+2774N2+1510N3+349N4+27N5

)

6(1+N)2(2+N)2(3+N)2 S3−2S−2,−3

−2ζ3S−2−S−2,1S−2+
(−1)N

(
65+101N+56N2+13N3+N4

)

(1+N)2(2+N)2(3+N)2 S−2,1

+

(
59+42N+6N2

)

2(1+N)(2+N)(3+N)
S4+

(5+N)

(1+N)(3+N)
ζ3S1

(

2
)

−752+2087N+2490N2+1580N3+558N4+105N5+8N6

4(1+N)3(2+N)2(3+N)2 S2−ζ3S2

−3
2

S3S2−2S2,1S2+

(
99+225N+190N2+65N3+7N4

)

2(1+N)2(2+N)2(3+N)
S2,1

+
P3

(1+N)4(2+N)4(3+N)4S1−
(11+5N)

(1+N)(2+N)(3+N)
ζ3S1

−
(
470+1075N+996N2+447N3+96N4+8N5

)

4(1+N)2(2+N)2(3+N)2 S2S1−S2,3

+
(53+29N)

2(1+N)(2+N)(3+N)
S3S1−

3(3+2N)

(1+N)(2+N)(3+N)
S1S2,1

+

(
−79−40N+N2

)

2(1+N)(2+N)(3+N)
S3,1−3S4,1+S−2,1,−2

+
21+N

(
−28−25N−4N2+N3

)

(1+N)2(2+N)(3+N)2 S1,2

(
1
2
,1

)

−
(
−7+2N2

)

(1+N)(2+N)(3+N)
S2,1,1

+5S2,2,1+6S3,1,1+
2N

(
−28−25N−4N2+N3

)

(1+N)2(2+N)(3+N)2 S1,1,1

(
1
2
,1,1

)

− (5+N)

(1+N)(3+N)
S1,1,2

(

2,
1
2
,1

)

− (5+N)

2(1+N)(3+N)
S1,1,1,1

(

2,
1
2
,1,1

)

. (4.4)

HerePi denote polynomials, cf. [23]. The final expression containsindividual terms which grow
∝ 2N for N → ∞. However, this singularity cancels in̂I4(N). As an extension of the usual harmonic
sums [26] also generalized sums [27,28] contribute with weightsxi ∈ {1,1/2,2}.

Let us now turn to the graph shown in Fig. 2. It consists out of two contributions with respect
to the operator insertion, cf. [3], which may be viewed as being obtained by contraction of the
central lines of the ladder graph, resp. the graph of the crossed box, with central operator insertion.

5

Figure 2: 3-loop ladder diagram containing a 4-vertex local operatorinsertion.

While the calculation of the former graph is rather straightforward, in the latter case root-letters ap-
pear in the integration formalism using the method of hyperlogarithms. Here it is possible, however,
to move the corresponding root-expressions completely into the argument of the hyperlogarithms.
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In the next step we would like to determine theNth Taylor coefficient of the expression obtained.
A first possibility consists in calculating a large number ofMellin-moments for the expression in
an efficient way, which needs the use ofForm [31] beyond the representations inMaple [49]. In
the present case about 1500 moments have been calculated. The method of guessing [50] allows
to derive a corresponding difference equation, for which weneeded∼ 700 moments in the present
case. This equation can now be solved usingSigma [34] and theNth moment is obtained. In
an earlier investigation we have determined all 3-loop anomalous dimensions and massless Wilson
coefficients from their moments in this way, which required 5114 moments, [51]. Although not
expected to fail with a significant probability, and having alarge verification space with∼ 1500
moments available at∼ 700 needed, still theNth moment shall be derived having a proof certifi-
cate. A more involved calculation usingHarmonicSums [28] andSigma [34] provides this.
Here, difference equations of up to ordero = 16 and degreed = 108 have to be solved. The results
are presented in [24].

The emergence of root-expressions inx implies in the present result quite a series of new sums,
which are of the nested binomial- and inverse-binomial typeand also contain generalized harmonic
sums. We have translated the result intox-space, where new iterated integrals with various root-
type letters were obtained, extending those having appeared in [52]. Using the methods of Ref. [43]
the relative transcendence of the different functions can be checked and we derived a corresponding
basis for these functions, cf. [42]. InN-space the basis representation, including the new sums, is
derived usingSigma, [34].

The method of hyperlogarithms also allows the calculation of non-singular Benz-graphs, which
have representations in terms of harmonic sums and generalized harmonic sums, cf. [24,53].

5. Conclusions

We reported on recent progress in calculating the asymptotic heavy flavor Wilson coefficients con-
tributing to the deep-inelastic structure functionF2(x,Q2) at 3-loop order. As a first class all con-
tributions ofO(nf T2

FCA,F) have been completed and basis integrals for the classO(T2
FCA,F) were

obtained. Furthermore, the automatic calculation of related topology classes for other color fac-
tors started. We extended the former analysis to the case in which two heavy quarks of different
mass contribute and obtained a series of Mellin moments. These contributions are no longer in
accordance with the variable flavor number scheme, since charm does not decouple at the mass
scale of the bottom quark. In case of two massive fermion lines with equal mass new sums and
iterated integrals appear beyond the usual harmonic sums and polylogarithms, also leading to more
singularities in the complex plane. We have also calculatedthe scalar graphs contributing to ladder-
topologies for up to six massive fermion lines, including graphs with local 4-leg operators. Here
the results are given in terms of special classes of generalized sums, which individually may even
diverge exponentially forN→∞. This divergence is canceled between different terms contributing.
In case of the graph shown in Fig. 2 a larger amount of nested binomial and inverse binomial sums
weighted with harmonic sums and their generalization, alsoincluding cyclotomic sums, emerge,
extending the known alphabets both for the sums and the associated iterated integrals. This all is
invisible at the level of Mellin moments since the corresponding expressions are given in terms of
rationals and singleζ -values. It appears that in the presence of a single mass already at 3-loop
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order rich new structures are contributing in the single differential case being characterized either
by the Mellin variableN or the momentum fractionx.
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