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Multi-jet amplitudes with NJET Simon Badger

1. Introduction

Particle production at hadron colliders is dominated by large amounts of QCD radiation re-
sulting in large backgrounds to new physics searches. When calculating such processes using per-
turbative QCD corrections beyond leading order can be large and next-to-leading order is required
to obtain quantitative predictions. Until recently evaluation of the required virtual corrections were
a major bottleneck preventing a systematic extension of existing studies to NLO accuracy.

Over the last decade methods for the computation of multi-particle one-loop amplitudes have
seen considerable improvement. New techniques like unitarity [1, 2], generalized unitarity [3],
integrand reduction [4] and recursive tensor reduction [5, 6] have alleviated a long standing bottle-
neck in NLO computations. The rapid growth in the size of analytic expressions can be avoided
by performing algebraic steps numerically. At this time several different approaches have been
applied successfully to 2 — 4 processes' and to a handful of cases with even higher multiplici-
ties [§— 11]. A number of groups have made substantial progress towards the complete automation
of NLO corrections [12 —17] of which some elements are available in public codes [16—20].

Precision predictions for di-jet production at Hadron colliders have been known for twenty
years [21, 22]. The full three jet computation was only completed in 2003 [23], though the pure
gluonic contribution was known previously [24]. Full predictions for four jet production are com-
plicated by the large amounts of gluonic radiation which cause theoretical computations to become
extremely difficult. Using the benefits of an on-shell approach the BLACKHAT collaboration were
recently able to make the first predictions [25]. Some studies using parton shower matching [26, 27]
have recently been carried out for inclusive jet and di-jet productions [28, 29].

In these proceedings we present the recently released C++ library NJET [17] and the applica-
tion to three and four jet production at the LHC with a centre of mass energy of /s = 8 TeV [30].
After highlighting some key features of the program we discuss some differential distributions of
multi-jet production at the LHC at next-to-leading order produced by combining NJET with the
SHERPA Monte-Carlo event generator [31].

2. One-loop multi-parton amplitudes

We take a generalized unitarity approach to the construction of one-loop amplitudes in mass-
less QCD where the fundamental building blocks are gauge invariant ordered amplitudes known
as primitive amplitudes. These primitive amplitudes are first expanded in a basis of known scalar
integral functions with up to four external legs,
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IThe latest Les Houches SM and NLO multi-leg Working group report [7] contains a good overview of the growing
number of phenomenological studies.
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where /.y are the integral functions and C),.x are process dependent rational coefficients.

The numerical generalized unitarity algorithm [12, 32 —35] implemented in NJET is based on
the NGLUON library for multi-gluon primitive amplitudes [16]. The scalar integrals are obtained
via the QCDLOOP/FF library [36, 37] and quadruple precision for rescuing unstable phase space
points is implemented via the QD library [38]. The updated version includes an implementation
of arbitrary multiplicity multi-fermion primitive amplitudes and the full colour summation for all
partonic sub-processes for up to five jet production. An interface via the Binoth Les Houches
Accord [39] allows the library to be linked directly to external Monte-Carlo programs.

To compute full colour summed virtual corrections it is necessary to match the primitive am-
plitudes to the SU(N,) colour structures appearing in the full amplitude. We apply an algorithm
which uses matching of the ordered primitives to Feynman diagrams to achieve this goal along the
lines of the procedures employed in Refs. [40, 41]. The total number of primitives contributing to
the coloured amplitude is significantly reduced by taking “Furry’s theorem” into account for the
fermion loops. Further details can be found in Ref. [17].

The speed and accuracy of any numerical approach are clearly very important. Inside NJET
we use a momentum scaling check to estimate numerical instabilities and switch to quadruple
precision in case a user specified number of valid digits is not achieved. By using super-symmetric
identities, a cache system for helicity and permutation sums and de-symmetrized colour sums in
the complicated gluonic channels average times of the order of 2 seconds per event were achieved
during the phase-space integration of pp — 4 jets.

3. Multi-jet production at the LHC with NJET and SHERPA

Predictions for multi-jet observables at NLO have recently been made by combining the NJET
library with the SHERPA Monte-Carlo event generator. In this study the earlier predictions by the
BLACKHAT collaboration for the LHC at /s =7 TeV [25] were verified and new predictions for
the LHC at /s = 8 TeV were obtained, including differential distributions in transverse momentum,
pr, and rapidity. At NLO the differential cross section receives contributions from both unresolved

real radiation, o™ | and the virtual loop corrections, do, S

n+1°
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The cancellation of infra-red singularities was performed using Catani-Seymour dipole subtrac-
tion [42] which determines the form of the subtraction (d Gf 1), integrated subtraction (d GS"), and
factorization (do¥) terms. This procedure is implemented into SHERPA [43]. The real and born
matrix elements were obtained using AMEGIC++ [44] and COMIX [45]. The anti-kt jet clustering
algorithm with R = 0.4 was used via the FASTJET library [46, 47]. The MSTW2008 PDF set was
used [48] in the fixed five flavour scheme. All effects from top quarks have been neglected though
they are expected to be small. Asymmetric py cuts were applied with pr > 80 GeV for the leading
jet and pr > 60 GeV for all subsequent jets. Rapidity cuts of |n| < 2.8 were also taken. The
renormalization and factorization scales were taken to be equal and proportional the sum of the
transverse momenta of the final state partons, H7. This dynamical scale was chosen with a central
value of ug = Hr /2 and scale variations estimated using g = Hr /4 and ug = Hr.
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At /s = 8 TeV the total cross sections for three and four jet production are found to be,

G38TeV—LO _ 126-65(0'05):618:28 nb, (;SSTeV'NLO = 72.57(0. 16)1%87(1)8 nb, (3.2)
oSTeVLO — 14.36(0.01) 1038 np, 0} VN0 = 8.15(0.09) 59, nb. 3-3)
The pr and rapidity distributions for the fourth leading jet (ordered by pr) are shown in Fig. 1. We

can clearly observe the average size of the NLO corrections is large at the order of 50% and the
scale variations are significantly reduced.
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Figure 1: p7 and rapidity distributions for the 4™ leading jet in pp — 4 jets. LO predictions are shown in
blue with the shaded blue band indicating scale variations. NLO predictions are shown red. The lower plot
shows the ratio of NLO/LO.

4. Outlook

We have presented results for multi-jet production at hadron colliders computed at NLO using
the NJET C++ library and the SHERPA Monte-Carlo program. The on-shell generalized unitarity
algorithm is well suited for such processes due to the large amount of gluonic radiation which is
difficult to deal with when using alternative methods. For the LHC running with a centre-of-mass
energy of /s = 8 TeV we observe sizeable corrections at NLO. As discussed in Ref. [30] a large
proportion of these corrections can be attributed to the NLO value of ¢, coming from the parton
distribution functions. In low pr regions the fixed order perturbative series is known to break down
because of large logarithms coming from soft gluons. Future studies using parton shower matching
would be an interesting way to estimate the size of these effects.
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