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1. Introduction

Renormalization group functions play an important role in quantum field thddrgy deter-
mine the energy scale dependence of the parameters of the Lagrasgg ded thus are important
tools to combine predictions of the theory from different energy regidngmportant example in
this respect is the inspection of the gauge coupling unification at highieaevhere precise exper-
imental data at the electroweak scale combined with accurate calculationsrehtrenalization
constants yields precise predictions.

In this contribution we consider the renormalization group functions of tleetbauge coup-
lings in the Standard Model (SM) within the Modified Minimal SubtractiMS) scheme. In this
renormalization scheme the beta functions are independent of all mass@®aent in the theory
and it is thus relatively simple to solve the loop integrals. In fact, in the calculptiesented here
at most massless three-loop two-point functions have to be evaluated argidmown for more
than 30 years [1]. Actually the main difficulty of the calculation is the huge amafusontributing
Feynman diagrams (about ®)Ovhich result from the large number of vertices and propagators.
This requires an automated setup which not only generates and compRegrathan diagrams
but also provides the Feynman rules in an automated way.

The results presented in these proceedings have been obtained iff2R8ls. There have
been a number of publications where the one- and two-loop expressiwadben computed [4,
56,7,8,9,10, 11, 12, 13]. Also several three-loop results haea bomputed since the end of
the seventies [14, 15, 16, 17, 18, 19]. Four-loop corrections to betdibns are only known for
QCD [20, 21].

Let us in a first step define the couplings we want to consider. It is coeneto use instead of
the fine structure constaatep and the weak mixing angl@y the gauge couplings in a SU(5)-like
normalization given by

S 0gep 0QED

al—ém> az:sinza/\/’ a3z = 0s. (1.1)

Note that it is straightforward to obtain the beta functionsdgep and sirf By once theB,, are
know (see, e.g., Ref. [3]).

2. Calculation

We define the beta functions via

e e — B{ay(u).0). @)

wherei = 1,2, 3 labels the three gauge couplings. The ingexns over all couplings in the SM,
i.e., the gauge, Yukawa and Higgs boson self couplings. We furtherragez = (4—d)/2 where
d is the space-time dimension used for the evaluation of the momentum integrals.

The functionsBi({a;(u)},e) are conveniently computed from the renormalization constants
relating the bare and renormalized gauge couplings via

aP?® = p*Zq ({aj}, )0 (2.2)
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Inserting this equation into (2.1) and exploiting the fact m%ﬁredoes not depend gn leads to

f-—|ei Oy Bj] <1+ a az‘“) , (2.3)

T Zo 45 00 Zo, 9a

which constitutes the master formula for our enterprise. From this equatiomlgds that it is
sufficient to compute the renormalization constahgsin the MS scheme in order to obtaf. In
fact, we have to computé,,, Z,, andZg, to three-loop order and the renormalization constants
for the Yukawa coupling to one-loop order. As far as the Higgs boskre@epling is concerned

it is sufficient to have the leading term proportionalktof the corresponding beta function. The
discussion in the following is centered around the three-loop calculationeofahge coupling
renormalization constants.

The procedure for the calculation 8, (i = 1,2,3) is as follows: (i) choose a vertex which
contains the coupling;; (i) compute the renormalization constant of that ver&y; (iii) com-
pute the wave function renormalization constant of the external partiilgs, and (iv) combine
them according t&@g, = (Zurtx)%/ ([k Zcwt)-

We have used two independent approaches to compute the beta fundilomgirst one is
based on the formulation of the SM using Lorenz gauge in the unbrokese ple., all particles are
still massless. Since the beta functions are mass independent this setup quéeient as the
structure is simpler than after spontaneous symmetry breaking. The gasmgyeshin this approach
are theB andW bosons and the gluons.

For the computation of,, andZ,, it is convenient to choose the gauge boson ghost vertex
since in that case the number of contributing diagrams is smallest. In ordeva@taoss check
we have chosen the triple gauge boson vertex as a second optiafy, Fedso thegp™ ¢~ W vertex
as a third alternative has been used. Note that due to the Ward idégtitysolely obtained from
the B boson two-point function. Sample Feynman diagrams for all two- and fyoege-Green’s
functions can be found in Fig. 1.

In the second approach we have used the SM Lagrangian in the bankdield gauge (BFG)
as a starting point (see, e.g., Ref. [22]). The advantage of this methaat isrtly the gauge boson
two-point functions and thus less different Green’s functions have tocolnsidered. On the other
hand more vertices are present and thus more Feynman diagrams coritritlueebackground
gauge boson propagator as compared to the corresponding quangiomvéVe use the BFG in
the broken phase of the SM. However, here we can also set the mésdkpanticles to zero.
Sample Feynman diagrams for the gauge boson two-point functions asm shhdhe first and
second row of Fig. 1 where the external lines correspond to backdrgiuon, photon an@/ or Z
bosons.

An important issue for all loop calculations involving electroweak gaugeimss the treat-
ment of y° in d # 4 dimensions. In our calculation we on purpose do not use Green'dnac
involving external fermions. For all other two- and three-point functiwasould show that a naive
treatment ofy° leads to the correct result [3]. Note that Green’s functions with extéenaions
are unavoidable for the calculation of the beta functions for the Yukawpliogs. At two-loop
order it is again possible to use a naive versiopsofBeyond two loops, however, a more careful
treatment is required (see, e.g., Ref. [23)]).
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Figure 1: Sample Feynman diagrams contributing to the Green'’s fanstivhich have been used for the
calculation of the renormalization constants of the gaumetings. Solid, dashed, dotted, curly and wavy
lines correspond to fermions, Higgs bosons, ghosts, glandslectroweak gauge bosons, respectively.
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We have performed several checks which convinced us from theatnass of our results. In
brief they are given by:

e comparison of the one- and two-loop results with the literature

e comparison of partial three-loop results with the literature

e computation of the beta function for the Higgs boson self-coupling to one-doder and
comparison with the literature

e computation of the Yukawa beta functions for the top and bottom quark, an@uhepton
to two-loop order and comparison with the literature

e computation of thé3BB vertex to three-loop order; we checked that the sum of all 358 716
diagrams gives zero

e computation for general gauge parameters; we checked that theyuroptbe final result
for B functions

e check that no infra-red divergences are present in the loop integrals

As a last comment on the technical details of our calculation let us mention thetreeble to
obtain the final result for the gauge coupling beta functions for a gevigkawa structure involving
all nine Yukawa couplings of the SM and the CKM matrix in the quark sectorthEtmore, it is
straightforward to extend our final result for a SM with fourth family as wéldéxplained in the
next section.

3. Results

In this section we briefly discuss the final results for the gauge couplitegfbactions. In
order to show the structure of the analytical expressions we preseamisifiefor3; which is given
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by
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where the limite — 0 has been taken. For each gauge coupling beta function we have that the
one-loop contribution of; is proportional toa?. Mixed contributions of ordea?a; anda2axq;
only appear at two and three loops, respectively, wisgrare gauge or Yukawa anm and q
are gauge, Yukawa or Higgs boson self couplings. Note that the latteaepfor the first time at
three-loop order.

The symbolng in Eq. (3.1) stands for the number of generations; in the SM we have 3.
The quantities 8, trT and ti incorporate the Yukawa couplings where we refer to Ref. [3] for
details. In this contribution we only want to mention that the replacements

ri"—af, tT"—=al, rB"—af, trTB— aap, (3.2)

leads to the result where only the Yukawa coupling of the third generatia@pision-zero.

In a similar way we can accommodate a fourth generation of fermions. In gesitee Yukawa
matrices become % 4 dimensional. If we assume that the fourth is much heavier and if we neglect
all SM Yukawa interactions it contains a<33 zero matrix and we have

Fr= <O3X3 O> . with F=T,B,L, (3.3)
0 af

whereT andB stand for the up- and down-type heavy quarks, aridr the heavy charged and
neutral leptons, whilerr = ﬁ denotes the corresponding Yukawa couplings. Note that the
contribution of a heavy neutrino is not contained in our formulae.

Let us finally briefly discuss the numerical impact of the new three-loogections. In Fig. 2
we show the running ofr; and a, from u = My to the energy scales where these two coupling
become equal. The dotted and dashed lines correspond to one- andpvoriming, respectively.
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Figure 2: The running of the electroweak gauge couplings in the SM.[if@s with positive slope corre-
spond toas, the lines with negative slope . The dotted, dashed and solid lines correspond to one-, two-
and three-loop precision, respectively. The bands aroedhree-loop curves visualize the experimental
uncertainty.

One observes a significant change of the curves, which is in particutdr bigger than the experi-
mental uncertainty indicated by the dashed band. Thus in case only ahev@ioop perturbative
corrections are included the theory uncertainty is much bigger than theireepéal one. This
changes with the inclusion of the three-loop terms. The results are shavaticditines which are
close to the corresponding dashed curves. The effect is small, howeélleof the order of the
experimental uncertainty, in particular fas.

To conclude, the complete three-loop corrections to the gauge couplinduibetions have
been computed [2, 3] using different methods and applying seversd citeecks. They constitute
fundamental quantities of the SM and are important for high-precisiorriexgetal checks.
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