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1. Introduction

Over the decades, polylogarithms have gained importangeriarbative Quantum Field The-
ory ever since the first occurrences of the dilogarithm inyeQED (e.g. [30]) and in results for
one-loop integrals. As the complexity of the computatioas imcreased, the literature on Feyn-
man integrals has gradually absorbed a variety of genatalirs, including Nielsen and classical
polylogarithms [26, 28, 23], harmonic polylogarithms [28]d later generalizations [18, 3, 4, 2],
(some of which were previously known to mathematicians lgyrthme of hyperlogarithms [25]),
and variations on multiple polylogarithms [6, 19]. For sed@pproaches to computing Feynman
integrals, it is useful to represent these functions aatiéerintegrals.

In this talk we discuss a class of functions which was studiegdference [7]. These functions
are closely related to (and contain) the multiple polyldgans of Goncharov [19] and admit spe-
cial properties which are useful for the computation of Fagn integrals. In section 2 we briefly
review an important result by Chen [14] on the conditionsdoriterated integral to give a well-
defined function of several variables. In section 3 we defimeag whose image satisfies these
properties and use it for the construction of the mentiorladscof functions. Section 4 briefly
shows how these functions can be used in a systematic ajppi@aiategrating over Feynman pa-
rameters, presented in reference [8]. Algorithms and a cd@ngrogram for using this class of
functions will be the content of another publication, whislturrently in preparation.

2. Homotopy invariance and Chen’s theorem

The property of homotopy invariance is best discussed wheming iterated integrals as
integrals along paths. Ldtbe the field of either the real or complex numbers &he smooth
manifold overk. Let a piecewise smooth pathon M be given by a mayy: [0, 1] — M. Two
such pathsy, y», are said to bénhomotopicif their endpoints coincide:y; (0) = y»(0) = %o and
vi(1) = (1) = xq, and if furthermore one path can be continuously transfdrme the other.

Let cy, ..., an be smooth differential 1-forms oM and let us writey*(w ) = fi(t)dt for the
pull-back of each 1-form to the intervdl, 1]. Theiterated integralof ¢, ..., tw, alongy is defined

by
/wh...wl :/ fo(tn) ... F1 (t)dlts. 2.1)
y 0<t;<..<th<1

We will use the term iterated integral feflinear combinations of such integrals.
To give an example, the multiple polylogarithms in one Malgacan be written as

Lin,..n (2) = (1) /ya%"‘lah...agllan (2.2)

wherey is a smooth path i\ {0, 1} with endpointy(1) = zand the sequence of 1-forms is built
up from the sef); = {a, o} with ap = %, W = tﬂ—tl Note that if we extend the s€; only by
1-forms of the formf dt, wheref is a rational function, possibly involving further paraest and
use it to define a new class of iterated integrals in a simikay, then these functions will still be
defined on a one-dimensional space, corresponding to theramoint variable. In this case let
us speak ofterated integrals in one variableThe manifoldM is an open subset @. In the next
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section,M is a certain open subset Gf', and we use 1-forms with seveudt, ..., dt, to construct

a class of functions in variablesz, ..., z,, given by the coordinates of the endpoint of a path.
The iterated integral in eq. 2.2 is a meaningful expressiomiultiple polylogarithms because

it depends locally on the endpoint varialalbut not on the patly. In fact if in eq. 2.2 we replacg

by another path homotopic {athen we obtain the same function. This property is caflechotopy

invariance In the case of one-fold integrals of a 1-formone can show that homotopy invariance,

/ w:/ w for y1, y» homotopic, (2.3)
Vi 12

is true, if and only ifw is closed.

For iterated integrals the condition is more complicatédals studied in a very general setting
in Chen’s foundational work on iterated integrals [14] arelwant to briefly rephrase the statement
which is relevant in our context. To this end we consider demsoducts of differential 1-forms
w ® ... wy over some fielK C k (which will typically be the field of rational§) in the sequel)
for which we use the customary bar notation|... |y

Let Q be a finite set of smooth 1-forms dvi and letD be theK-linear map from tensor
products of such 1-forms to tensor products of all formd&vgrdefined by

m m-1

D ([on...| o)) = Zl[wl|~'|m—l|dm|M+l|---|%] + Zi [wi]..|@-1]@ A @] Jam]. (2.4)

We furthermore define
m
Bm(Q) = {E = % > Gy [@yl--lay] with ¢ i € Kandaw € Q such thaD¢ = O} (2.5)
£ :

which is a vector space ovét. We call the elements of this vector spdneegrable wordgor
bar elementsin Q and the equatio®& = 0 is known as théntegrability condition Now on
the elements oBy,(Q) let us consider the integration map, defined by simply irtéxgg over the
1-forms according to definition (2.1):

m

i1, (Mg ][O ] 1,00l 1 G 2.6
|:0i1,z.nc' i 6] gml,;nc /ym . 26)

Chen’s theorem now states, under some condition® arhich will always be satisfied in the
sequel, that this integration map gives an isomorphism Bgyf2) to the set of homotopy invariant
iterated integrals in the set of 1-forms@nof length less than or equal to.

In other words, when we apply the integration map to an itielgr word, we obtain a ho-
motopy invariant integral. The reverse is also true: angdmcombination of tensor products,
corresponding to a homotopy invariant iterated integrahanabove sense, is an integrable word.
In the following we implicitly use this isomorphism and repent a homotopy invariant iterated
integral by its bar element (this requires fixing basepoimie shall demand that the regularised
value of all functions at the origin is zero). Let us considkintegrable words of a given alphabet
Q up to lengthm, By(Q) and define%,(Q) to be theK-vector space of all the corresponding
homotopy invariant iterated integrals, obtained from ¢he®rds via the integration map of eq.
2.6. For notational convenience, the bar notation, usewods inB,(Q) above, will from here
on denote the corresponding functionsi, (Q) as well. In the following section we explicitly
construct this vector-space of functions for a specific chaif Q.
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3. Universal multiple polylogarithmsin several variables

From now on, letk = Q. Extending the se€); of the previous section, let us define the
auxiliary set of differential 1-forms

f) . dtl dt]_ tzdtl (I'I{‘:zti)dtl
A T T Y R L |

(3.1)

on an open subset @ with coordinatet;. As the 1-forms irf)n are closed and furthermore the

wedge product of each pair of 1-forms@y is zero, the integrability condition is trivially satisfied

for any word in the letters 2, and therefor®m (Qn) is spanned by the set of all words of length

< min Qn. Therefore it is trivial to obtain the homotopy invariargriated integralsZm (Qn) .
However, all of these are homotopy invariant functions dfyame variable, the endpoint of

the path corresponding to the integration odér. By a slight abuse of notation let us call this

variablet;. The other parametets, ..., t, in the 1-forms have to be treated as constants up to now.
Let us now consider the set

o :{% dty d(Maci<oti)
" t1 777ty Maci<pti— 1

For example, in the case of three variables we have

where 1< a<b< n} . (3.2)

4t t3 tbh—-1 1 ttg—1 titots — 1

dy dtp diz tidtp +todty todtz +tzdty  titodiz 4 totzdty + ttzdty
Qs — == . (3.3)

Note that forn> 1, in contrast to the previous case, not every possible wot@,i belongs to
Bm(Qn). We explicitly constructZnm, (Q,) by a map

Y B (Qn) — B (Qn), (3.4)

which is defined as follows.

Let F, be the vector space of rational functionstgf..., t, with coefficients inQ whose de-
nominators are products of elements in the{$gt . ., ty, [a<i<pti — 1}, for L<a<b < n. In the
following we write iterated integrals i, (f)n) as[g1dty|g2dty|...|gndt], whereg; € Fy. Differ-
entiation of the iterated integrals i#, (f)n) with respect td; can be computed by

fd 0
o [01dt1] = g1 and ot (010t |g2dty ... |gndt1] = 01 [g2dty]...|gndty] for n> 2. (3.5)

The mapy will not change the differential behaviour with respectiicso we impose the differen-

tial equations

0 0
d_tl ([g1dts]) = g1 and a—tltp([gldtlyggdtl\...\gndtl]) = g1 ([g2dy]...|gndt]) forn> 2.

Differentiation with respect tt is not defined orf € %, (f)n) but we wanty (&) to have a
well-defined differential behaviour with respect30To this end, we consider an auxiliary operator

B, : Bin (Qn) — F2@ B (Qn) (3.6)
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whered,, is defined by the following properties:

(a) On rational functions it acts as differentiation witlspect tat,: 6,9 = a%g-
(b) It commutes with differentiation with respecttio atZditlE = d%atzf .
Using property (b) we obtain

0 fd
=0, (010t [Q2dty|...[gndt1] = G, =~ [01dt1[g2dty|...[gndly] (3.7)
dtl at1
= 0,01 [02dt|...|gnd1y] (3.8)
and therefore
1
0y, [010ty|g2dty ... |gndlty] :/o dty 6,01 [g2dty|...|gndlty ] . (3.9)

Note that on the right hand side of the last equat@nacts on an iterated integral of length- 1,
S0 we have a recursive procedure to complt®, the last stage of the recursion given by property
(@). In(3.9), the integral is computed by decomposigy € F, into partial fractions with respect
tot;, and using integration by parts and the form(8eb).

Now we definey such that it satisfies

7}
and analogous differential equations with respect to theameing parametetts. The constants are
fixed by demanding thap(¢) has a finite expansion at the origin of the form
S fi,..i,(logty)'*... (logty)'n (3.10)

0<i1,.—in<N
wheref;, _;, is analytic at the origin and vanishes at the point ... = t, = 0. Together with the
above differential equations this determines the mrafhis map is closely related to constructions
which were recently introduced to the physics literaturéhassymbol’ [20, 21, 16].

To give an example, we apply to

£ = [tldil i tlttzzd_tll] € Br(Qy). (3.11)
We obtain
Jow(E) = 1 (2, 312
R N e
wE) = [tzdizl tldill] - [tldill + c:_zz B tzdizl . Ciizt:_tzldtl} ' (3.14)

This iterated integralp(&) is in fact equal to the multiple polylogarithm in two variabl
Li1 1(t1, t2) while the expressiod coincides with this function only on a one-dimensional gzue
for fixedt, and does not capture its differential behaviour with respet.

Let Z (Qn) = ¥ m>0%m(Qn) denote the vector space of integrable words of all lengths0.
It was extensively studied by one of us in the context of thelmticspace of curves of genus zero
with m+- 3 marked points,#Zy m+ 3, in reference [7] and we refer to this work for details and fgoo
of the following properties:
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e The elements o4 (Q,) are homotopy invariant and therefore they are functions \adri-
ables.

e % (Qp) contains the multiple polylogarithms of Goncharov.

e There is an explicit basis fo# (Q;) in terms of the map!. There is a decomposition
B(Qn) = W(B(Qn)@...0 W(Z(Q)) @ W(#(Q1)) and we have an explicit basis for
each# (fz.) given by the set of words ifd;, by the discussion after (3.1).

e % (Qp) is closed under taking primitives.

e The limits of elements o#4 (Qp) att, equal to 0 and 1 arg’-linear combinations of elements
of #(Qn-1), whereZ is theQ-vector space of multiple zeta values.

As a consequence of the latter properties, we can evalufitételéntegrals of the type
-1
| dny 6B Bie Fn(@n). fickn (3.15)
]

The result will be aZ-linear combination of elements o8y, (Q,_1) multiplied by elements of
F._1. This can be iterated. Our forthcoming publication willtig& algorithms and a computer
program for the computation of such integrals.

4. Application to Feynman parametric integrals

The integrals(3.15) play a role in pure mathematics, such as in reference [7, d, in
physics in the context of deformation quantization [17hexstring theory [31], Schnetz’ model of
graphical functions [32] and in perturbative quantum fiélelary. Here we focus on the latter and
give a very brief outlook on how the use & (f)n) can facilitate the computation of Feynman
integrals. We follow the approach of reference [8] which ambination with the use of hyper-
logarithms already led to new results for certain integralevant in QCD [1]. Other results were
recently obtained by similar strategies of integratingrdveynman parameters, e.g. in [13].

To begin with, we consider a primitive (subdivergence-freeerall logarithmically divergent
vacuum Feynman graph, giving rise to a finite integral

| = /Om.../om (I'Ii'\‘_ld>q)5<1—ii>q> % (4.1)

overN Feynman parameters with being the first Symanzik polynomial (see e.g. [27, 22]). Ref-
erence [8] provides a polynomial reduction algorithm which any ordered sequence of the
Feynman parametels= (Xg,, ..., Xg, ) gives a sequence) = (S, ..., Sy) of sets of polynomials
in the Feynman parameters. Without repeating the detatli®élgorithm here, we recall that one
can evaluate by iteratively integrating over the Feynman parameterfiendrderA if in each set
S € ., all polynomials are linear in the corresponding parameger

Note that the latter is exactly the condition for the intédgosbe computable by our program,
using the functions in4n. Indeed, letA be a sequence for which this criterion holds and assume
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that we already integrated out the first 1 parameters. After mapping the integration domain of
dxg to [0, 1] we may assume that the integrand is of the form

i = ;zfj [Wj.1]...|0j,m], (4.2)

wheref; are algebraic functions ana; 1|...|wj m] € %m(Qn) for somemandn. The denominators

of fj, wj 1, ..., wj m are irreducible polynomials which map to the member§ off these polyno-
mials are linear irxg, then there is & such that we can map these polynomials to the denominators
of the 1-forms inQ of eq. 3.2 and we can exprelsdy terms of the form of eq. 3.15.

It is an important advantage of this approach that by thermotyial reduction algorithm, i.e.
by simple operations on polynomials and without integ@tiwe can decide whether the method
applies and which order of parameters we should choose h&natlvantage of the use @, (Qn)
is that if the polynomial reduction can be don&;-linear combinations of these functions are
sufficient to express the intermediate results after eaelgiation.

It was shown in reference [9] that the method is applicabteaftarge class of graphs and
it is well-known how to relate vacuum-graphs to contriboido two-point functions [15]. For
graphs with further legs and with non-zero particle masseshave to take the second Symanzik
polynomial into account. Certain properties of this polyrial [5] give rise to the hope that the
polynomial reduction and the above method can be extendadaige number of such Feynman
graphs as well. Itis furthermore important for us to movedmelythe restriction of primitive graphs.
Recent work of Kreimer and one of us [11, 12] provides a gjsate express Feynman integrals
with UV-subdivergences by integrals for which the abovelmdtcan be applied. The methods of
[24] suggest that this method also generalizes to gaugei¢iseo
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