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1. Introduction

One of the main features of perturbative scattering amplitudes in QCD and, more generally,
gauge field theories is the presence of singularities in the infrared (soft and collinear) regions
of the phase space. The knowledge of this singular behaviouris very relevant to make reliable
QCD predictions through high-order perturbative computations, all-order resummed calculations
and parton-shower Monte Carlo generators.

In this contribution we deal with the collinear limit and theassociated singular behaviour
[1]–[17]. We refer to a generic scattering amplitude in the kinematical configuration where the
momenta ofm(m≥ 2) external QCD partons become parallel. In this multiparton collinear limit,
the scattering amplitude fulfils a factorization formula: the factor that captures the singular collinear
behaviour is a ‘splitting function’ that is universal (process independent). The splitting function,
which can be presented and computed either in a colour-stripped form (thesplitting amplitude)
[2, 3] or in a colour-dressed form (thesplitting matrix) [12], effectively describes the collinear
splitting subprocess 1 parton→ m partons. Applications to fixed-order calculations at the Next-
to-Next-to-Leading Order (NNLO) and to resummed calculations or parton-shower algorithms at
the Next-to-Next-to-Leading Logarithmic (NNLL) accuracyrequire theknownsplitting functions
for the one-loop 1→ 2 [10, 11] and the tree-level 1→ 3 [4, 5, 6] splitting subprocesses. The
multiparton splitting subprocesses 1→ m with higher multiplicity (m≥ 4) enter calculations at
still higher orders.

In this talk we consider the multiparton collinear limit at the tree-level. The explicit compu-
tations of the tree-level splitting functions withm≤ 3 partons [1]–[6] have been carried out with
methods and techniques that can also be extended and appliedto the cases withm≥ 4. How-
ever, these extensions are certainly cumbersome in practical terms, especially if the numberm
of collinear partons increases. Therefore, more practicalmethods are desirable. The authors of
Ref. [7] have used the MHV rules [18] (they have also investigated the use of the BCFW recursion
relations [19]) to compute multiparton splitting amplitudes: considering some specific classes of
helicity configurations of the collinear partons, these authors have derived general results that are
valid for an arbitrary numberm of gluons plus up to four fermions.

We have developed an alternative method [20] to compute the tree-level splitting functions
for the multiparton collinear limit of gluons, quarks and antiquarks. The method leads to recursion
relations that apply directly to the splitting functions. Starting from the splitting functions form= 2
andm= 3 collinear partons, the recursion equation iteratively gives the splitting functions for an
arbitrary number of collinear partons. For simplicity, in the following sections we illustrate the
recursion relations for the pure gluon case.

2. The multiparton collinear limit and factorization

We consider a generic (on-shell) scattering amplitudeM (p1, p2, . . .) at the tree level. The
momenta of the external QCD partons arep1, p2 and so forth. Throughout this presentation we use
the notationpi, j = pi + pi+1+ . . .+ p j andsi, j = (pi + pi+1+ . . .+ p j)

2, with i < j.
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The collinear limit of a set{p1, . . . , pm} of m (m≥ 2) parton momenta is approached when the
momenta of thempartons become parallel. This implies that all the parton subenergies

siℓ = (pi + pℓ)
2 , with i, ℓ ∈ {1, . . . ,m} , (2.1)

are of thesameorder and vanishsimultaneously[4, 5]. To specify the kinematics of them-parton
collinear limit, we define the light-like momentum̃Pµ

1,m:

P̃µ
1,m ≡ pµ

1,m−
p2

1,m

2n· p1,m
nµ , (2.2)

wherenµ is an auxiliary light-like vector (n2 = 0), which parametrizes how the collinear direc-
tion is approached. In the multiparton collinear limit we have pµ

i → ziP̃
µ
1,m (i = 1, . . . ,m), and the

longitudinal-momentum fractionzi is

zi =
n· pi

n· P̃1,m
=

n· pi

n· (p1+ . . .+ pm)
. (2.3)

In the following we limit ourselves to considering pure multigluon amplitudes. Then-gluon
scattering amplitude isM a1,a2,...,an(p1, p2, . . . , pn) anda1,a2, . . . ,an are the colour indices of the
gluons. The scattering amplitudeM a1,a2,...,an can be decomposed in colour subamplitudes [2, 3].
The colour-ordered (and colourless) subamplitude is denoted byAn(i1, . . . , in), and the argumentik
(ik ∈ {1, . . . ,n}) denotes the dependence on theik-th gluon, i.e. on itsoutgoingmomentumpµ

ik
and

its polarization vectorεν(pik) (the helicity states ofεν are never explicitly denoted throughout the
present contribution).

In the m-gluon collinear limit, the colour-ordered amplitudeAn (with n ≥ m+ 3) fulfils the
following tree-levelfactorization formula [2, 3, 4, 5]:

An(. . . ,k,1,2, . . . ,m, j, . . .)≃ Split(1,2, . . . ,m; P̃1,m) An+1−m(. . . ,k, P̃1,m, j, . . .) , (2.4)

where thesplitting amplitudeSplit(1,2, . . . ,m; P̃1,m) has the singular behaviour Split∝ (1/
√

s1,m)
m−1,

and the neglected terms on the right-hand side are less singular in the collinear limit.
The splitting amplitude Split(1,2, . . . ,m; P̃1,m) is universal (e.g., it is independent ofAn) and

it depends on the collinear gluons and on the parent collinear gluon of the splitting subprocess
1 gluon→mgluons. The parent gluon hasingoingmomentumP̃µ

1,m and polarization vectorε∗
ν(P̃1,m)

(ε∗
ν is the complex conjugate ofεν ). Note that the product Split(. . . ; P̃1,m) An+1−m(. . . , P̃1,m, . . .)

involves a sum (which is not explicitly denoted on the right-hand side of Eq. (2.4)) over the polar-
ization states of the parent collinear gluon. Thus, Split has to be formally regarded as a matrix in
the spin polarization (helicity) space of the gluons.

The splitting amplitude Split(1,2, . . . ,m; P̃1,m) is anon-shellquantity and it is colour-ordered
(analogously toAn) with respect to them collinear gluons. Note also that, on the left-hand side of
Eq. (2.4), the gluon indices 1, . . . ,m in the argument ofAn are adjacent. If these indices are not
adjacent, the corresponding amplitudeAn is subdominant in them-gluon collinear limit.

We recall that the all-loop amplitude fulfils a factorization formula that ispartly similar to the
tree-level formula in Eq. (2.4). If the multiparton collinear limit occurs in thetime-likeregion, the
factorization formula [15] is exactly analogous to Eq. (2.4). If instead the collinear limit occurs in
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the space-likeregion, the universality structure of collinear factorization is violated [16], and the
corresponding loop splitting amplitude acquires an explicit process dependence (i.e., Split depends
on the adjacentnon-collinear legsk anf j of An in Eq. (2.4) at one-loop order, and it depends on
additional adjacentnon-collineargluons at higher-loop orders [16]).

3. The recursion relation for the multigluon splitting amplitude

The splitting amplitude Split(1, . . . ,m; P̃1,m) of m gluons can be directly expressed and com-
puted in terms of the corresponding splitting amplitudes ofa smaller numberk (k< m) of gluons.
This iterative structure follows from recursion relationsthat are derived in Ref. [20] for the general
multiparton collinear limit of gluons, quarks and antiquarks.

The recursion relation for the multigluon splitting amplitude is [20]

Split(1, . . . ,m; P̃1,m) =
1

s1,m

[
m−1

∑
k=1

Split(1, ..,k; P̃1,k) Split(k+1, ..,m; P̃k+1,m)V(3)(P̃1,k, P̃k+1,m; P̃1,m)

+
m−2

∑
k=1

m−1

∑
l=k+1

Split(1, . . . ,k; P̃1,k) Split(k+1, . . . , l ; P̃k+1,l )

× Split(l +1, . . . ,m; P̃l+1,m) V(4)(P̃1,k, P̃k+1,l , P̃l+1,m; P̃1,m)
]
, (3.1)

where, on the right-hand side, the splitting amplitude of a single gluon is Split(i; P̃) = 1 by defi-
nition. We recall that the function Split depends on the polarization (helicity) states of the parent
collinear gluon. Therefore, the right-hand side of Eq. (3.1) involves sums (which are not explicitly
denoted) over the polarization states of the parent collinear gluons with momentãP1,k, P̃k+1,m, P̃k+1,l

andP̃l+1,m.
The factorsV(3) andV(4) are a three-gluon and a four-gluon effective vertex, respectively. The

explicit expressions of the effective verices are

V(3)(P̃1, P̃2; P̃) = gS
1√
2

[
ε(P̃1) · ε(P̃2)

(
P̃1− P̃2

)
· ε∗(P̃)

+ ε(P̃2) · ε∗(P̃) 2P̃2 · ε(P̃1)− ε(P̃1) · ε∗(P̃) 2P̃1 · ε(P̃2)
]

, (3.2)

V(4)(P̃1, P̃2, P̃3; P̃) = g2
S

{
ε(P̃1) · ε(P̃3) ε(P̃2) · ε∗(P̃)

+
n· P̃1 n· P̃2−n· P̃3 n· P̃

[
n· (P̃2+ P̃3)

]2 ε(P̃2) · ε(P̃3) ε(P̃1) · ε∗(P̃)

+
n· P̃3 n· P̃2−n· P̃1 n· P̃

[
n· (P̃2+ P̃1)

]2 ε(P̃2) · ε(P̃1) ε(P̃3) · ε∗(P̃)
}

, (3.3)

wheregS is the QCD coupling constant. Note that the (physical) polarization vectorsε(P̃i) andε(P̃)
in Eqs. (3.2) and (3.3) are defined in tha axial gauge withε(p) ·n= 0, wherenµ is the auxiliary
vector introduced to specify the collinear limit (see Eq. (2.2)). Therefore bothV(3) andV(4) depend
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on nµ throughε . The four-gluon effective vertex has an additional dependence onnµ through the
momentum fractionsn· P̃i/n· P̃j .

The recursion relation in Eq. (3.1) is an equation of the Schwinger–Dyson type, and it is similar
to the Berends–Giele recursion relation [2] (see also Ref. [21]) for the (colour-ordered) multigluon
off-shell currentJµ(1, . . . ,m). Note, however, that the splitting amplitudes are on-shellquantities,
and the effective verticesV(3) andV(4) in Eq. (3.1) are alsoon-shellquantities (the Berends–Giele
recursion relation uses the customary three-gluon and four-gluon QCD vertices). Indeed, these
vertices are fully specified (see Eqs. (3.2) and (3.3)) by on-shell (light-like) parton momentãPi

and their corresponding on-shell (physical) polarizationvectorsε(P̃i). This on-shell character of
Eq. (3.1) makes it somehow analogous to the BCFW recursion relations [19], which directly con-
struct on-shell amplitudes by joining on-shell amplitudes(with lower multiplicity) through scalar
propagators.

The on-shell features of the recursion relation in Eq. (3.1)are more evident by proceedings as
follows. Using Eq. (3.1) withm= 2, we obtain Split(1,2;P̃1,2) in terms ofV(3) and the scalar prop-
agator 1/s1,2. This relation can be inverted to expressV(3) in terms of Split(1,2;P̃1,2). Then, using
Eq. (3.1) withm= 3, we obtain Split(1,2,3;P̃1,3) in terms ofV(4) and Split(i, j; P̃i, j) (i.e.,V(3) and
scalar propagators). This relation can be inverted to expressV(4) in terms of Split(1,2,3;P̃1,3) and
Split(i, j; P̃i, j ). This implies that Split(1, . . . ,m; P̃1,m) with m≥ 4 can in turn beentirelyexpressed in
terms of scalar propagators and the splitting amplitudes with m= 2 andm= 3 gluons. In summary,
the recursion relation in Eq. (3.1) gives the explicit result for the splitting amplitudes withm= 2
andm= 3 gluons and, then, using these two splitting amplitudes as building blocks, the same rela-
tion iteratively gives the explicit result for the splitting amplitude with an arbitrarily-large number
of collinear gluons.

4. Summary & Outlook

In Ref. [20] we have studied the multiparton collinear limitof generic tree-level scattering
amplitudes by using the (process-independent) splitting matrix formalism [12]. We have derived
recursion relations for the splitting functions that determine the singular behaviour of the multi-
parton collinear limit for an arbitrary number of gluons, quarks and antiquarks. The recursion
relations display a self-organized structure based on 2-parton and 3-parton building blocks (split-
ting functions or, equivalently, effective vertices) for all the steps of the recursion. The recursion
relations, their derivation and applications are presented in a forthcoming paper [20]. In Sect. 3 of
this contribution, we have anticipated and presented the recursion relation for the pure multigluon
case.
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