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1. Introduction

One of the main features of perturbative scattering angegun QCD and, more generally,
gauge field theories is the presence of singularities in tifraried (soft and collinear) regions
of the phase space. The knowledge of this singular behaisowery relevant to make reliable
QCD predictions through high-order perturbative compaitest, all-order resummed calculations
and parton-shower Monte Carlo generators.

In this contribution we deal with the collinear limit and tlassociated singular behaviour
[1]-[17]. We refer to a generic scattering amplitude in theeknatical configuration where the
momenta ofm (m > 2) external QCD partons become parallel. In this multipartolfireear limit,
the scattering amplitude fulfils a factorization formullae factor that captures the singular collinear
behaviour is a ‘splitting function’ that is universal (pess independent). The splitting function,
which can be presented and computed either in a coloupsttijorm (thesplitting amplitudé
[2, 3] or in a colour-dressed form (theplitting matriy [12], effectively describes the collinear
splitting subprocess 1 partoa m partons. Applications to fixed-order calculations at thextNe
to-Next-to-Leading Order (NNLO) and to resummed calcolagi or parton-shower algorithms at
the Next-to-Next-to-Leading Logarithmic (NNLL) accuramgquire theknownsplitting functions
for the one-loop - 2 [10, 11] and the tree-level > 3 [4, 5, 6] splitting subprocesses. The
multiparton splitting subprocesses—1 m with higher multiplicity (m > 4) enter calculations at
still higher orders.

In this talk we consider the multiparton collinear limit &ettree-level The explicit compu-
tations of the tree-level splitting functions with < 3 partons [1]-[6] have been carried out with
methods and techniques that can also be extended and apiplikd cases wittm > 4. How-
ever, these extensions are certainly cumbersome in pahtgioms, especially if the numben
of collinear partons increases. Therefore, more practiwthods are desirable. The authors of
Ref. [7] have used the MHV rules [18] (they have also inves#dd the use of the BCFW recursion
relations [19]) to compute multiparton splitting ampliasd considering some specific classes of
helicity configurations of the collinear partons, thesehatg have derived general results that are
valid for an arbitrary numbem of gluons plus up to four fermions.

We have developed an alternative method [20] to computeréeelével splitting functions
for the multiparton collinear limit of gluons, quarks andigoarks. The method leads to recursion
relations that apply directly to the splitting functionga®ing from the splitting functions fan= 2
andm = 3 collinear partons, the recursion equation iterativelyegithe splitting functions for an
arbitrary number of collinear partons. For simplicity, etfollowing sections we illustrate the
recursion relations for the pure gluon case.

2. Themultiparton collinear limit and factorization

We consider a generic (on-shell) scattering amplitudéps, p2,...) at the tree level. The
momenta of the external QCD partons aiep, and so forth. Throughout this presentation we use
the notationpi j = pi + Piy1+...+ pj ands j = (pi + Pis1+ ...+ Pj)2 withi < j.
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The collinear limit of a sef ps, ..., pm} of m(m> 2) parton momenta is approached when the
momenta of then partons become parallel. This implies that all the partdresergies

Se=(pi+p)?, with i,fe{1,...,m}, (2.1)

are of thesameorder and vaniskimultaneously4, 5]. To specify the kinematics of the-parton
collinear limit, we define the light-like momentuﬁfm:

2
=~ plm
PH =pt — — n# 2.2
1m p17m n. PLm ’ ( )
wheren” is an auxiliary light-like vectori? = 0), which parametrizes how the collinear direc-
tion is approached. In the multiparton collinear limit wevea!' — zPF'_ (i = 1,...,m), and the

longitudinal-momentum fraction is
n-pi n-pi
Zi e — = . 2'3
n-Pm  N-(Prt...+ Pm) =3

In the following we limit ourselves to considering pure nigllion amplitudes. The-gluon
scattering amplitude is#Z2:%:%(py py,...,pn) @anday,ay,...,a, are the colour indices of the
gluons. The scattering amplitudg ®-23 can be decomposed in colour subamplitudes [2, 3].
The colour-ordered (and colourless) subamplitude is @&ehbyA,(i1,...,in), and the argumern
(ik € {1,...,n}) denotes the dependence on it#h gluon, i.e. on itsoutgoingmomentumpi‘k’ and
its polarization vectoe’(p;, ) (the helicity states ofV are never explicitly denoted throughout the
present contribution).

In the m-gluon collinear limit, the colour-ordered amplitudg (with n > m+ 3) fulfils the
following tree-levelfactorization formula [2, 3, 4, 5]:

An(.. k1,2, om ) =~ Split(1,2,. ..M Prm) Aniam(e- - K Pum, Jy--0) (2.4)

where thesplitting amplitudeSplit(1,2,...,m; 51,m) has the singular behaviour S[ﬂ]t(l/\/sl—Jn)m‘l,
and the neglected terms on the right-hand side are lesdainiguhe collinear limit.

The splitting amplitude Spiid, 2,...,m; I517m) is universal (e.g., it is independent Af) and
it depends on the collinear gluons and on the parent colligkeon of the splitting subprocess
1 gluon— mgluons. The parent gluon hamyoing momentumsl‘fm and polarization vectcrr;‘(lsm)

(¢ is the complex conjugate af,). Note that the product Split.;Prm) Ani1-m(---,Prm,-..)
involves a sum (which is not explicitly denoted on the rigland side of Eq. (2.4)) over the polar-
ization states of the parent collinear gluon. Thus, Spkt twabe formally regarded as a matrix in
the spin polarization (helicity) space of the gluons.

The splitting amplitude Spiit,2,...,m; |51.m) is anon-shellquantity and it is colour-ordered
(analogously td&\,) with respect to then collinear gluons. Note also that, on the left-hand side of
Eq. (2.4), the gluon indices, 1., min the argument of\, are adjacent. If these indices are not
adjacent, the corresponding amplitulieis subdominant in thargluon collinear limit.

We recall that the all-loop amplitude fulfils a factorizatitormula that ispartly similar to the
tree-level formula in EqQ. (2.4). If the multiparton collawelimit occurs in theime-likeregion, the
factorization formula [15] is exactly analogous to Eq. j2 i instead the collinear limit occurs in
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the space-likeregion, the universality structure of collinear factotiaa is violated [16], and the
corresponding loop splitting amplitude acquires an exgli@cess dependence (i.e., Split depends
on the adjacenton-collinearlegsk anf j of A, in Eq. (2.4) at one-loop order, and it depends on
additional adjacenton-collineargluons at higher-loop orders [16]).

3. Therecursion relation for the multigluon splitting amplitude

The splitting amplitude Spit,...,m; I517m) of mgluons can be directly expressed and com-
puted in terms of the corresponding splitting amplitudea emaller numbek (k < m) of gluons.
This iterative structure follows from recursion relatighat are derived in Ref. [20] for the general
multiparton collinear limit of gluons, quarks and anticker

The recursion relation for the multigluon splitting amptie is [20]

. ~ 1| m=t . _ _ S _
Split(1,...,m;P ) = 0 [ S Split(L,... ki Prk) Split(k+1,..,m Perzm) VP, B 1.m; Pum)

m | K=
m-2 m-1 _ _
+ Z Split(1,...,k;PLx) Splittk+1,...,1;Rq1y)
k=1 1=k

x Split(l +1,...,m A 1m) VA (Pr, Pertr, Aam IS1,m)] . (3.1

where, on the right-hand side, the splitting amplitude oingle gluon is Spliti; I5) =1 by defi-
nition. We recall that the function Split depends on the prédion (helicity) states of the parent
collinear gluon. Therefore, the right-hand side of Eq. &%olves sums (WhICh are not epr|C|tIy
denoted) over the polarization states of the parent callighions with momental Ks Pk+1 ms H<+1|
andHJrl,m-

The factors/® andV® are a three-gluon and a four-gluon effective vertex, retpsg. The
explicit expressions of the effective verices are

VOB, By P) = gsj'é &P £(P) (P—Po)-&"(P)

+&(P)-e*(P) 2P -e(P) —e(P)-€*(P) 2P - e(P)| , (3.2

VPR, PiP) = & { e(P)-e(Py) e(Ry)-&"(P)
NN B By e(Fy) e(R)-£'(P)
- (Po+Py)]

n.P3n~FE—n- P12n-PS(|52)_8(§1) £(Py)-£*(P) } . (3.3)
[n-(P2+P1)}

wheregsis the QCD coupling constant. Note that the (physical) fzdaion vector$(P) ands(P)
in Egs. (3.2) and (3.3) are defined in tha axial gauge &ith) - n = 0, wheren* is the auxiliary
vector introduced to specify the collinear limit (see Eq2JR Therefore botW (¥ andVv® depend
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on n* throughe. The four-gluon effective vertex has an additional dependeonnt through the
momentum fractions- B /n-P;.

The recursion relation in Eq. (3.1) is an equation of the Segar—Dyson type, and it is similar
to the Berends—Giele recursion relation [2] (see also Ré&f) [for the (colour-ordered) multigluon
off-shell currentJ¥#(1,...,m). Note, however, that the splitting amplitudes are on-stpedintities,
and the effective verticeg® andV® in Eq. (3.1) are alson-shellquantities (the Berends—Giele
recursion relation uses the customary three-gluon anddimuan QCD vertices). Indeed, these
vertices are fully specified (see Egs. (3.2) and (3.3)) bystoelt (light-like) parton moment&
and their corresponding on-shell (physical) polariza&entorss(ﬁ). This on-shell character of
Eq. (3.1) makes it somehow analogous to the BCFW recursiatiaes [19], which directly con-
struct on-shell amplitudes by joining on-shell amplitugegh lower multiplicity) through scalar
propagators.

The on-shell features of the recursion relation in Eq. (ar&)more evident by proceedings as
follows. Using Eq. (3.1) withm= 2, we obtain Splitl, 2;Py ») in terms oV (®) and the scalar prop-
agator ¥s;». This relation can be inverted to expras$) in terms of Splif1,2;P, ). Then, using
Eg. (3.1) withm = 3, we obtain Split, 2, 3;P; 3) in terms ofV 4 and Spliti, j; R ;) (i.e.,vV® and
scalar propagators). This relation can be inverted to sgM€) in terms of Splifd, 2,3;!31.3) and
Split(i, j;FN’.,j ). This implies that Split, ..., m; I51,m) with m> 4 can in turn beentirelyexpressed in
terms of scalar propagators and the splitting amplitudésmwi= 2 andm= 3 gluons. In summary,
the recursion relation in Eq. (3.1) gives the explicit reésai the splitting amplitudes witlm = 2
andm= 3 gluons and, then, using these two splitting amplitudesiddibg blocks, the same rela-
tion iteratively gives the explicit result for the splittjramplitude with an arbitrarily-large number
of collinear gluons.

4. Summary & Outlook

In Ref. [20] we have studied the multiparton collinear limftgeneric tree-level scattering
amplitudes by using the (process-independent) splittiafyimformalism [12]. We have derived
recursion relations for the splitting functions that detire the singular behaviour of the multi-
parton collinear limit for an arbitrary number of gluons,agks and antiquarks. The recursion
relations display a self-organized structure based onr@pand 3-parton building blocks (split-
ting functions or, equivalently, effective vertices) fdl the steps of the recursion. The recursion
relations, their derivation and applications are preskimte forthcoming paper [20]. In Sect. 3 of
this contribution, we have anticipated and presented thigrsen relation for the pure multigluon
case.
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