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1. Introduction

Amplitudes are the basic building blocks for physics predictions in QCD. Predictions of dif-
ferential cross sections are essential to controlling backgrounds to new physics at the Large Hadron
Collider (LHC). Because of their strong dependence on the unphysical renormalization and factor-
ization scales, leading-order (LO) predictions are not quantitatively reliable. Next-to-leading order
(NLO) calculations give the first quantitative predictions of processes involving QCD. NLO cal-
culations require one-loop amplitudes, in addition to other ingredients. Recent years have seen a
revolution in our ability to calculate these amplitudes, thanks to maximal unitarity [1, 2] and other
developments [4] such as the Ossola—Papadopoulos—Pittau [3] decomposition.

For some processes, such as gg — WTW ™ and gg — ZZ, the tree-level amplitude vanishes,
and accordingly the one-loop amplitude furnishes only an LO prediction. Such subprocesses
are nominally higher order in the strong coupling, of &'(a?), compared to &(al) for the basic
qq — WTW~,ZZ subprocesses. This is however partly compensated by the much larger gluon
densities, so that they merit computation. To compute these subprocesses to NLO, one needs two-
loop amplitudes.

Two-loop amplitudes are also needed for NNLO calculations, which in turn will be needed
for future precision physics at the LHC. Such calculations will also be useful in providing honest
uncertainty estimates for existing NLO predictions.

2. On-Shell Methods

Traditional Feynman-diagrammatic methods suffer from an explosion in the number of dia-
grams, and an even greater explosion in the number of terms, as the number of external legs or
the number of loops increases. Yet many results for amplitudes, especially in the .4 = 4 super-
symmetric gauge theory, are extremely compact; and all known loop results in gauge theories are
vastly more compact than would be suggested by the number of diagrams. This reflects the vast
redundancy present in Feynman diagrams, due to explicit handling of non-physical states, and the
resulting gauge dependence of intermediate quantities. On-shell methods use only information
from physical, on-shell, states to compute amplitudes, thereby avoiding throughout the computa-
tion of gauge-variant quantities which must cancel at the end. This makes calculations simpler and
made possible new NLO calculations at high multiplicity, such as those of W,Z + 4 jetsand W + 5
jets [5].

On-shell methods make use of general properties of amplitudes to derive tools for computa-
tions: tree-level factorization leads to the Britto—Cachazo—Feng—Witten on-shell recursion relations
for tree amplitudes [6]; the unitarity of the S-matrix gives rise to the unitarity [7] and generalized-
unitarity methods; and the presence of an underlying field theory allows for a representation in
terms of an integral basis. The formalism can be summarized in the following equation,

Amplitude = )" c;Int; + Rational, 2.1)
jeBasis

where the sum is taken over a basis of integrals, and the coefficients c; as well as the remaining
rational terms are rational functions of spinor variables. For analytic calculations, having a basis
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Figure 1: The double-box integral

of linearly-independent integrals simplifies calculations but is not strictly essential. For numerical
calculations, it is essential.

3. Integral Basis

At one loop, the basis for computations in massless gauge theories consists of box, trian-
gle, and bubble integrals, where all internal lines are massless, and external legs may be massive or
massless. In general, we must distinguish between two different notions of basis: a “D-dimensional
basis,” which keeps terms to all orders in the dimensional regulator €, and a “regulated four-
dimensional basis,” which keeps only terms through &'(&"). Because some integrals are linearly
independent only at &(€), the latter basis is more compact. We will implicitly be using this latter
basis in these Proceedings. The planar part of the basis at two loops will contain integrals with up
to eight propagators [8]. Beyond one loop, some basis integrals will necessarily contain irreducible
numerators, numerators which cannot be written as linear combinations of inverse propagators. For
the double boxes we consider here and shown in fig. 1, for example, there are two basis integrals
when all external legs are massless, or when one external leg is massive.

4. Maximal Unitarity

In the basic unitarity method at one loop, we sew together two tree amplitudes with a phase-
space integral, and promote the positive-energy on-shell delta functions to off-shell propagators.
The resulting object will yield an integral containing the correct contribution to the target ampli-
tude in the channel in which we have performed the sewing. We must still reduce the resulting
integral symbolically in order to separate the contributions from different basis integrals, and find
their respective coefficients. Finally, we must merge contributions from all channels. This sewing
procedure inverts the procedure of cutting a one-loop amplitude, in which we replace a pair of
propagators surrounding the given channel by positive-energy delta functions. This isolates all in-
tegrals containing those two propagators. There are of course many such integrals: various boxes
and triangles, and a bubble integral as well.

In order to isolate a smaller number of integrals, we must cut more propagators. This is
possible; indeed at one loop, we have four degrees of freedom in the loop momentum (ignoring
the (—2¢)-dimensional components), and so we can imagine cutting four propagators at once [2].
There is, however, a subtlety involved. We might imagine replacing the four propagators in the box
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integral,
d4726€ 1
4.1
/ (2m)4728 (L= k1 )> (0 — Ki2)* (L4 ka)? 4.1)
by positive-energy delta functions,
d4_28€ ) ) ) X
/W §+) (f )6(+) ((g_kl) )5(+) ((K_Klz) )5(+) ((€+k4) ) ' 42)

These delta functions instruct us to solve the simultaneous equations,
P =0, —20k+k=0, —20-k+KhH—ki=0, 20-ky+ki=0, (4.3)

which are linear combinations of the delta-function arguments. Let us examine the special case
when legs 1, 2, and 4 are massless; we can then solve the first, second, and last equations by

setting,
E /ol ium
w_ 5
¢ 2(1 lwla™), (4.4)
and then solve for &,
__[12]

using the third equation in eq. (4.3). Similarly, we see that there is a second solution,

12
e“:—2<<2i><4‘\u|1‘>. (4.6)
The subtlety arises from the fact that for generic external momenta, these solutions are com-
plex. The domain of the delta functions, on the other hand, is real; taken literally, the delta functions
would yield zero! Cutting both sides of eq. (2.1) would then give us the equation 0 = 0, which is
true but not very useful. This is the same issue that arises in straightforward interpretations of delta
functions in the connected picture for twistor-string amplitudes [9].
To find a solution to this subtlety, we may note [10] that contour integration behaves very much
like integration over a delta function,

f 4. Polyi() _ Poly, (z0) A4.7)
C(z0)

. Poly,(z) —a  Poly}(zo)’

where 7 is defined by the equation Poly;(z9) = a (with multiciplicity one). We could define the
desired delta function as follows,

Poly (z)

Poly,(z) —a’ “48)

/dz Poly; (z)6(Poly,(z) —a) = j{ dz
C(z0)

There is one significant difference from ordinary delta function integration: there is no absolute
value around the derivative in the denominator on the right-hand side of eq. (4.7), so that the result
remains an analytic function.

That is, we must reinterpret cutting propagators as contour replacement: instead of replacing
the propagators by delta functions, we replace the original contours of integration, along the real
axes of the now-complexified loop momenta ¢*, by contours surrounding the global poles, that is
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Figure 2: Cutting as contour replacement

the simultaneous solutions to eqs. (4.3), in C*. The contour in the case of the one-loop box is a
product of four circles, that is a four-torus 7%. The replacement is illustrated schematically in fig. 2,
with contours %7 » encircling the two global poles. We stress that this is not a contour deformation
leaving the value of the integral unchanged; it is a replacement, changing the value of the integral
and ultimately allows us to derive an equation for the coefficient of the one-loop box.

This reinterpretation raises two new problems, however. We have to choose T4 contours sur-
rounding two global poles, around which we could wind an arbitrary number of times (even a
fractional number of times). How should we choose the contour? Also, replacing the contour by
such an arbitrary winding can break integral identities. For example, the identity,

0 / A e(l, k1, ky, kq)
27!7 4-2¢ 52 0 — k]) (€—K12)2(£—|—k4>2’

4.9)

is spoiled if we choose the contour to encircle just one of the global poles.
Remarkably, these two problems cancel each other out. If we take a general contour, ¢ =
a6 + ay%», we find that the integral in eq. (4.9) takes the value,

(a1 —aa) f (ki ka,ka), (4.10)

so that it will still vanish if a; = a;. This fixes the contour up to an overall irrelevant constant
which will cancel out of eq. (2.1). Applying the cutting via contour replacement to our basic
equation (2.1), we can derive a formula for the coefficient of the corresponding one-loop box. The
resulting equation is the same as the one obtained by Britto, Cachazo, and Feng (BCF) [2].

Let us now apply these ideas to the double-box integral (fig. 1). In the same way that this
derivation can be seen as a generalization to two loops of the formalisms of BCF and Forde [11],
recent work on two-loop integrands by Mastrolia, Mirabella, Ossola, and Peraro [12] and by Bad-
ger, Frellesvig, and Zhang [13, 14] can be seen as the two-loop generalization of the Ossola—
Papadopoulos—Pittau construction [3]. The maximal cut in the double box involves cutting seven
propagators. Each solution has one continuous degree of freedom z. The number of distinct solu-
tions depends on the number and configuration of external masses. When all four external legs are
massless; when one external leg is massive; when two diagonally-opposite legs (for example, legs 1
and 3) are massive; or when two long-edge legs (for example, legs 1 and 4) are massive, there are
six solutions. We will call these configurations ‘class (c)’. When two short-edge legs (for example,
legs 1 and 2) are massive, or when three legs are massive, there are four solutions. We will label
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these configurations ‘class (b)’. (This classification is explained in ref. [15].) Performing the cor-
responding contour integrals gives rise to a Jacobian factor (the analog for the maximal cut in the
double box of the Poly’z (zo) factor in eq. (4.7)). Here, the resulting Jacobian is a function of z; it has
poles in z, so that we can choose a contour for the z integration as well, thereby obtaining a global
pole. After identifying different parametrizations of the same global pole arising from different
solutions to the heptacut equations, and taking into account poles that arise in the loop momenta
15 as well as in the Jacobian, we see that there are always eight global poles, independent of the
number and configuration of external masses [15].

Unlike the number of global poles, the number of independent basis integrals does depend
on the number and configuration of external masses. In class (c), there are two basis integrals; in
class (b), there are three. We would like to construct independent “projectors”, which give formule
for the coefficients of each of these basis integrals. Each projector will be a linear combination of
contours around the global poles. How should we choose them?

We again impose the requirement, analogous to eq. (4.9), that all vanishing loop integrals
continue to vanish on the chosen contours. As at one loop, there are vanishing integrals where
a Levi-Civita tensor is inserted into the numerator of the scalar integral. There are five possible
integrals, which give rise to four independent constraints on the contours. In addition, there are
integration-by-parts (IBP) identities [16, 17] which give 20 linear relations in class (c) between
the 22 integrals with different powers of the two irreducible numerators ¢ - k4 and ¢; - k;. Not all
of the resulting constraints on the contours are independent; in class (c), we find two independent
constraints, while in class (b) we have only 19 IBP equations, which reduce to a single constraint.
We work here to leading order in €, leaving higher-order terms in the coefficients to future work.
The constraints leave us with two independent contours for the two master integrals in class (c), and
three independent contours for the three master integrals in class (b). We can obtain a projector for
any given integral by imposing the further constraint that the other integrals vanish on the contour,
and that it reproduces the integral itself with unit coefficient.

The formula for the coefficients of double boxes take the following form,

8 6
c:izajf &vapdi; Y TIAY (vas) @.11)
= '

T8 (@J particles [):1

helicities

where A(%) are tree-level amplitudes in the gauge theory, and the a; are weights (or winding num-
bers) for the different global poles. For example, for the one-mass double box (with m% = 0) the
weights a; for the two basis integrals, I[1] and I[/; - k4], are,

1
(01)21(1,1,171,0,0,1,1), 4.12)
and ,
mi— 812
a)=—"2(1,1,1,1,-2,-2,3,3), (4.13)
(aj) sry5ma ( )

respectively. The solutions and global poles are given in terms of a parametrization of the loop
momenta given in ref. [18], where the reader may also find complete formula for the solutions,
global poles, and projectors for classes (b) and (c).
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