
P
o
S
(
I
S
G
C

2
0
1
2
)
0
0
3

Drug Design with Answer Set Programming

Dietmar Seipel∗ a, Oleksandr Kovalchuck a, and Thomas Dandekar b

a Department of Computer Science
b Department of Bioinformatics

University of Würzburg, Am Hubland, D – 97074 Würzburg, Germany

E–mail: dietmar.seipel@uni-wuerzburg.de | kaval@gmx.net |
dandekar@biozentrum.uni-wuerzburg.de

A drug target is a key biomolecule in a metabolic or signalling pathway modifiable by

a drug to ameliorate a specific disease condition or pathology [11]. For rational drug

design, sufficient information about the biomolecule is required – such as therapeutic

value, pathway role, etc. – provided from databases and detailed pharmacological studies.

We exploit the Kyoto Encyclopedia of Genes and Genomes (Kegg) database collection,

which integrates biological compounds and enzymatic pathways [9]; this collection is part

of the Japanese GenomeNet network of database and computational services for genome

research and related research areas in biomedical sciences.

We use answer set programming (ASP) [1] for deriving suitable minimal sets of drug

targets. We encode a metabolic pathway as a disjunctive logic program P with default

negation. Evaluating P with the answer set programming system DLV [10] obtains

alternative sets of enzymes that could be blocked in order to inhibit the production of a

target compound.

Due to the problem of combinatorial explosion, drug design for metabolic networks is

typically done on large computer grids, if hundreds of reactions are envolved. The com-

bination with ASP embodies very efficient heuristics for avoiding part the problem, such

that larger networks can be handled.

The International Symposium on Grids and Clouds and the Open Grid Forum

ISGC 2012

February 26 – March 02, 2012

Academia Sinica, Taipei, Taiwan

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence.http://pos.sissa.it/

mailto:dietmar.seipel@uni-wuerzburg.de
mailto:kaval@gmx.net
mailto:dandekar@biozentrum.uni-wuerzburg.de

P
o
S
(
I
S
G
C

2
0
1
2
)
0
0
3

Drug Design with Answer Set Programming Dietmar Seipel

Contents

1. Introduction 2

2. Encoding of Metabolic Pathways 4

2.1 Reachability Rules 5

2.2 Blocking Rules 5

2.3 Example for the Encoding 5

2.4 Generic Rules and Basic Facts 6

2.5 Stable Models of Disjunctive Logic Programs 6

3. Technical Analysis 8

3.1 Recursion and Stratification 8

3.2 Minimality w.r.t. Blockings 8

3.3 Refined Computations 9

3.4 Further Modifications 10

4. Efficiency of the Approaches 11

5. Application to KEGG Pathways 11

6. Conclusions 12

1. Introduction

A drug target is a key molecule, such as an enzyme, involved in a particular metabolic

or signalling pathway that is specific to a disease condition or pathology. Modern drug

design does not rely on trial–and–error testing like traditional drug discovery methods. For

selecting a biomolecule as a drug target, information about that biomolecule is required,

such as its therapeutic value and its role in a certain pathway. Such information requires

extensive measurements and drug studies, but then can also be obtained from sources such

as chemical and metabolic pathway databases [9].

Different bioinformatical approaches exploit these, starting from more topological and

structural approaches, such as static network analysis [7], to more dynamical analytical

methods, such as flux balance analysis with its different flavours, e.g., elementary mode

analysis and extreme pathways [3, 12]. The YanaSquare system [13] computes elementary

2

P
o
S
(
I
S
G
C

2
0
1
2
)
0
0
3

Drug Design with Answer Set Programming Dietmar Seipel

modes for networks of over 200 reactions on a grid (40 CPUs) with runtimes of up to a

day. If there is even more kinetic information available, detailed modelling with power

law formalisms or ordinary differential equations is possible. We are concerned with the

extension of structural approaches by rules implemented in answer set programming. As

we will show, this greatly enhances the capabilities of structural analyses without the

requirement of kinetic information, and in general without the problems of combinatorial

explosion [3, 12].

For example, in the fragment of the metabolic pathway for glycolysis that is shown

in Figure 1, blocking the two enzymes 2.7.1.147 and 5.1.3.3 (light red boxes) inhibits the

production of the compound β–D–Glucose (middle left). The first enzyme participates in

two reactions; it is only essential that the lower one is blocked. Note that this pathway

is from the Kegg database, which gives a good overview on all enzyme reactions; but an

automated analysis might still give results that do not agree with the biology, since, e.g.,

enzymes may sometimes be missing or misrepresented in the database. An additional level

of complexity is given by spontaneous reactions; e.g., this occurs for the epimerase reaction,

in which enzyme 5.1.3.3 participates, albeit with a low reaction rate.

Figure 1: Fragment of a metabolic pathway with two blocked enzymes: 2.7.1.147 and 5.1.3.3

Declarative programming focusses on the semantics and the structure of the solution

leaving details of the computation to the underlying engine. Answer set programming

(ASP) is a special case [1]. Declarative programming is particularly powerful in software

engineering when changes or extensions to the functionality of a system are often performed:

Only the logic of the program in the area where the change is required is modified without

affecting the rest of the application.

In the ASP system DLV [10], it is possible to minimize the number of blocked enzymes.

We derive solutions with higher cardinality iteratively. We use two types of rules for de-

riving blocked enzymes or metabolites; thus, we can stop the derivation of non–succeeding

3

P
o
S
(
I
S
G
C

2
0
1
2
)
0
0
3

Drug Design with Answer Set Programming Dietmar Seipel

branches of the computation early to avoid combinatorial explosion. E.g., for each reaction

producing a metabolite, a disjunctive rule encodes the fact that inhibiting the production

of this metabolite requires that one of the enzymes or compounds involved in the reaction

is blocked. Modelling of metabolism involves thus N P–hard problems implying combina-

torial explosion and large–scale data, which can advantageously be approached exploiting

grid and cloud computing.

Approaches based on logic or ASP have already been applied to networks in other areas

of bioinformatics. The Biocham system [8] offers automated reasoning tools for querying

the temporal properties of interaction networks under all possible behaviours using Com-

putation Tree Logic (CTL). Baral et al. [2] use an action–style, knowledge based approach

for supporting various tasks of reasoning (including planning, hypothetical reasoning, and

explanation) about signaling networks in the presence of incomplete and partial informa-

tion.

The rest of this paper is organized as follows: In Section 2, we present our encoding of

metabolic pathways as disjunctive logic programs. We also give an example, and we briefly

explain the semantics, which is given by the stable models. In Section 3, we analyze the

encoding. We develop two refinements, the Approches 1 and 2, of our framework, which

correctly represent our drug design problem. Readers, who are not so experienced with

ASP, might want to skip this technical section. The efficiency of the two approaches is

compared for real application examples in Section 4. The application to Kegg pathways

is explained in Section 5. Finally, Section 6 gives some conclusions.

2. Encoding of Metabolic Pathways

A fragment of a metabolic pathway for gycolysis is shown in Figure 1. The nodes

(circles) represent compounds. The edges represent reactions, and they are labelled by the

participating enzymes (boxes). It is sufficient to consider reactions

A1, . . . ,An
E1,...,Em
−−−→A.

producing a compound A from other compounds A1, . . . ,An using the enzymes E1, . . . ,Em;

reactions producing more than one compound can be represented by multiple edges.

A metabolic pathway is mapped to a disjunctive logic program P with default nega-

tion not . Every edge of the pathway – corresponding to a reaction – is mapped to a set of

rules. X⊗ means that a compound or enzyme X is blocked.

We use rules for encoding the reachability of nodes, and two types of rules for deriving

blocked enzymes, which we call B1– and B2–rules; the importance of using both types of

rules is, that we can stop the derivation of non–succeeding branches of the computation

early. Moreover, there are generic rules for relating nodes and blocked nodes, and rules for

handling the sources and the vital nodes of the pathway.

4

P
o
S
(
I
S
G
C

2
0
1
2
)
0
0
3

Drug Design with Answer Set Programming Dietmar Seipel

2.1 Reachability Rules

The compound A can be produced, if the compounds Ai, for 1≤ i≤ n, can be produced,

and none of the enzymes Ei, for 1≤ i≤ m, is blocked:

(1) A← A1∧ . . .∧An∧not E⊗1 ∧ . . .∧not E⊗m .

A is called the head, and the conjunction following the implication arrow ← is called the

body of r. In Figure 1, all reactions require just one compound (i.e., n = 1), but some

reactions require more than one enzyme (i.e., m≥ 1).

2.2 Blocking Rules

The production starts with a given set S of source compounds. The goal is to find

a minimal set E of enzymes to be blocked, such that the production of a given set I of

compounds is inhibited, while all vital compounds can still be produced. Blockings are

derived by two types of – possibly recursive and disjunctive – rules:

B1–Rules (Backward Blocking). If the reaction above should be inhibited, then at

least one of the compounds Ai or enzymes E j must be blocked by a drug. This leads to

a rule αl ← A⊗ with a disjunctive head αl = A⊗1 ∨ . . .∨A⊗n ∨E⊗1 ∨ . . .∨E⊗m , which inverts

the way of reasoning of the reachability rules by deriving blockings in the body from the

blocking of the head; we call these rules B1–rules. If there are k reactions for producing a

compound A, then we obtain k independent B1–rules:

(2) αl ← A⊗, 1≤ l ≤ k.

B2–Rules (Forward Blocking). Following the direction of reasoning of the reachability

rules, we can also derive A⊗ by the rule

(3) A⊗← α1∧ . . .∧αk∧not source(A).

This rule combines the disjunctions αl = A⊗1 ∨ . . .∨A⊗n ∨E⊗1 ∨ . . .∨E⊗m obtained from the

reactions producing A. In DLV, the disjunctions αl are not allowed in rule bodies. By

distributive multiplication of α1∧ . . .∧αk we obtain a disjunction of conjunctions β j, and

we can form suitable B2–rules A⊗← β j ∧not source(A) for DLV.

2.3 Example for the Encoding

Realistic metabolic pathways from the Kegg database are parts of networks with

typically more than 100 nodes. For the toy metabolic pathway with the two edges a 1→ b
and c 2→b, the following disjunctive logic program P is produced. There are only rules for

the node b, since the other two nodes a and c have no incoming edges.

Reachability Rules:

b← a∧not 1⊗, b← c∧not 2⊗.

5

P
o
S
(
I
S
G
C

2
0
1
2
)
0
0
3

Drug Design with Answer Set Programming Dietmar Seipel

B1–Rules:

a⊗∨1⊗← b⊗, c⊗∨2⊗← b⊗.

B2–Rules:

b⊗← a⊗∧ c⊗∧not source(a), b⊗← a⊗∧2⊗∧not source(a),

b⊗← 1⊗∧ c⊗∧not source(a), b⊗← 1⊗∧2⊗∧not source(a).

The B2–rules describe that b is blocked, if both reachability rules cannot fire. They are

derived from the disjunctions α1 = a⊗∨1⊗ and α2 = c⊗∨2⊗ obtained from the reachability

rules supporting b. The corresponding reactions are inhibited, if α1∧α2 holds; distributive

multiplication results in four alternatives a⊗ ∧ c⊗, a⊗ ∧ 2⊗, 1⊗ ∧ c⊗, and 1⊗ ∧ 2⊗, for the

conjunction β j.

2.4 Generic Rules and Basic Facts

The denial rule (4) states, that a reachable node cannot be blocked. The closed–world

rule (5) infers the blocking of non–reachable nodes. Rule (6) expresses, that a source node

is reachable, while the denial rules (7) and (8) express, that vital nodes and source nodes

should not be blocked. The atoms A range over the nodes of the metabolic pathway.

(4) ← A∧A⊗

(5) A⊗← not A

(6) A← source(A)

(7) ← A⊗∧ vital(A)

(8) ← A⊗∧ source(A)

The source compounds and the vital compounds of the metabolic pathway are specified

in P by basic facts for the predicate symbols source/1 and vital/1, respectively, and the

compounds A that should be blocked are specified in P by facts A⊗

2.5 Stable Models of Disjunctive Logic Programs

A disjunctive logic program P with default negation consists of rules of the form

A1∨ . . .∨Ak← B1∧ . . .∧Bm∧notC1∧ . . .∧notCn.

The disjunction A1 ∨ . . .∨ Ak of atoms is called the head of the rule. The conjunction

B1∧ . . .∧Bm of atoms is called the positive body, and the conjunction notC1∧ . . .∧notCn is

called the negative body; together, they form the body of the rule. A rule with an empty

body, i.e., n = m = 0, is called a fact, and it is simply denoted as A1∨ . . .∨Ak. A rule with

an empty head, i.e., k = 0, is called a denial rule.

An Herbrand interpretation of P assigns a truth value to the ground atoms over

the language of P. It can be given by a set I of ground atoms: then, I(A) is true, if

and only if A ∈ I, and I(A) is false, otherwise. E.g., for the disjunctive logic program

P = {a∨b← c, c← not a} with two rules, a possible Herbrand interpretation is I = {b,c}.

6

P
o
S
(
I
S
G
C

2
0
1
2
)
0
0
3

Drug Design with Answer Set Programming Dietmar Seipel

In ASP, the models of P are computed using the Gelfond–Lifschitz transformation P I.

This is necessary, since atoms can depend (recursively) on themselves through default

negation. Assume, that we have guessed an Herbrand interpretation I, and that we would

like to test, whether I is a stable model of P. Then, we get rid of all default negations in P

by basically evaluating them w.r.t. I. Technically, a ground instance of a rule of the form

above is transformed to A1∨ . . .∨Ak←B1∧ . . .∧Bm∧I(notC1)∧ . . .∧I(notCn). If all Ci are false

in I, then I(notC1)∧ . . .∧ I(notCn) is true, and the reduced rule A1∨ . . .∨Ak← B1∧ . . .∧Bm

becomes a part of P I. Then, I is a stable model – or answer set – of P, if and only if I is

a minimal model of P I.

As a special case, let us first illustrate logic programs without disjunction in the rule

heads, i.e., k = 1 head atoms. For instance, the non–recursive logic program P = {a←
b∧not c, b} with two rules has one stable model I = {a,b}. This is due to the fact that there

is no reason for inferring c. The Gelfond–Lifschitz transformation P I = {a← b, b} has

exactly the minimal model I. The recursive logic program P = {a← b∧not c, b, c← not a}
has two stable models I1 = {a,b} and I2 = {b,c}. Now, both a and c are supported by rules.

The Gelfond–Lifschitz transformation P I1 = {a← b, b} has exactly the minimal model I1,

and P I2 = {b, c} has exactly the minimal model I2.

The ASP encodings of metabolic pathways in this paper additionally require disjunctive

rule heads. The definition of stable models, which we have given above, covers the case of

disjunctive rule heads. E.g., for the disjunctive logic program P = {a∨b← c, c← not a},
obviously, either a or c can be true, but not both. If c is true, then b must also be true. It

turns out, that I = {b,c} is the unique stable model of P.

Of course, ASP systems do not compute stable models using the described guess–

and–check definition. Instead, the stable models are constructed iteratively using highly

optimized methods with many techniques; the description of these techniques, however,

is beyond the scope of this paper. There exist very efficient ASP systems, such as DLV,

which can solve practical problems of considerable size.

For preparing the input to DLV and for further processing the output, we use logic

programming in Prolog [4]. For metabolic pathway problems, there can be several solu-

tions given by the stable models of the corresponding disjunctive logic program. We have

also developed a visualization of the sets of blocked enzymes in tree form, cf. Figure 2.

Enzymes occuring in several solutions tend to appear higher in the tree.

Figure 2: Visualization of the solutions

7

P
o
S
(
I
S
G
C

2
0
1
2
)
0
0
3

Drug Design with Answer Set Programming Dietmar Seipel

3. Technical Analysis

The stable models of P help to derive blockings of enzymes to inhibit the production

of some given compounds while still permitting the production of the vital compounds. For

minimizing side effects, we would like to derive minimal sets of blocked enzymes. Thus, for

adequately capturing the semantics of a metabolic pathway, we have to analyze the way in

which we apply the rules (see approaches A1 and A2 below).

The reachability rule (1) helps to handle cycles in the pathway. The B1–rules (2)

cannot be dropped, since then the blocking of enzymes could no longer be inferred. The

B2–rules (3) and the closed–world rules (5) could be dropped under certain circumstances.

The inverse closed–world rule A← not A⊗ should not be included. The generic rule (4) for

complementarity of A and A⊗ is necessary to avoid inconsistent models. Finally, the source

compounds are reachable (6), no vital compounds should be blocked (7), and no source

compounds can be blocked (8).

3.1 Recursion and Stratification

The disjunctive logic program P is usually recursive and non–stratifiable. This means,

that P contains recursive cycles involving default negation. As a consequence, standard

theorem provers cannot be used for evaluating P; instead, we need answer set solvers, such

as DLV, for computing the stable models of P. The following example shows, that P is

not always stratifiable: even a single edge a 1→ b in the metabolic pathway leads to a cycle

involving default negation: b← a∧not 1⊗, a⊗∨1⊗← b⊗, b⊗← not b.

3.2 Minimality w.r.t. Blockings

An interpretation I block–subsumes another interpretation J, if its restriction I ∩E ⊗

on the set E ⊗ of blocked enzymes is a strict subset of J∩E ⊗. A stable model M of P is

called block–minimal, if it is not block–subsumed by another stable model of P. For drug

design, we are especially interested in the block–minimal stable models of P. However,

the metabolic pathway given in Figure 3 shows, that not all stable models of P are block–

minimal.

Example. We consider the metabolic pathway which is visualized in Figure 3.

a

b dc
?

-� �

1

2 3

4

Figure 3: Metabolic pathway with 4 edges

8

P
o
S
(
I
S
G
C

2
0
1
2
)
0
0
3

Drug Design with Answer Set Programming Dietmar Seipel

Assume that a is a source and that c should be blocked. Then, the corresponding

disjunctive logic program P has three stable models:

M1 = {1⊗,a,b⊗,c⊗,d⊗ }, M2 = {2⊗,a,b,c⊗,d }, M3 = {2⊗,3⊗,a,b,c⊗,d⊗ }.

As sets of atoms, they are all minimal; the reason is, that the sets of reachable and blocked

atoms are always complementary. But, when we only consider the blocked enzymes, then

we can see that the third model M3 is not block–minimal, since it is block–subsumed by M2:

M2∩E ⊗ = {2⊗}({2⊗,3⊗}= M3∩E ⊗.

3.3 Refined Computations

There are two ways out of the dilemma described in the previous subsection.

Iterative Approach A1. We can compute only stable models with a minimal number

of blocked enzymes. Above, we would obtain M1 and M2. In subsequent interations, we

forbid these stable models by denial rules, and thus obtain stable models with a higher

cardinality. Thus, stable models that are not block–minimal are no longer computed.

2–Phase Approach A2. We can drop the reachability rules and the closed–world rules

A⊗← not A, and thus restrict the computation to the blocking of compounds and enzymes.

In that case, the computed stables models may not be admissible, since vital compounds

may be unreachable. Thus, in a post–processing step, we have to test the computed stable

models for admissibility. Moreover, we have to select the block–minimal stable models.

Example. For the metabolic pathway visualized in Figure 4, the first phase of ap-

proach A2 produces a non–block–minimal stable model, if we assume the source com-

pound a, the vital compound c, and the compound d to be blocked.

a

b d e fc
?

� - -
�

-
�

1

2 3 4

5

6

7

Figure 4: Metabolic pathway with 7 edges

Approach A1 computes the intuitive model M, which only blocks enzyme 3:

M = {3⊗,a,b,c,d⊗,e⊗, f⊗}.

The first phase of approach A2, however, produces 2 stable models, due to the missing

closed–world rule:

N1 = {3⊗,d⊗,e⊗, f⊗}, N2 = {3⊗,5⊗,d⊗}.

9

P
o
S
(
I
S
G
C

2
0
1
2
)
0
0
3

Drug Design with Answer Set Programming Dietmar Seipel

The first stable model N1 of A2 corresponds to the intuitive model M. The second stable

model N2 of A2 additionally blocks the enzyme 5, since it cannot infer that the cycle

envolving d is already deactivated by blocking the enzyme 3. N2 is not block–minimal.

In the post–processing phase, N2 will be filtered out because of N1. When we look at the

completed versions N′1 and N′2 of N1 and N2, respectively, then we see that N′1 subsumes N′2,

since enzyme 5 is redundantly blocked in N′2:

N′1 = {3⊗,a,b,c,d⊗,e⊗, f⊗}, N′2 = {3⊗,5⊗,a,b,c,d⊗,e⊗, f⊗},

Approach A1 produces the stable model N′1 = M, but it does not produce the model N′2,

since N′2 is non–minimal.

For the metabolic pathway, which extends the pathway of Figure 4 by an additional

loop c 7→ g, g 8→ c at the vital compound c, approach A2 would even produce two further

stable models blocking the enzyme 1:

N3 = {1⊗,5⊗,b⊗,d⊗}, N4 = {1⊗,d⊗,d⊗,e⊗, f⊗}.

Due to the missing reachability and closed–world rules, these stable models cannot infer

that c is not reachable. They are not admissible, and they also have to be filtered out in

the post–processing phase.

3.4 Further Modifications

A few further modifications of the described approach seem to be worth to be explored.

Dropping the B2–rules, or dropping the closed–world rules A⊗← notA (which are only used

in approach A1) could result in a speedup of the computation, but they could also produce

wrong models. The B1–rules cannot be dropped, since then the blocking of enzymes could

no longer be inferred.

Dropping the B2–rules leads to a problem for approach A2, which is working without

the reachability rules, since stable models are derived which are not block–minimal. For

the metabolic pathway example of Figure 3, the stable model K3 is not block–minimal:

K1 = {1⊗,b⊗,c⊗,d⊗}, K2 = {2⊗,c⊗}, K3 = {1⊗,4⊗,b⊗,c⊗}.

The two other stable models K1 and K2 correspond to M1 and M2, respectively, from above;

the non–block–minimal stable model K3 does not correspond to M3. The approach A1 is

not affected from dropping B2–rules, since it uses the reachability and the closed–world

rules to derive the correct stable models M1 and M2. Dropping both the B2–rules and the

closed–world rules may lead to a problem, e.g., if the compound d is vital.

However, we could drop the closed–world rules and merge them into the rules (7)

and (8) from above to obtain the denial rules ← vital(A)∧not A and ← source(A)∧not A.
For approach A1, this does not lead to any problems, even if we drop the B2–rules. Ob-

serve, that the resulting disjunctive logic program is stratifiable, which means that simpler

concepts of evaluation, namely the perfect models, could be used.

10

P
o
S
(
I
S
G
C

2
0
1
2
)
0
0
3

Drug Design with Answer Set Programming Dietmar Seipel

4. Efficiency of the Approaches

A large part of our work was on the theoretical side, to make the ASP approach

correctly work for solving the drug design problem. ASP can efficiently solve large problems

using suitable built–in heuristics. But the modelling of the problem in ASP can only use

the concepts provided by ASP: most fundamental is the minimization on the set of derived

atoms in a stable model; additionally, it is possible to minimize w.r.t. certain cost functions

depending on weights assigned to the derived atoms in a stable model.

ASP is not a general purpose programming language. It is not suitable for all kinds of

problems. But, if a problem can be modelled in ASP, then often the heuristics implemented

in ASP can efficiently compute solutions. Still, there is some flexibility in modelling a

problem is ASP, and some modellings are more suitable than others. In this paper, we

have proposed and discussed two alternative approaches to correctly model the drug design

problem.

In a comparison of the runtimes of the two methods on a desktop computer, one of the

approaches was sufficiently efficient for the real world pathways that we wanted to handle.

Often, the runtime of a graph problem mainly depends on the size of the problem; here,

this would be the number of nodes and edges of the pathway. However, it turned out,

that both approaches for the drug design problem heavily depend on the structure of the

pathways. This dependency is hard to characterize. E.g., the runtime heavily depends on

the distance between the source nodes of the network, the nodes to be blocked, and the

vital nodes, that should not be blocked. These data are not availabe in the Kegg database;

for every pathway, the user has to select these source, target and vital nodes depending on

the biochemical question in mind. Thus, it is difficult to make a comprehensive analysis

of a large collection of pathways, and we could only analyse and try to understand the

behaviour (efficiency) of the approaches for selected examples of pathways.

We have investigated connections between the number of solutions, the number of

nodes in the pathway, the distance of the sources and targets, and the number of cycles in

the pathway. Approach A2 is considerably faster, when there exists only a small number

of solutions. It gets slower, when more solutions exist. Approach A1 seems to heavily

depend on the number of iterations. We found large pathways (with about 200 reactions)

in Kegg with very many solutions, for which approach A2 failed due to limitations of main

memory, since very many stable models have been produced simultaneously, before checking

reachability. Approach A1, however, always terminated successfully within 30 seconds.

5. Application to KEGG Pathways

ASP rapidly calculates the effect of enzyme deletions including provision of a list of

essential and dispensable metabolites for a given metabolic net. In the following, we list

some other tasks.

Optimal drug targets can be chosen, i.e., those proteins which should best be targeted

by a specific drug. In general, the strategy is here to identify at least one essential metabo-

11

P
o
S
(
I
S
G
C

2
0
1
2
)
0
0
3

Drug Design with Answer Set Programming Dietmar Seipel

lite; e.g., antibiotics block the further growth of a pathogen. ASP identifies the optimal

enzyme to hit to achieve removal of this metabolite(s). In many medical applications, an

opposite strategy should modulate a protein (often a receptor) to ameliorate a pathogenic

condition with a minimum of side–effects. ASP identifies optimal targets for such modu-

lation without preventing the production of essential metabolites. Furthermore, increased

yield in biotechnology, insertion of new pathways, and removal of xenobiotics can be cal-

culated: Each problem is translated into a list of metabolites which should be changed

(produced, detoxified, etc.) and others not (e.g., essential core metabolites). With ASP we

can calculate optimal enzyme sets for these tasks (yield, production, detoxification).

A number of alternative approaches exist including topology analysis of metabolic net-

works and flux–based approaches calculating the metabolic flux carried by different paths

in a given network. ASP extends structural approaches (routes from and to a metabolite)

by logical connectivity and rules for problem solving. In metabolic flux calculations, often

several enzymes may be used resulting in an exponential increase of the number of po-

tential paths (combinatorial explosion) leading to calculation time problems, in particular

regarding genome–scale networks of more than 200–300 enzymes. However, in ASP the

exponential scaling of complexity is only the worst case scenario; for most metabolic net-

works investigated (e.g., central metabolism of carbohydrates and amino acids), there was

power law scaling.

Further applications include essential and non–essential genes in genetics. ASP could

predict essential and non–essential genes for metabolism, however, with strong savings in

calculation time compared to metabolic flux calculations [5]. ASP – as outlined above –

may also allow new and quick predictions regarding regulatory networks, for instance in

proliferation (kinase cascades) and regarding apoptosis and clotting (protease cascades).

Future work will further examine the high potential of our approach in comparison to

other metabolic modelling approaches.

6. Conclusions

Our approach results in a fast system for computing alternative drug targets. The

system can also be extended flexibly: further conditions which the drug has to fullfil to be

applicable for use in therapy might be incorporated. Moreover, the optimization criterion

can also be changed: e.g., it is possible to minimize w.r.t. any weighting of the blocked

compounds and enzymes – so far, we are using a weight function assigning 0 to compounds

and 1 to enzymes.

In the future, we are planning to incorporate additional features into our approach,

such as the strenght of the flow through the metabolic network. We hope that the ASP

approach is flexible enough to allow such extensions. As we pointed out in the introduction,

declarative programming with ASP often allows for adapting the program to the changed

needs, and thus can avoid a complete reimplementation, which would be necessary for

traditional programming languages. In more complex situations, in particular if we want

12

P
o
S
(
I
S
G
C

2
0
1
2
)
0
0
3

Drug Design with Answer Set Programming Dietmar Seipel

to consider regulation or more detailed kinetics, we expect grid computing to be quite

helpful in combination with ASP.

ASP is a structural approach including rules and in this way a promising tool to bridge

between extensive dynamic approaches of network modelling and those more focussed on

structural modelling. Implementation schemes as given here underline the high potential

of this approach both for metabolic and for regulatory networks.

References

[1] C. Baral: Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge

University Press, 2003.

[2] C. Baral, K. Chancellor, N. Tran, N.L. Tran, A. Joy, M. Berens: A Knowledge Based

Approach for Representing and Reasoning about Signaling Networks. Bioinformatics, 2004,

vol. 20 (suppl. 1), pp. 15–22.

[3] J. Behre, L.F. de Figueiredo, S. Schuster, C. Kaleta: Detecting Structural Invariants in

Biological Reaction Networks. Methods in Molecular Biology, 2012, vol. 804 (3), pp. 377–407.

[4] I. Bratko: Prolog – Programming for Artificial Intelligence. 3rd Ed., Addison–Wesley, 2001.

[5] R.L. Chang, L. Ghamsari, A. Manichaikul, E.F. Hom, S. Balaji, W. Fu, Y. Shen, T. Hao,

B. Palsson, K. Salehi–Ashtiani, J.A. Papin: Metabolic Network Reconstruction of

Chlamydomonas Offers Insight Into Light–Driven Algal Metabolism. Molecular Systems

Biology, 2011, vol. 7, article 518.

[6] W. F. Clocksin, C. S. Mellish: Programming in Prolog . 5th Ed., Springer, 2003.

[7] L.F. de Figueiredo, S. Schuster, C. Kaleta, D.A. Fell: Can Sugars be Produced From Fatty

Acids ? A Test Case for Pathway Analysis Tools. Bioinf., 2009, vol. 25 (1), pp. 152–158.

[8] F. Fages, S. Soliman, N. Chabrier: Modelling and Querying Interaction Networks in the

Biochemical Abstract Machine Biocham. Journal of Biological Physics and Chemistry, 2004,

vol. 4, pp. 64–73.

[9] Kyoto Encyclopedia of Genes and Genomes (Kegg), http://www.genome.jp/kegg.

[10] N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, F. Scarcello: The DLV System

for Knowledge Representation and Reasoning. ACM Transactions on Computational Logic

(TOCL), vol. 7 (3), ACM, 2006.

[11] U. Madsen, P. Krogsgaard–Larsen, T. Liljefors: Textbook of Drug Design and Discovery.

Taylor and Francis, Washington, DC, 2002.

[12] J.A. Papin, J. Stelling, N.D. Price, S. Klamt, S. Schuster, B. Palsson: Comparison of

Network–Based Pathway Analysis Methods. Trends in Biotechnology, 2004, vol. 22 (8),

pp. 400–405.

[13] R. Schwarz, C. Liang, C. Kaleta, M. Kuhnel, E. Hoffmann, S. Kuznetsov, M. Hecker,

G. Griffith, S. Schuster, T. Dandekar: Integrated Network Reconstruction, Visualization and

Analysis using YANAsquare. BMC Bioinformatics, vol. 8, article 313.

13

