PROCEEDINGS

OF SCIENCE

Towards a New Execution Model for HPC Clouds

Thomas Sterling*

Center for Research in Extreme Scale Technologies,
Indiana University, USA

E-mail: f r on@ ndi ana. edy

Matthew Anderson

Center for Research in Extreme Scale Technologies,
Indiana University, USA

E-mail: pnder snw@ ndi ana. edy

The application of emergent Clouds to the domain of highqrerance computing is considered
by examining the various operational modalities compgshre field of supercomputing and by
analyzing their suitability to Clouds based on underlyiagtbrs of performance degradation. It
is found that while throughput computing may be readily sufgd for such HPC workflows as

parameter sweeps, capability computing and even weakdst@leperative” computing may not

be well served using conventional practices. But the ptessitivance of revolutionary methods
to manage asynchrony, exploit message-driven computciinigues and declarative synchro-
nization semantic constructs such as found in the expetah®aralleX execution model may

provide an alternative paradigm for bringing Clouds mocesely aligned to Science, Technology,
Engineering, and Mathematics (STEM) applications. Experital results capturing an Adaptive
Mesh Refinement (AMR) application in numerical relativitging the ParalleX-based HPX-3

runtime system demonstrates many of the required propddi¢HPC Clouds.

The International Symposium on Grids and Clouds (ISGC) 2012,
Febraury 26 - March 2, 2012
Academia Sinica, Taipel, Taiwan

*Speaker.

(© Copyright owned by the author(s) under the terms of the Cre@vmmons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:tron@indiana.edu
mailto:andersmw@indiana.edu

Towards a New Execution Model for HPC Clouds Thomas Sterling

1. Introduction

Even as HPC is transiting the pan-Petaflops performance regime towarsisuthiet goal by
the international community of a sustained Exaflops before the end of thasielea second revo-
lution is in process with the emergence of distributed Cloud computing. Its pdtiempiact across
a broad spectrum of computational needs in commerce and society eibgulidse a major trans-
formational factor in the coming decade. But what of its impact on one of thet racefied of
computational fields, that of high performance computing? Can the Cloud ger ever increas-
ingly costly domain of HPC and broaden accessibility to HPC capability as comnubaliters did
almost two decades ago? As is implied by its designation, HPC is about penfogrimathe quest
for pushing the frontiers of science, technology, engineering, andemetiics for knowledge, in-
dustry, commerce, and national security throughout the international coitymu

Like so many disciplines, supercomputing is multi-faceted with a diversity ofatio@al
modalities, exhibited properties, and disparity of requirements. The questilba wle of Clouds
in HPC is really a question of which aspects of HPC can Clouds serve,Hichwnes can it not
fit and why, and how might these limitations of HPC Clouds be mitigated for braag®ct? In
the following, an examination is presented of the distinct modalities comprisingetideofi HPC
and an analysis is conducted to consider each of these in terms of thdliiepamnd operational
attributes of Clouds. It is recognized for example that the broad arréyrofighput computing
workloads are well suited to Clouds assuming that costs of usage can béstixito level appro-
priate to academic and labs computing cultures. At the same time, capability comisutitep
as an important class of computing that cannot be provided by the Clouy atmteg with certain
forms of data intensive computing.

The limitations on Clouds for HPC using conventional practices may yield to &tiums in
execution models to exploit dynamic adaptive methods at runtime. Managefasyrchrony,
message-driven computing, and constraint-based synchronizatipnopiesed as possible means
for alleviating some of the underlying problems with current Cloud environgaenhus, a new
execution model for HPC Clouds may greatly extend their utility for Sciencehi@ogy, En-
gineering, and Mathematics (STEM) applications. One experimental exeautidel, ParalleX
[M—B], is briefly described and experimental results are discussedubgest its potential as a
basis for a revolutionary new Cloud methodology.

The next section discusses the role that paradigm shifts have hadhbrdauge history of
supercomputing to continue the greater than two order of magnitude perfoergain each decade
for a total gain in one human lifetime of greater than a factor of a trillion suggestipossible
need for another phase change with the advent of multi-core and GPlboemipelements. Sec-
tion 3 provides a qualitative analysis of the different HPC modalities and thdinlying support
requirements. From this, Section 4 establishes the roles that the Cloudeetivelly contribute
to HPC using conventional practices while Section 5 looks at those requitefioe HPC that cur-
rently do not fit the Cloud and why. Section 6 then expands the potentidbafi€ by considering
a new execution model, ParalleX, and its possible adoption to HPC Cloudsresadmme of the
limitations identified. Section 7 briefly presents empirical evidence that stgojiar merits of this
approach. Finally, Section 8 finishes with a set of conclusions that peoih@ possible future of
and HPC Cloud execution model.

Towards a New Execution Model for HPC Clouds Thomas Sterling

2. HPC in Phase Change, again

The field of high performance computing has experienced a rate of growtiatched in the
history of human technology. In one human lifetime digital electronic storegrgno computing
has exhibited change of a factor of a trillion and this is a conservative estimhelead author
was born at a time when extant machines (there were only a couple)mpedat approximately 1
KIPS and these were integer operations. This compared to the curtafibPg era demonstrates
this amazing growth in performance. Further, it was not that the technolagywong and then
suddenly the right answer was discovered. Rather, the deliverapance improved by approx-
imately a factor of 200X every decade over more than six decades. Buapparently smooth
history of performance gain was not simply a consequence of continomuevement but rather
punctuated by dramatic change at critical moments driven by the introductinevofenabling
technology opportunities. These abrupt transitions were nothing lespainadigm shifts reflected
by the derivation and adoption of new execution models.

One possible breakdown of this history suggests five phases of HROirshphase, the von
Neumann model, driven by vacuum tube logic and early memory technolagietially including
magnetic cores. This employed the classic fetch-compute-write cycle. €bedsphase driven by
the emergence of transistor based enabling technologies exploits thedigtharates possible and
higher packaging density to employing pipelining execution units still with sdglénstruction
issue but with overlapping of operation execution exploiting one form ofgia@ parallelism.

The third phase in the 1970s driven by the emergence of small and medalgrirgegration
(SSI & MSI) demanded a new paradigm, the vector execution model, agaip pipeline struc-
tures but this time for register access, floating point arithmetic units, andazgasa The Cray 1 is
the archetype of this class of vector computers although earlier systemsyarmgome of these
techniques had been tried. But by the 1980’s the fourth phase of HRGinven by large scale
integration (LSI) that provided much more capability in a small space demagdiranother new
strategy, this the SIMD-Array processing model in which the same openatiald be performed
by many simple processing units but on separate DRAM memory banks.

Finally, by the 1990s very large integration (VLSI) imposed a new oppitytdior low cost
system structures including for the first time the leveraging the mass markeesuting econ-
omy of scale. The fifth phase of HPC based on the communicating sequentiebp (CSP) was
manifest in two forms: MPPs and commaodity clusters. This last HPC phasehdsated super-
computing for the last two decades bringing us to the edge of the Petaftops er

Two factors suggest that we are on the verge of a new HPC phasgechlme first continues
to be VLSI density increase that promises approximately 10 nanometerdesirer by the end
of this decade. The second is the availability of massive wide-area nebaadwidth spanning
continents. Together they are defining a new generation of computinguaiedppssibly a new
phase in HPC.

The critical changes to computing technology have hit limitations that havéedsn new
classes of structures and their use. Over the last two decades, maasgoo performance had
continued to improve with Moore’s Law through the exponential growth oflclates and inno-
vations in processor core architecture to improve instruction level parailélid®). Due to power
limitations, clock rates have flat-lined. Architecture opportunities with resjpelitP have been

Towards a New Execution Model for HPC Clouds Thomas Sterling

exhausted. The result of these two trends is that microprocessoreaxdoenpance is no longer in-
creasing with Moore’s Law. In response to this dramatic change in the pajistem performance
improvement, multicore sockets and GPU accelerators (both of which complathara of cores
although in very different organizations) are now creating a new dornioan of parallelism lead-
ing us across the Petaflops performance regime. HPC systems of theviltire very different
from systems of the past. These changes are compelling HPC in to a nesvgiliaswv they are
structured, programmed, and managed.

The second seminal change is the ubiquity of wide-area networks aitabéits of rapidly
increasing long distance bandwidth. This is combined with the unification ofectbased sys-
tems as the principal platform for the processing of both commercial and ofudRC scalable
applications. Together, they enable the evolution of Cloud computing andéstj@d role in HPC.

3. HPC Modalities

To explore the potential role of Cloud computing to the challenges of higlojeaince com-
puting, the nature of HPC needs to be understood in terms of its distinct modalitiese define
the different ways in which HPC may behave and the underlying requirsmeétere four such
modalities are discussed. Based on these modalities, the following two sectibdseuss the
conditions where Clouds can support HPC and where it would be inppate.

3.1 Capacity Computing

Capacity computing is also referred to as “throughput computing” and caslpab stream
parallelism with weak scaling. A key property of this modality is that there is norglionship
among the independent and concurrent tasks (in this case jobs) eitherforihof synchroniza-
tion between them or in their exchange of data. Performance is measutethbffoating point
performance of the set of combined jobs. Weak scaling delivers gneatfrmance on a larger
system or ensemble of systems by increasing the job concurrency, i.eunttieenof jobs that are
available to be processed simultaneously. Because there are no opg¢mddpendencies, there is
little overhead and no ordering constraints. This provides what is offerred to as “embarrass-
ingly parallel” workflow. In addition, the coarse granularity exhibited attidlevel amortizes and
minimizes the overhead costs of the job scheduling middleware achieving figkerefy. Moab
[A] and Condor[[p] are just two examples of a long history of such middiewasupport this kind
of parallelism and HPC modality.

3.2 Capability Computing

At the other extreme of HPC is capability computing which employs strong scdliagio-
gle fixed size job. All parallelism to be exploited is exposed and exploited Wdhin the single
job. Further, all scalability comes from this parallelism. As the scale (physiza) of the applied
system is increased, the fixed sized job in this modality exploits the increasmaces to propor-
tionally reduce its execution time, that is its time to completion. This is the most diffiquit &b
HPC as the parallelism exploited for this speed up is finer grained than thfz ochpacity com-
puting approach and latencies, overheads, and waiting due to contentiail @s the parallelism
may all impose bounds on the degree of granularity that can be effeatrgdioyed. Performance

Towards a New Execution Model for HPC Clouds Thomas Sterling

can be measured also in terms of floating point operations per seconchlingss measured in
terms of response time and its reduction with respect to resources.

3.3 “Cooperative” Computing

An intermediate modality between capacity and capability computing is also usealjgtith
curiously not usually acknowledged by the conventional lexicon of HFeCthis purpose, the term
“Cooperative Computing” is introduced for expository purposes toesgnt this third modality.
Cooperative computing combines aspects of capacity computing with thoapalitity comput-
ing. Like capability computing, cooperative computing performs a single agjait or job with
available parallelism extracted from within the job. Like capacity computingpemiive comput-
ing uses weak scaling such that as the hardware resources appliegtindraased, so is increased
the problem size usually in terms of the data set size being processed tpptivagon. Usually
the available parallelism of a problem is increased with increased data setT¥ie effect is to
retain the same task granularity and therefore the same balance of computaii@rhiead and
latency costs. But the response time of the problem does not decreaseongtiised system size.
In fact, it usually increases somewhat due to secondary effects. eCaifg computing is one
of the dominant ways in which HPC is employed, especially with such applicatmgrgmming
interfaces as MP[]6].

3.4 Data Intensive Computing

Seymour Cray is purported to have defined a supercomputer as a madiroonkierts a
compute bound problem into an 1/O bound problem. Nothing could be more druthé last
modality of HPC; that of data intensive computing. Data intensive computinggelsathe balance
of resource requirements and in many cases brings in another resihatogf secondary or mass
storage. While numeric processing in this modality is still important to the procestihe data,
the combination of access from mass storage and the greatly increapediproof data movement
throughout the system alters, perhaps dramatically, the means of optimiZatiercritical aspect
of this fourth class of computing is the impact of the many milliseconds-long lateticéd are
incurred by direct disk access. Not only the time but also the uncertaitiimefof access greatly
complicates specification of codes that will produce optimal performarinally; the shear scale
of the data that must be moved between storage and the mainframe can ibéipeodxcept in a
tightly integrated system with the highest possible internal bandwidths.

4. Where HPC Fits on Clouds

Among the greatest opportunities for HPC employing Cloud infrastructuretieeidomain of
capacity computing. Here job stream parallelism can be applied to an anosetof processing
resources without concern for time or order of job completion as long asctiedluling of jobs is
dynamic with respect to availability of resources. Much of science is pagd through this basic
modality. Although focus is often placed on very large, highly parallel apptias, the majority
of science is accomplished on smaller subsets of such systems or on sidgteatane.

One important version of this is for parameter sweeps. In this class ofepnsball of the
jobs are the same. But work in each instance is performed on a distindtisgub parameters.

Towards a New Execution Model for HPC Clouds Thomas Sterling

Such parameter sweeps expose ranges of behavior either of simuleedesphenomenology
or for engineering design optimization studies. Although the results of thef esimbined jobs

contributes to a single outcome, the parameter sweep (as possibly preésentgdph form), there
is no interrelationship during their respective operations either in shafipgrtal results or in

coordination. Only during the collection of the results after their separatguatations is there
any tangential association and this does not impose any overheads cidatéaring the actual
simulation runs.

The opportunity of job stream parallelism on Clouds is not restricted to edesmbsequen-
tial tasks. If the separate jobs are scheduled by the Cloud on anonyriviiigeSg., multi-core
nodes supporting shared memory) nodes, the advantages of job staeahaligm are maintained
while locally exploiting medium grained parallelism as well. Typically such jobscast using
the OpenMP API[[[7] that allocates hardware threads to code loops gntesés in addition to the
master or control thread. Flexibility is allowed as to scale of SMP assumingisaffimemory
capacity again due to the asynchrony of the separate jobs comprising thenssenble.

Under some circumstances, individual clusters made available by a Clouzbassigned to
MPI jobs. In the simplest practice, the user specifies the number of agased, the minimum
memory capacity per core, and some measure of the network bandwidthemssut may be
that assertion of latency bounds is also specified. In this approach lasters that satisfy these
minimums can be designated as appropriate and allocated to MPI jobs in the Blawden in this
limiting case, performance levels are not guaranteed. Differences ¢egsor core speed, socket
design and 1/0O pin contention, and sharing of the clusters with other job¥ingsin possible
network contention can all change the effective throughput of the Mplication. The larger the
system requirement (e.g., number of cores, nodes, etc.) the feweegrestible sites of execution
within the Cloud. Relaxing the constraints required, or at least some of themitghe tradeoff of
execution time to time of initiation. Allowing the use of smaller systems sooner may proegdlts
earlier even if the computation itself takes longer because of availability of Isgede systems or
system partitions.

One last class of workloads is suitable, even required, to be procegdkd Cloud. In some
science domains employing large sensors such as telescopes (e.g Akeio) or synchrotrons
(e.g., LHC) the data sets accumulated at a continuing rate are enormougianaovement across
the Internet can be infeasible in totality. In lieu of moving these prohibitivelydatata sets to
where the work is to be performed, the Cloud permits the work to be moved tatheet. Com-
puting systems local to the large depositories of data avoid the need forikiagak data transfer
and instead can perform required jobs on the data at their location. Véitesdlistributed among
multiple sites, the job to be deployed may not even know where the data thatiisekgs. Or
the data may reside at multiple sites. The Cloud can identify the necessanycesby the iden-
tified data and manage the remote processing automatically, returning onlyghes§iults to the
requesting site.

5. Where HPC Doesn't Fit on Clouds

To fully delineate the limitations of Clouds in supporting the breadth of HPC needsral
factors of performance degradation are discussed by which to cotisedienplications of Clouds.

Towards a New Execution Model for HPC Clouds Thomas Sterling

These are Starvation, Latency, Overhead, and Waiting for contentiSh@WV. Starvation is the
insufficiency of work to keep all physical resources busy either degler an inadequate totality
of work for the entire machine or imbalance of distribution of work such thaliersome computing
elements may have too much, others will have too little at the same time. Latency istdredjs
often measured in cycles (the time normalized to the inverse of the processoclock rate it
takes to transit the distance), required to perform a remote access QuEst@ remote service.
Overhead is the additional work required to manage the parallel physgalices and the abstract
tasks that would not be required in a purely sequential execution cordeerhead is a source
of inefficiency requiring time and energy that does not directly contributeocactual work to
be performed. But a second effect is that the amount of overhead ém@ofower bound on
task granularity that can be effectively performed. This in turn nedgtivegpacts the amount of
parallelism that can be exploited and therefore the overall scalability opplication of a given
size. Lastly, the delays due to contention for shared resources, efifigical or logical, can
impose unpredictable bottlenecks and skew in the order and lengths ofiexeclTogether, these
factors can result in severe degradation of efficiency and scalabiliijnigao dramatic reduction
in delivered performance.

Historically to address these factors, HPC applications developers kpireitey managed
many aspects of program operation through direct and explicit tuningagscto the underlying
hardware. The codes were performance tuned for physical machihwsthis required knowl-
edge of machine structure and key properties for optimization. Within thesdramts, resources
constituting as many as hundreds of thousands of cores are exploitee ditvee for a single
application with million-way parallelism required at levels of both coarse gdaamel fine grain
parallelism. To achieve efficiencies such as high cache hit rates anchietngerk message pack-
ets, strides through memory have to be controlled and fine tuned to cachdtsimaeghout their
hierarchy. When achieved, this can minimize effective memory accessya@ne major concern
as described above is overheads that determine efficiency and gitgrofigarallelism imposing
constraints on scalability. HPC application programmers employ methods that misimcizever-
heads. Network latency effects are generally mitigated by the use okegeammed parallelism but
increasing communication latencies can offset this. The granularity of th#gdsm is ultimately
determined by the memory size of the node. So there is a maximum level of laten@athbe
tolerated. Another factor is the minimization of skew delays. It is essentiahths¢parate con-
current subtasks of an application execute at about the same time, stadicgrapleting within
a narrow window of the other parallel tasks. When this does not hapaedware resources are
blocked and efficiency diminishes, possibly drastically. All of these ptaseof parallel codes
and programming have enabled the success of MPP and cluster computicigadienge the broad
use of Clouds in some HPC regimes.

There is an expectation among some that Clouds can replace HPC systegyrdéyating
multiple or even many separate and distinct systems together to achieve a bighadg capa-
bility. Due to the challenges just described, this strategy is infeasible for titha throughput
computing. Therefore, there are modalities of HPC in which Clouds do néufibng these is the
execution of a single MPI job spanning multiple systems such as MPPs or commiogigrs. The
reason for this reflects the factors of performance degradation, ticydar: dramatic increases in
latency and overhead. It is likely that the granularity of processes,ugthooarse, will be insuf-

Towards a New Execution Model for HPC Clouds Thomas Sterling

ficient to mitigate the effects of the latencies between systems in the Cloud thiat easily be
10 to 100 milliseconds, a thousand times or more that exhibited by commodity clusignaition
networks. Because entire system boundaries are being crossedgthears are expected to be
substantially greater than those internal to MPP systems. Equally damagthg aesulting skews
from these effects and the additional uncertainties of different systledslers of the separate
systems working out of synchronization with each other. The last to retwesult such as for a
barrier or other global reduction operator will determine the rate of pssyr Thus, the pace of
aggregate execution is predicated on the slowest system. For the Go@p€mamputing modality,
Clouds will not replace large HPC systems.

The situation is worse for Capability applications across multiple systems; dbaiobjec-
tive of replacing HPC scalable systems with the essentially infinite resoutrties Gloud. Even
medium coupled commodity clusters struggle to serve the Capability class appiécdtie to
issues of overhead and latency. Overheads for clusters can beéeam@agnitude less than the gen
eral Cloud and latency as much as three orders of magnitude less; arabtieppssibly greater
than that in both cases. Systems such as the Japanese Kei and the Geail{f supercom-
puters are designed to minimize these properties in support of Capabilityegiagation. Today’s
capability applications are usually fine tuned to the target machine platforr@lands will gen-
erally provide only rough approximations of the resources required wjthcarony between them
precluding effective optimizations. Overheads impose a lower boundaowlgrity and latencies
absorb concurrency for hiding that might otherwise be used for rnsgptime reduction. Both
therefore degrade scalability on the Cloud. Unpredictable variability afmaters destroys per-
formance tuning. Of course it is possible that one might access a spgstiosor system class via
the Cloud for Capability applications. But that rather defeats the purgdbe €loud; exploiting
economy of scale and amortizing costs of resources through anonyimaniisgs Also, there are
relatively few such machines available and these have complex time allocaticiegolndeed,
time on many of these systems is often competed for through proposals. &gaipud does not
fit easily into this usage model.

Yet another modality, data intensive computing for science applicationsitleyoertain scale
(data set size) becomes infeasible for Clouds. The problem is that alé afata that has to be
processed must be moved over the Internet to the remote Cloud computingcess For some
applications, the data set is simply too large to move long distances due to theidiiinchpacity
of the wide area networks employed. It is also quite possible that the majoritioofl Gystems,
most deployed for general needs, will not have sufficient memorycitgpar secondary storage
to stage the mammoth data sets being considered for these applications whitbasily exceed
many Petabytes or even Exabytes. For this class of problem, moving the dataviable. This
is one of those cases where the solution is to move the work to the data ratheh¢hdata to
the work. Obviously this means populating the data archive with sufficiempating resources
as well, thus eliminating the need or value for the Cloud in this form of HPC. @mer gpecial
case involving data intensive computing emerges when the data is highly\seresitier because
it is proprietary and cannot risk falling in to the hands of potential compet@pisecause it is
classified and related to national security and therefore has to belbapetiected. Protection of
data is a major area of concern and research within the Cloud with expelstaacas making them
increasingly trust worthy. However, it is unlikely that some data will evetrbsted to the Cloud

Towards a New Execution Model for HPC Clouds Thomas Sterling

given the extremes to which security is applied today.
From this we see that there are important domains within the HPC arena thadrious
reasons are ill suited to the properties of the Cloud in spite of potential keenefi

6. Concepts for New Clouds Execution Model

Can the limitations of Clouds in serving HPC be eliminated or at least mitigated? ®he pr
lems are clear at least to a great extent as discussed in detail above, afeahere possible
solutions? The answer lies in the way computation on the Cloud is structureatg@amized but
this may require a radical, even revolutionary paradigm shift and chtargypew execution model.
As discussed in Section 2, such phase changes in HPC are not udgarsmkwith at least five iden-
tified over the history of supercomputing. The requirement is to addre$sritiamental problems
of efficiency and scalability within the context of the clouds and this in turmireq new ap-
proaches to the challenges of starvation, latency, overhead, and wticgntention resolution).
Fortunately, these same challenges, although at markedly lower levelsPBs Bhd commodity
clusters (e.g., Beowulf-class systems) have resulted in substantiaicleaed experimental devel-
opment relevant to the problem of HPC on Clouds. One strategy is embodiesl pmiticiples of
the experimental ParalleX execution model and is proof-of-conceptrarsystem, HPX-3, devel-
oped at Louisiana State University. ParalleX is intended to exploit runtimeniaiion to achieve
greater efficiency of computing resources (e.g., cores, nodes) axdréet dramatic increases in
exploitable parallelism to significantly increase scalability for such problessetas dynamic
graph-based algorithms. Some of the key integral semantic componentaiéRare:

e Establishes a global address space (AGAS) that is active in the semseinaually ad-
dressed object may migrate through physical space (e.g., across motiesit having to
change its address,

e Defines contexts of data and tasks, ParalleX Processes, that provideted abstract do-
mains across multiple system nodes using capabilities based addressinggtat praierar-
chical name space (on top of the AGAS). Such processes are firstodlpects and are both
dynamic is distribution and ephemeral in time (they are born, compute, movejegnd lde
can share physical resources as necessary.

¢ Employs “computation complexes” (threads are a subset of these) thataselocal combi-
nations of interrelated actions performed on the same execution unit ared sheamory with
bounded action times and guaranteed local compound atomic action sesjuénogplexes
are first class objects, ephemeral, and can be switched in and outvef @aicution units as
well as suspended due to lack of immediate work (depleted).

e Communicates by Parcels, an advanced form of active messages, ttest Inodlr work and
potentially control state (continuations) to the data when appropriate assahaentional
asynchronous gathers of data to the work.

e Supports Local Control Objects (LCO) for powerful but lightweightslyronization to elim-
inate global barriers and manage asynchronous compound actiongdaflqw, futures) to
reduce overhead and expose additional parallelism.

Towards a New Execution Model for HPC Clouds Thomas Sterling

7. An Example of Advanced Execution Model Components

An example of the opportunity afforded by ParalleX-based runtime argi@numing has been
conducted for a particularly difficult application, one of simulating collidingtnen stars to un-
derstand the underlying mechanisms of the physical phenomenologyadsdogith gamma-ray
bursts (GRB) and gravitational waves. An important class of dynamichga#gorithms, adap-
tive mesh refinement (AMR), is employed to greatly reduce the computatienadruds imposed
by fixed uni-grids at comparable accuracy but imposing complex and timy@agadata structure
management to achieve this. Historically using conventional static programmitimpase(i.e.,
MPI), scalability has suffered with long execution times limited to a few hundoetisousands of
cores.

Experiments run with this code and previously documented show three timigressults.
In Figure 1, scalability of the MPI version of the HAD AMR software is congzhto that of
the ParalleX version using the HPX-3 software library. It shows that amtimber of levels
of refinement are increased, also increasing available parallelism thbtPtKe3 version of the
code increases in scaling while the MPI version actually diminishes in scaliegodiihe added
overheads of managing it. The comparison of the actual wall-clock times dirmheystems
running on the same hardware platform and processing the same dataesst®\wan in Figure
2. This is run on a single SMP with increasing number of cores. The reseltstanning. In
the medium range of system scale, the HPX version of the AMR algorithmedglperformance
advantage by a factor of 2X to greater than 3.5X with respect to the exedirties of the MPI
version. Finally, the importance of managing asynchrony is exposed ime=8ywhere multiple
phases of execution, usually separate in the MPI version, are ovedapthe HPX version hiding
communication latency and exposing a new level of parallelism even as adagbts to runtime
asynchrony. These same opportunities, if employed on Cloud-bastxnsysill ameliorate the
challenges this new class of distributed system imposes and may furtheidekyed role in HPC
in areas and modalities current outside their scope of operation.

8. Conclusions

This paper has briefly described the modalities of high performance comgurtthdiscussed
which of these are suitable for Cloud support while presenting thoserhaiod Basic issues of
efficiency and scalability have been explained that are responsibleddinttiations of Clouds
for HPC. But new approaches based on revolutionary execution mimdélsling ParalleX were
proposed as possible basis for a new Cloud execution model to expaagpheation of Clouds
to HPC. Three major elements of the new Cloud execution model emerge ad.cFitiedirst is to
provide the means of managing asynchrony at runtime. This is essenti@resadhe challenges
associated with Clouds including:

e Non-uniform response time for separate executing blocks
e Unpredictable access to shared Cloud resources

e Varying capabilities of Cloud resources

10

Towards a New Execution Model for HPC Clouds

Thomas Sterling

20

HPX vs MPI AMR Scaling
20— | I
| — hpx: 0 levels i
—— hpx: 2 levels
— hpx: 4 levels
15 — —— hpx: 6 levels =
= hpx: 8 levels
. 1: 0 levels
g" i . Eﬁ 2 levels
- - mpi: 4 levels
(] 10— + mpi: 6 levels)
< el T -~ el en
o prrRie
N - Rt o
5 I
r P
fc"‘ .
0 T | | |
12 4 10
Processors

Figure 1: Scalability of the MPI version of the HAD AMR software compdrto that of the ParalleX version
using the HPX-3 software library. In the ParalleX versianttee number of levels of refinement is increased,
the scalability improves. In the MPI version, the scal@pitiiminishes as the number of levels of refinement

is increased.
Wallclock time ratio MPI/HPX
(Depending on levels of AMR refinement - LoR, pollux.cctlsu.edu, 32cores)
4
35
E
g 3
&
=
8225
E
:
= 2 1] T =T —
E 3
[
|
=15 — i 1 - o
: I
l ey oo reee| oy xoee oo
0000|0000/ 000OD|CO00C0|000O00|00O0O0
PR [e | - | |] |]] D
o Joimm|odamodNm|ocdnm|odn@ oo m
1 core 2 cores 5 cores 10 cores 20 cores 30 cores
Number of cores

H O loR
m1loR
=2 oR

W3 LoR

Figure 2: Comparison of actual wall-clock times between the MPI AMRtsare and the HPX AMR
software running on the same hardware platform and prawpdisé same data sets.

11

Towards a New Execution Model for HPC Clouds Thomas Sterling

Performance Impact of Removing Global Barriers

[T AMR with quad precision using 2 levels of refinement

| T | T I T I T T
Performance upper limit for cases with a global barrier
r=1(
r=4.4

8
4

¢+ 4|
Il

= =l =

I
r

e
o

Simulation Time
=

=
=
tn

it

| | ! I | .
(500 1000 1500 2000 2500 3000

Physical Time

Figure 3: Measurements showing how multiple phases of execution\a@dapped for individual domain
grid points in the HPX AMR software.

e Wildly variant communication times due to varying latencies and contention

The second is the use of message-driven computation to move work to thettegathan
always the data to the work and enable runtime adaptive latency hiding taelnithis is particu-
larly important for certain classes of data intensive computing in scienceauetal applications
where the data sets are too large to move over the Internet. The third elefrenew Cloud
execution model is event-driven constraint-based synchronizatiomviderdynamically adaptive
methods of self-scheduling of concurrent tasks based on knowlddgatome conditions. Such
powerful synchronization semantics constructs establish the conditiomghfoh new tasks may
be instantiated rather than fixing the timing of the work through imperative consnand

But even with these advanced methodologies empowered by a revolutexenytion model
like ParalleX, itis still anticipated that Clouds will exhibit limitations in their supportfiPC con-
strained by the hard physical properties of the Cloud environment add/aee imposing boundary
conditions. It is likely that Clouds will have relatively few bigger machinesasale will continue
to be an issue. Cross machine scaling will always be vulnerable to acuéssyachronization
patterns. Overheads of Cloud control will impose lower bounds on ¢aatyuof parallel tasks.
The latency exhibited by wide-area networks also will impose lower boundesponse time of
execution problems. And even if adopted to minimize the effects of these prepteew mod-
els will require new programming interfaces to make it work and the refagtafilegacy codes
through new compilers and programmers in the loop. Nonetheless, the Clthalssecond and
simultaneous revolution impacting the future of HPC along with the use of a neeraieon of
runtime system software and programming models. Together, they are aefictpanaugurate

12

Towards a New Execution Model for HPC Clouds Thomas Sterling

the exciting frontiers of Exascale computing by the end of this decade fGratie the end science
it will deliver.

References
[1] G Gao, T Sterling, R Stevens, M Hereld, and W ZRaralleX: A study of a new parallel computation
model, Parallel and Distributed Processing Symposium. IPDPS 2066, 2007.

[2] H Kaiser, M Brodowicz, and T SterlingRaralleX: An Advanced Parallel Execution Model for
Scaling-Impaired Applications, Parallel Processing Workshops. 394—-401, 2009.

[3] A Tabbal, M Anderson, M Brodowicz, H Kaiser, and T Stegjfreliminary Design Examination of
the ParalleX System from a Software and Hardware Perspective, SIGMETRICS Performance
Evaluation Review3s, 4, 2011.

[4] http://lwww.clusterresources.com/products.php

[5] D Thain, T. Tannenbaum, and M. LivnRistributed Computing in Practice: The Condor Experience,
Concurrency and Computation: Practice and Experiebigejo. 2-4, 323-356, Feb-Apr, 2005.

[6] Message Passing Interface Foruvt?l: A Message-Passing Interface Sandard, Version 2.2, High
Performance Computing Center Stuttgart, September 2009.

[7] L Dagum and R MenormQpenMP: An Industry-Standard API for Shared-Memory Programming,
IEEE Computational Science and Engineeribg}6—-55, 1998.

13

