
P
o
S
(
I
S
G
C
 
2
0
1
2
)
0
3
8

Towards a New Execution Model for HPC Clouds

Thomas Sterling∗

Center for Research in Extreme Scale Technologies,
Indiana University, USA
E-mail: tron@indiana.edu

Matthew Anderson
Center for Research in Extreme Scale Technologies,
Indiana University, USA
E-mail: andersmw@indiana.edu

The application of emergent Clouds to the domain of high performance computing is considered

by examining the various operational modalities comprising the field of supercomputing and by

analyzing their suitability to Clouds based on underlying factors of performance degradation. It

is found that while throughput computing may be readily supported for such HPC workflows as

parameter sweeps, capability computing and even weak scaled “cooperative” computing may not

be well served using conventional practices. But the possible advance of revolutionary methods

to manage asynchrony, exploit message-driven computing techniques and declarative synchro-

nization semantic constructs such as found in the experimental ParalleX execution model may

provide an alternative paradigm for bringing Clouds more closely aligned to Science, Technology,

Engineering, and Mathematics (STEM) applications. Experimental results capturing an Adaptive

Mesh Refinement (AMR) application in numerical relativity using the ParalleX-based HPX-3

runtime system demonstrates many of the required properties for HPC Clouds.

The International Symposium on Grids and Clouds (ISGC) 2012,
Febraury 26 - March 2, 2012
Academia Sinica, Taipei, Taiwan

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:tron@indiana.edu
mailto:andersmw@indiana.edu


P
o
S
(
I
S
G
C
 
2
0
1
2
)
0
3
8

Towards a New Execution Model for HPC Clouds Thomas Sterling

1. Introduction

Even as HPC is transiting the pan-Petaflops performance regime towards thesought goal by
the international community of a sustained Exaflops before the end of this decade, a second revo-
lution is in process with the emergence of distributed Cloud computing. Its potential impact across
a broad spectrum of computational needs in commerce and society ensuresit will be a major trans-
formational factor in the coming decade. But what of its impact on one of the most rarefied of
computational fields, that of high performance computing? Can the Cloud serve the ever increas-
ingly costly domain of HPC and broaden accessibility to HPC capability as commodityclusters did
almost two decades ago? As is implied by its designation, HPC is about performance in the quest
for pushing the frontiers of science, technology, engineering, and mathematics for knowledge, in-
dustry, commerce, and national security throughout the international community.

Like so many disciplines, supercomputing is multi-faceted with a diversity of operational
modalities, exhibited properties, and disparity of requirements. The question of the role of Clouds
in HPC is really a question of which aspects of HPC can Clouds serve, for which ones can it not
fit and why, and how might these limitations of HPC Clouds be mitigated for broader impact? In
the following, an examination is presented of the distinct modalities comprising the field of HPC
and an analysis is conducted to consider each of these in terms of the capabilities and operational
attributes of Clouds. It is recognized for example that the broad array ofthroughput computing
workloads are well suited to Clouds assuming that costs of usage can be diminished to level appro-
priate to academic and labs computing cultures. At the same time, capability computingis cited
as an important class of computing that cannot be provided by the Cloud today along with certain
forms of data intensive computing.

The limitations on Clouds for HPC using conventional practices may yield to innovations in
execution models to exploit dynamic adaptive methods at runtime. Management of asynchrony,
message-driven computing, and constraint-based synchronization areproposed as possible means
for alleviating some of the underlying problems with current Cloud environments. Thus, a new
execution model for HPC Clouds may greatly extend their utility for Science, Technology, En-
gineering, and Mathematics (STEM) applications. One experimental execution model, ParalleX
[1 – 3], is briefly described and experimental results are discussed thatsuggest its potential as a
basis for a revolutionary new Cloud methodology.

The next section discusses the role that paradigm shifts have had throughout the history of
supercomputing to continue the greater than two order of magnitude performance gain each decade
for a total gain in one human lifetime of greater than a factor of a trillion suggesting a possible
need for another phase change with the advent of multi-core and GPU component elements. Sec-
tion 3 provides a qualitative analysis of the different HPC modalities and their underlying support
requirements. From this, Section 4 establishes the roles that the Cloud can effectively contribute
to HPC using conventional practices while Section 5 looks at those requirements for HPC that cur-
rently do not fit the Cloud and why. Section 6 then expands the potential of Clouds by considering
a new execution model, ParalleX, and its possible adoption to HPC Clouds to address some of the
limitations identified. Section 7 briefly presents empirical evidence that supports the merits of this
approach. Finally, Section 8 finishes with a set of conclusions that propose the possible future of
and HPC Cloud execution model.

2



P
o
S
(
I
S
G
C
 
2
0
1
2
)
0
3
8

Towards a New Execution Model for HPC Clouds Thomas Sterling

2. HPC in Phase Change, again

The field of high performance computing has experienced a rate of growthunmatched in the
history of human technology. In one human lifetime digital electronic stored program computing
has exhibited change of a factor of a trillion and this is a conservative estimate. The lead author
was born at a time when extant machines (there were only a couple) performed at approximately 1
KIPS and these were integer operations. This compared to the current Petaflops era demonstrates
this amazing growth in performance. Further, it was not that the technology was wrong and then
suddenly the right answer was discovered. Rather, the delivered performance improved by approx-
imately a factor of 200X every decade over more than six decades. But thisapparently smooth
history of performance gain was not simply a consequence of continuousimprovement but rather
punctuated by dramatic change at critical moments driven by the introduction ofnew enabling
technology opportunities. These abrupt transitions were nothing less thanparadigm shifts reflected
by the derivation and adoption of new execution models.

One possible breakdown of this history suggests five phases of HPC. The first phase, the von
Neumann model, driven by vacuum tube logic and early memory technologies eventually including
magnetic cores. This employed the classic fetch-compute-write cycle. The second phase driven by
the emergence of transistor based enabling technologies exploits the higherclock rates possible and
higher packaging density to employing pipelining execution units still with sequential instruction
issue but with overlapping of operation execution exploiting one form of finegrain parallelism.

The third phase in the 1970s driven by the emergence of small and medium scale integration
(SSI & MSI) demanded a new paradigm, the vector execution model, again using pipeline struc-
tures but this time for register access, floating point arithmetic units, and data access. The Cray 1 is
the archetype of this class of vector computers although earlier systems employing some of these
techniques had been tried. But by the 1980’s the fourth phase of HPC was driven by large scale
integration (LSI) that provided much more capability in a small space demandingyet another new
strategy, this the SIMD-Array processing model in which the same operationwould be performed
by many simple processing units but on separate DRAM memory banks.

Finally, by the 1990s very large integration (VLSI) imposed a new opportunity for low cost
system structures including for the first time the leveraging the mass market and resulting econ-
omy of scale. The fifth phase of HPC based on the communicating sequential process (CSP) was
manifest in two forms: MPPs and commodity clusters. This last HPC phase has dominated super-
computing for the last two decades bringing us to the edge of the Petaflops era.

Two factors suggest that we are on the verge of a new HPC phase change. The first continues
to be VLSI density increase that promises approximately 10 nanometer feature size by the end
of this decade. The second is the availability of massive wide-area networkbandwidth spanning
continents. Together they are defining a new generation of computing and quite possibly a new
phase in HPC.

The critical changes to computing technology have hit limitations that have resulted in new
classes of structures and their use. Over the last two decades, microprocessor performance had
continued to improve with Moore’s Law through the exponential growth of clock rates and inno-
vations in processor core architecture to improve instruction level parallelism (ILP). Due to power
limitations, clock rates have flat-lined. Architecture opportunities with respectto ILP have been

3



P
o
S
(
I
S
G
C
 
2
0
1
2
)
0
3
8

Towards a New Execution Model for HPC Clouds Thomas Sterling

exhausted. The result of these two trends is that microprocessor core performance is no longer in-
creasing with Moore’s Law. In response to this dramatic change in the path tosystem performance
improvement, multicore sockets and GPU accelerators (both of which combine aplethora of cores
although in very different organizations) are now creating a new dominant form of parallelism lead-
ing us across the Petaflops performance regime. HPC systems of the futurewill be very different
from systems of the past. These changes are compelling HPC in to a new phase of how they are
structured, programmed, and managed.

The second seminal change is the ubiquity of wide-area networks and availability of rapidly
increasing long distance bandwidth. This is combined with the unification of cluster-based sys-
tems as the principal platform for the processing of both commercial and muchof HPC scalable
applications. Together, they enable the evolution of Cloud computing and its potential role in HPC.

3. HPC Modalities

To explore the potential role of Cloud computing to the challenges of high performance com-
puting, the nature of HPC needs to be understood in terms of its distinct modalities. These define
the different ways in which HPC may behave and the underlying requirements. Here four such
modalities are discussed. Based on these modalities, the following two sections will discuss the
conditions where Clouds can support HPC and where it would be inappropriate.

3.1 Capacity Computing

Capacity computing is also referred to as “throughput computing” and combines job stream
parallelism with weak scaling. A key property of this modality is that there is no interrelationship
among the independent and concurrent tasks (in this case jobs) either in the form of synchroniza-
tion between them or in their exchange of data. Performance is measured bytotal floating point
performance of the set of combined jobs. Weak scaling delivers greaterperformance on a larger
system or ensemble of systems by increasing the job concurrency, i.e., the number of jobs that are
available to be processed simultaneously. Because there are no operational dependencies, there is
little overhead and no ordering constraints. This provides what is often referred to as “embarrass-
ingly parallel” workflow. In addition, the coarse granularity exhibited at thejob level amortizes and
minimizes the overhead costs of the job scheduling middleware achieving high efficiency. Moab
[4] and Condor [5] are just two examples of a long history of such middleware to support this kind
of parallelism and HPC modality.

3.2 Capability Computing

At the other extreme of HPC is capability computing which employs strong scaling of a sin-
gle fixed size job. All parallelism to be exploited is exposed and exploited fromwithin the single
job. Further, all scalability comes from this parallelism. As the scale (physicalsize) of the applied
system is increased, the fixed sized job in this modality exploits the increased resources to propor-
tionally reduce its execution time, that is its time to completion. This is the most difficult form of
HPC as the parallelism exploited for this speed up is finer grained than that ofthe capacity com-
puting approach and latencies, overheads, and waiting due to contention as well as the parallelism
may all impose bounds on the degree of granularity that can be effectivelyemployed. Performance

4



P
o
S
(
I
S
G
C
 
2
0
1
2
)
0
3
8

Towards a New Execution Model for HPC Clouds Thomas Sterling

can be measured also in terms of floating point operations per second but scaling is measured in
terms of response time and its reduction with respect to resources.

3.3 “Cooperative” Computing

An intermediate modality between capacity and capability computing is also used, although
curiously not usually acknowledged by the conventional lexicon of HPC.For this purpose, the term
“Cooperative Computing” is introduced for expository purposes to represent this third modality.
Cooperative computing combines aspects of capacity computing with those of capability comput-
ing. Like capability computing, cooperative computing performs a single application or job with
available parallelism extracted from within the job. Like capacity computing, cooperative comput-
ing uses weak scaling such that as the hardware resources applied to it are increased, so is increased
the problem size usually in terms of the data set size being processed by the application. Usually
the available parallelism of a problem is increased with increased data set size. The effect is to
retain the same task granularity and therefore the same balance of computation tooverhead and
latency costs. But the response time of the problem does not decrease withincreased system size.
In fact, it usually increases somewhat due to secondary effects. Cooperative computing is one
of the dominant ways in which HPC is employed, especially with such application programming
interfaces as MPI [6].

3.4 Data Intensive Computing

Seymour Cray is purported to have defined a supercomputer as a machine that converts a
compute bound problem into an I/O bound problem. Nothing could be more true for the last
modality of HPC; that of data intensive computing. Data intensive computing changes the balance
of resource requirements and in many cases brings in another resource, that of secondary or mass
storage. While numeric processing in this modality is still important to the processing of the data,
the combination of access from mass storage and the greatly increased proportion of data movement
throughout the system alters, perhaps dramatically, the means of optimization.One critical aspect
of this fourth class of computing is the impact of the many milliseconds-long latencies that are
incurred by direct disk access. Not only the time but also the uncertainty oftime of access greatly
complicates specification of codes that will produce optimal performance. Finally, the shear scale
of the data that must be moved between storage and the mainframe can be prohibitive except in a
tightly integrated system with the highest possible internal bandwidths.

4. Where HPC Fits on Clouds

Among the greatest opportunities for HPC employing Cloud infrastructure is inthe domain of
capacity computing. Here job stream parallelism can be applied to an anonymous set of processing
resources without concern for time or order of job completion as long as thescheduling of jobs is
dynamic with respect to availability of resources. Much of science is performed through this basic
modality. Although focus is often placed on very large, highly parallel applications, the majority
of science is accomplished on smaller subsets of such systems or on single nodes alone.

One important version of this is for parameter sweeps. In this class of problems, all of the
jobs are the same. But work in each instance is performed on a distinct set of input parameters.

5



P
o
S
(
I
S
G
C
 
2
0
1
2
)
0
3
8

Towards a New Execution Model for HPC Clouds Thomas Sterling

Such parameter sweeps expose ranges of behavior either of simulated science phenomenology
or for engineering design optimization studies. Although the results of the setof combined jobs
contributes to a single outcome, the parameter sweep (as possibly presentedin a graph form), there
is no interrelationship during their respective operations either in sharing of partial results or in
coordination. Only during the collection of the results after their separate computations is there
any tangential association and this does not impose any overheads or latencies during the actual
simulation runs.

The opportunity of job stream parallelism on Clouds is not restricted to ensembles of sequen-
tial tasks. If the separate jobs are scheduled by the Cloud on anonymous SMP (e.g., multi-core
nodes supporting shared memory) nodes, the advantages of job stream parallelism are maintained
while locally exploiting medium grained parallelism as well. Typically such jobs arecast using
the OpenMP API [7] that allocates hardware threads to code loops and segments in addition to the
master or control thread. Flexibility is allowed as to scale of SMP assuming sufficient memory
capacity again due to the asynchrony of the separate jobs comprising the total ensemble.

Under some circumstances, individual clusters made available by a Cloud can be assigned to
MPI jobs. In the simplest practice, the user specifies the number of cores required, the minimum
memory capacity per core, and some measure of the network bandwidth assumed. It may be
that assertion of latency bounds is also specified. In this approach only clusters that satisfy these
minimums can be designated as appropriate and allocated to MPI jobs in the Cloud.But even in this
limiting case, performance levels are not guaranteed. Differences in processor core speed, socket
design and I/O pin contention, and sharing of the clusters with other jobs resulting in possible
network contention can all change the effective throughput of the MPI application. The larger the
system requirement (e.g., number of cores, nodes, etc.) the fewer are the possible sites of execution
within the Cloud. Relaxing the constraints required, or at least some of them permit the tradeoff of
execution time to time of initiation. Allowing the use of smaller systems sooner may provide results
earlier even if the computation itself takes longer because of availability of lower scale systems or
system partitions.

One last class of workloads is suitable, even required, to be processedby the Cloud. In some
science domains employing large sensors such as telescopes (e.g., Keck,Arecibo) or synchrotrons
(e.g., LHC) the data sets accumulated at a continuing rate are enormous and their movement across
the Internet can be infeasible in totality. In lieu of moving these prohibitively large data sets to
where the work is to be performed, the Cloud permits the work to be moved to the data set. Com-
puting systems local to the large depositories of data avoid the need for long distance data transfer
and instead can perform required jobs on the data at their location. When data is distributed among
multiple sites, the job to be deployed may not even know where the data that is required is. Or
the data may reside at multiple sites. The Cloud can identify the necessary resources by the iden-
tified data and manage the remote processing automatically, returning only the final results to the
requesting site.

5. Where HPC Doesn’t Fit on Clouds

To fully delineate the limitations of Clouds in supporting the breadth of HPC needs, several
factors of performance degradation are discussed by which to consider the implications of Clouds.

6



P
o
S
(
I
S
G
C
 
2
0
1
2
)
0
3
8

Towards a New Execution Model for HPC Clouds Thomas Sterling

These are Starvation, Latency, Overhead, and Waiting for contention orSLOW. Starvation is the
insufficiency of work to keep all physical resources busy either due toeither an inadequate totality
of work for the entire machine or imbalance of distribution of work such that while some computing
elements may have too much, others will have too little at the same time. Latency is the distance,
often measured in cycles (the time normalized to the inverse of the processor core clock rate it
takes to transit the distance), required to perform a remote access or to request a remote service.
Overhead is the additional work required to manage the parallel physical resources and the abstract
tasks that would not be required in a purely sequential execution context.Overhead is a source
of inefficiency requiring time and energy that does not directly contribute tothe actual work to
be performed. But a second effect is that the amount of overhead imposes a lower bound on
task granularity that can be effectively performed. This in turn negatively impacts the amount of
parallelism that can be exploited and therefore the overall scalability of an application of a given
size. Lastly, the delays due to contention for shared resources, either physical or logical, can
impose unpredictable bottlenecks and skew in the order and lengths of execution. Together, these
factors can result in severe degradation of efficiency and scalability leading to dramatic reduction
in delivered performance.

Historically to address these factors, HPC applications developers have explicitly managed
many aspects of program operation through direct and explicit tuning of codes to the underlying
hardware. The codes were performance tuned for physical machines. But this required knowl-
edge of machine structure and key properties for optimization. Within these constraints, resources
constituting as many as hundreds of thousands of cores are exploited at one time for a single
application with million-way parallelism required at levels of both coarse grained and fine grain
parallelism. To achieve efficiencies such as high cache hit rates and largenetwork message pack-
ets, strides through memory have to be controlled and fine tuned to cache sizes throughout their
hierarchy. When achieved, this can minimize effective memory access latency. One major concern
as described above is overheads that determine efficiency and granularity of parallelism imposing
constraints on scalability. HPC application programmers employ methods that minimizesuch over-
heads. Network latency effects are generally mitigated by the use of coarse-grained parallelism but
increasing communication latencies can offset this. The granularity of the parallelism is ultimately
determined by the memory size of the node. So there is a maximum level of latency that can be
tolerated. Another factor is the minimization of skew delays. It is essential thatall separate con-
current subtasks of an application execute at about the same time, starting and completing within
a narrow window of the other parallel tasks. When this does not happen,hardware resources are
blocked and efficiency diminishes, possibly drastically. All of these properties of parallel codes
and programming have enabled the success of MPP and cluster computing and challenge the broad
use of Clouds in some HPC regimes.

There is an expectation among some that Clouds can replace HPC systems by aggregating
multiple or even many separate and distinct systems together to achieve a high aggregate capa-
bility. Due to the challenges just described, this strategy is infeasible for other than throughput
computing. Therefore, there are modalities of HPC in which Clouds do not fit.Among these is the
execution of a single MPI job spanning multiple systems such as MPPs or commodityclusters. The
reason for this reflects the factors of performance degradation, in particular: dramatic increases in
latency and overhead. It is likely that the granularity of processes, although coarse, will be insuf-

7



P
o
S
(
I
S
G
C
 
2
0
1
2
)
0
3
8

Towards a New Execution Model for HPC Clouds Thomas Sterling

ficient to mitigate the effects of the latencies between systems in the Cloud that would easily be
10 to 100 milliseconds, a thousand times or more that exhibited by commodity cluster integration
networks. Because entire system boundaries are being crossed, the overheads are expected to be
substantially greater than those internal to MPP systems. Equally damaging arethe resulting skews
from these effects and the additional uncertainties of different system schedulers of the separate
systems working out of synchronization with each other. The last to returna result such as for a
barrier or other global reduction operator will determine the rate of progress. Thus, the pace of
aggregate execution is predicated on the slowest system. For the Cooperative Computing modality,
Clouds will not replace large HPC systems.

The situation is worse for Capability applications across multiple systems; again,the objec-
tive of replacing HPC scalable systems with the essentially infinite resources of the Cloud. Even
medium coupled commodity clusters struggle to serve the Capability class applications due to
issues of overhead and latency. Overheads for clusters can be an order magnitude less than the gen-
eral Cloud and latency as much as three orders of magnitude less; and the gap is possibly greater
than that in both cases. Systems such as the Japanese Kei and the Cray XTfamily of supercom-
puters are designed to minimize these properties in support of Capability-class operation. Today’s
capability applications are usually fine tuned to the target machine platform andClouds will gen-
erally provide only rough approximations of the resources required with asynchrony between them
precluding effective optimizations. Overheads impose a lower bound on granularity and latencies
absorb concurrency for hiding that might otherwise be used for response time reduction. Both
therefore degrade scalability on the Cloud. Unpredictable variability of parameters destroys per-
formance tuning. Of course it is possible that one might access a specific system or system class via
the Cloud for Capability applications. But that rather defeats the purpose of the Cloud; exploiting
economy of scale and amortizing costs of resources through anonymous sharing. Also, there are
relatively few such machines available and these have complex time allocation policies. Indeed,
time on many of these systems is often competed for through proposals. Again,the Cloud does not
fit easily into this usage model.

Yet another modality, data intensive computing for science applications beyond a certain scale
(data set size) becomes infeasible for Clouds. The problem is that all of the data that has to be
processed must be moved over the Internet to the remote Cloud computing resources. For some
applications, the data set is simply too large to move long distances due to the bandwidth capacity
of the wide area networks employed. It is also quite possible that the majority of Cloud systems,
most deployed for general needs, will not have sufficient memory capacity or secondary storage
to stage the mammoth data sets being considered for these applications which could easily exceed
many Petabytes or even Exabytes. For this class of problem, moving the data isnot viable. This
is one of those cases where the solution is to move the work to the data rather than the data to
the work. Obviously this means populating the data archive with sufficient computing resources
as well, thus eliminating the need or value for the Cloud in this form of HPC. One other special
case involving data intensive computing emerges when the data is highly sensitive, either because
it is proprietary and cannot risk falling in to the hands of potential competitorsor because it is
classified and related to national security and therefore has to be carefully protected. Protection of
data is a major area of concern and research within the Cloud with expected advances making them
increasingly trust worthy. However, it is unlikely that some data will ever betrusted to the Cloud

8



P
o
S
(
I
S
G
C
 
2
0
1
2
)
0
3
8

Towards a New Execution Model for HPC Clouds Thomas Sterling

given the extremes to which security is applied today.
From this we see that there are important domains within the HPC arena that forvarious

reasons are ill suited to the properties of the Cloud in spite of potential benefits.

6. Concepts for New Clouds Execution Model

Can the limitations of Clouds in serving HPC be eliminated or at least mitigated? The prob-
lems are clear at least to a great extent as discussed in detail above. Then, are there possible
solutions? The answer lies in the way computation on the Cloud is structured andorganized but
this may require a radical, even revolutionary paradigm shift and changeto a new execution model.
As discussed in Section 2, such phase changes in HPC are not unprecedented with at least five iden-
tified over the history of supercomputing. The requirement is to address thefundamental problems
of efficiency and scalability within the context of the clouds and this in turn requires new ap-
proaches to the challenges of starvation, latency, overhead, and waiting(for contention resolution).
Fortunately, these same challenges, although at markedly lower levels, on MPPs and commodity
clusters (e.g., Beowulf-class systems) have resulted in substantial research and experimental devel-
opment relevant to the problem of HPC on Clouds. One strategy is embodied in the principles of
the experimental ParalleX execution model and is proof-of-concept runtime system, HPX-3, devel-
oped at Louisiana State University. ParalleX is intended to exploit runtime information to achieve
greater efficiency of computing resources (e.g., cores, nodes) and toextract dramatic increases in
exploitable parallelism to significantly increase scalability for such problem classes as dynamic
graph-based algorithms. Some of the key integral semantic components of ParalleX are:

• Establishes a global address space (AGAS) that is active in the sense that a virtually ad-
dressed object may migrate through physical space (e.g., across nodes) without having to
change its address,

• Defines contexts of data and tasks, ParalleX Processes, that provide protected abstract do-
mains across multiple system nodes using capabilities based addressing to present a hierar-
chical name space (on top of the AGAS). Such processes are first class objects and are both
dynamic is distribution and ephemeral in time (they are born, compute, move, and die). The
can share physical resources as necessary.

• Employs “computation complexes” (threads are a subset of these) that serve as local combi-
nations of interrelated actions performed on the same execution unit and shared memory with
bounded action times and guaranteed local compound atomic action sequences. Complexes
are first class objects, ephemeral, and can be switched in and out of active execution units as
well as suspended due to lack of immediate work (depleted).

• Communicates by Parcels, an advanced form of active messages, that moves both work and
potentially control state (continuations) to the data when appropriate as well as conventional
asynchronous gathers of data to the work.

• Supports Local Control Objects (LCO) for powerful but lightweight synchronization to elim-
inate global barriers and manage asynchronous compound actions (e.g.,dataflow, futures) to
reduce overhead and expose additional parallelism.

9



P
o
S
(
I
S
G
C
 
2
0
1
2
)
0
3
8

Towards a New Execution Model for HPC Clouds Thomas Sterling

7. An Example of Advanced Execution Model Components

An example of the opportunity afforded by ParalleX-based runtime and programming has been
conducted for a particularly difficult application, one of simulating colliding neutron stars to un-
derstand the underlying mechanisms of the physical phenomenology associated with gamma-ray
bursts (GRB) and gravitational waves. An important class of dynamic graph algorithms, adap-
tive mesh refinement (AMR), is employed to greatly reduce the computational demands imposed
by fixed uni-grids at comparable accuracy but imposing complex and time-varying data structure
management to achieve this. Historically using conventional static programming methods (i.e.,
MPI), scalability has suffered with long execution times limited to a few hundredsor thousands of
cores.

Experiments run with this code and previously documented show three interesting results.
In Figure 1, scalability of the MPI version of the HAD AMR software is compared to that of
the ParalleX version using the HPX-3 software library. It shows that as the number of levels
of refinement are increased, also increasing available parallelism that theHPX-3 version of the
code increases in scaling while the MPI version actually diminishes in scaling due to the added
overheads of managing it. The comparison of the actual wall-clock times of thetwo systems
running on the same hardware platform and processing the same data sets are shown in Figure
2. This is run on a single SMP with increasing number of cores. The results are stunning. In
the medium range of system scale, the HPX version of the AMR algorithm delivers performance
advantage by a factor of 2X to greater than 3.5X with respect to the execution times of the MPI
version. Finally, the importance of managing asynchrony is exposed in Figure 3 where multiple
phases of execution, usually separate in the MPI version, are overlapped in the HPX version hiding
communication latency and exposing a new level of parallelism even as it self-adapts to runtime
asynchrony. These same opportunities, if employed on Cloud-based systems will ameliorate the
challenges this new class of distributed system imposes and may further expand their role in HPC
in areas and modalities current outside their scope of operation.

8. Conclusions

This paper has briefly described the modalities of high performance computing and discussed
which of these are suitable for Cloud support while presenting those that are not. Basic issues of
efficiency and scalability have been explained that are responsible for the limitations of Clouds
for HPC. But new approaches based on revolutionary execution modelsincluding ParalleX were
proposed as possible basis for a new Cloud execution model to expand theapplication of Clouds
to HPC. Three major elements of the new Cloud execution model emerge as critical. The first is to
provide the means of managing asynchrony at runtime. This is essential to address the challenges
associated with Clouds including:

• Non-uniform response time for separate executing blocks

• Unpredictable access to shared Cloud resources

• Varying capabilities of Cloud resources

10



P
o
S
(
I
S
G
C
 
2
0
1
2
)
0
3
8

Towards a New Execution Model for HPC Clouds Thomas Sterling

Figure 1: Scalability of the MPI version of the HAD AMR software compared to that of the ParalleX version
using the HPX-3 software library. In the ParalleX version, as the number of levels of refinement is increased,
the scalability improves. In the MPI version, the scalability diminishes as the number of levels of refinement
is increased.

Figure 2: Comparison of actual wall-clock times between the MPI AMR software and the HPX AMR
software running on the same hardware platform and processing the same data sets.

11



P
o
S
(
I
S
G
C
 
2
0
1
2
)
0
3
8

Towards a New Execution Model for HPC Clouds Thomas Sterling

Figure 3: Measurements showing how multiple phases of execution are overlapped for individual domain
grid points in the HPX AMR software.

• Wildly variant communication times due to varying latencies and contention

The second is the use of message-driven computation to move work to the datarather than
always the data to the work and enable runtime adaptive latency hiding techniques. This is particu-
larly important for certain classes of data intensive computing in science andsocietal applications
where the data sets are too large to move over the Internet. The third element of a new Cloud
execution model is event-driven constraint-based synchronization to provide dynamically adaptive
methods of self-scheduling of concurrent tasks based on knowledge of runtime conditions. Such
powerful synchronization semantics constructs establish the conditions for which new tasks may
be instantiated rather than fixing the timing of the work through imperative commands.

But even with these advanced methodologies empowered by a revolutionaryexecution model
like ParalleX, it is still anticipated that Clouds will exhibit limitations in their support for HPC con-
strained by the hard physical properties of the Cloud environment and hardware imposing boundary
conditions. It is likely that Clouds will have relatively few bigger machines soscale will continue
to be an issue. Cross machine scaling will always be vulnerable to access and synchronization
patterns. Overheads of Cloud control will impose lower bounds on granularity of parallel tasks.
The latency exhibited by wide-area networks also will impose lower bounds onresponse time of
execution problems. And even if adopted to minimize the effects of these problems, new mod-
els will require new programming interfaces to make it work and the refactoring of legacy codes
through new compilers and programmers in the loop. Nonetheless, the Cloud isthe second and
simultaneous revolution impacting the future of HPC along with the use of a new generation of
runtime system software and programming models. Together, they are anticipated to inaugurate

12



P
o
S
(
I
S
G
C
 
2
0
1
2
)
0
3
8

Towards a New Execution Model for HPC Clouds Thomas Sterling

the exciting frontiers of Exascale computing by the end of this decade for HPC and the end science
it will deliver.

References

[1] G Gao, T Sterling, R Stevens, M Hereld, and W Zhu,ParalleX: A study of a new parallel computation
model, Parallel and Distributed Processing Symposium. IPDPS 2007, 1–6, 2007.

[2] H Kaiser, M Brodowicz, and T Sterling,ParalleX: An Advanced Parallel Execution Model for
Scaling-Impaired Applications, Parallel Processing Workshops. 394–401, 2009.

[3] A Tabbal, M Anderson, M Brodowicz, H Kaiser, and T Sterling, Preliminary Design Examination of
the ParalleX System from a Software and Hardware Perspective, SIGMETRICS Performance
Evaluation Review,38, 4, 2011.

[4] http://www.clusterresources.com/products.php

[5] D Thain, T. Tannenbaum, and M. Livny,Distributed Computing in Practice: The Condor Experience,
Concurrency and Computation: Practice and Experience,17, no. 2-4, 323–356, Feb-Apr, 2005.

[6] Message Passing Interface Forum,MPI: A Message-Passing Interface Standard, Version 2.2, High
Performance Computing Center Stuttgart, September 2009.

[7] L Dagum and R Menon,OpenMP: An Industry-Standard API for Shared-Memory Programming,
IEEE Computational Science and Engineering,5, 46–55, 1998.

13


