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1. Introduction

The femtoscopic space-time structure of the systems is typically represented in terms of the
interferometry radii. They are result of a Gaussian fit of the correlation function defined as a ratio of
the two- (identical) particle spectrum to the product of the single-particle ones. In pioneer paper []
the measured interferometry radii were interpreted as the geometrical sizes of the systems. Later
on it was found [D, B] that for typical systems formed in experiments with heavy ions the above
geometrical interpretation needs to be generalized. The treatment of the interferometry radii as the
homogeneity lengths [B, B] in the systems and crucial suggestion as for femtoscopy scanning of the
source radiation in different momentum bins [B] bring the possibility to analyze different parts of
the source and explain the behavior of the interferometry radii. In addition, the practical method
how to use the final state interactions (FSI) and effects of long-lived resonances to extract the BE-
correlations in relatively large systems created in heavy ion collisions has been proposed [B].

An another challenge, which is still actual, concerns the femtoscopy analysis of relatively
small systems created in particle interactions such as pp and e e~ where the observed femtoscopic
scales are approximately 1 fm or smaller. Here we will analyze the femtoscopy of such small
systems accounting for the uncertainty principle which is expressed through partial coherence of
the radiation from spatially close emitters.

2. The basic ideas of the correlation interferometry

In particle physics the positive correlations between numbers of identical pions with close
momenta emitted from an interaction region in proton-antiproton annihilations were found in 1960
by Goldhaber et al (GGLP effect) [R]. It was understood that the nature of the effect lies in quantum
statistics for identical particles demanding the symmetrization of bosonic wave function. Later on
Kopylov and Podgoretsky [0] found the deep analogy between Hanbury Brown/Twiss (HBT) effect
and GGLP one and, in fact, transformed the method of the intensity interferometry telescope to pion
interferometry microscope. Below we discuss it in detail.

Let us suppose that two identical bosons (e.g., pions) are emitted from the two space-time
points, x; = (#1,X;) and xy = (f,X») and then propagate freely. The wave function of a single
particle at the initial time ¢ is in the configuration representation &°(x —X;). At some time ¢ in the
#e—iEte—ix;p.

(27r)3/2
In momentum representation (p1, p2) the two bosons wave function is symmetrized and has

momentum p = (p° = E,p)-representation it is ¥, (p,t) =
the form

1 . . . . .
lle,xz (Pl,pz;l‘) = W [elPleelPZ"z _|_elp2X1elp1Xz] e—l(EH-Ez)I_ (2‘1)

Then the probability to find the particles with momenta p;, p, is expressed through the scalar
product of differences of 4-momenta and 4-coordinates of the two pion emission:

W (P1,02) = [P, 1, (p1, p231) [ o< 14cos [(p1 — pa) - (x1 —x2)]. (2.2)

The attentive reader can notice that the formula (22) is derived for the case when radiation of the
two particles is not independent: if one boson (with momentum p;) comes from the one point (say,
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X1), another boson (with momentum p;) is emitted from different point (x) and vice versa, but
the possibility when the two bosons are emitted from the same point, X; or X, is excluded. In the
case of independent particle radiation all the possibilities are taken into account. Then one usually
demonstrates an idea of the correlation femtoscopy basing on some normalized emission func-
tion p(x) in the compact region & as the following (we ignore here possible correlations between
coordinates and momenta of the emitted particles):

2

Wa(p1,p2) = / d*x1d*x2p (x1)p (x2) W, 1, (1, p2) o< 1 + ' / d*xp(x)e'?™ (2.3)

where g = p; — p2. So, the probability to find the particles with momenta p;, p, at very large times
t — oo is expressed through the Fourier image of the emission function. This is the typical basis
of the correlation interferometry method allowing one to analyze shape and form of ultra small
systems. If p is the Gaussian-like emission probability that in some reference frame has the form

prme| 12

222} 0(t —tp), then (Z3) reads as

T

W (py,p2) o< 1+exp . 2.4)

> 252
—ZC]iRi
i=1

For example, the typical resolving width of the correlation function g = 50 MeV corresponds to the

size 4-10~1 m = 4 Fm (Fermi) = 4 fm (femtometer). The origination of the name of the method
— correlation femtoscopy is obvious from these estimates.

Problem however appears when we apply the basic formula (E3) to the system with small
number of emitters. For example, if there are the only two different emitting points: p(x) =
1(8*(x—x1) + 6*(x — x2)), then from (Z3) follows (p; = 1/2)

Wex(P1,p2) o< Y, pipj(14cos[(pi— pj)(xi —x;)]) = 1+ cos’ %(Pl —p2)(x1 —x2) | .(2.5)
ij=12
The result is incorrect as we shall show.

To analyze the situation in detail let us consider single particle radiation from two points. If
the emission from the point x; gives a quantum state which is distinguishable from one which
corresponds to emission from the point x, then it is allowed for one to consider the two amplitudes
A; that can be realized with some probabilities p; and build the corresponding density matrix:

Pi: Al(p) = eipxle—iEt and P2 Az(p) = eipxze—iEt; p1+p2= 1. (26)

Here and below we omit multiplier (271)_3/ 2 since these factors cancel in the correlation function

(see below). Note that Wy, ,,(p) = p141(p)A;(p) + p2A2(p)A3(p) = 1. In the case of two boson
independent radiation from two points there are three different final states (amplitudes) A;; that are
realized with corresponding probabilities p;;:

E|+E))t )= £iP1%2 piP2%2 ,—i(E) +E2)f;

Pz Ari(pr,pa) = ePr¥i P =il 5 P22t Axa(pi,p2

2.7

1 . . . . .
P12 Alz(pl,P2> — ﬁ (elplxlelpzxz _'_elplxzelple) e—l(E1+E2)f ; Pritpn+pr=1.
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If p;; = p? and p; = p, = 1/2 then p;; = pp = 1/4 and p;, = 1/2. Then the probability to find
two particles with momenta p;, p, that emitted independently from the two points x; and x, will
be in the case of the Bose-Einstein symmetrization for independent amplitudes

WX| X2 I 1
C(pl,pz)z - (P] pz) = Z pij ‘Aij‘zz1+§COS[(p1—p2)(X1—XQ)]. (2.8)

Wi 2 (P1)We, 1, (P2) i<j=12

It is different from (Z3) because the emission of both quanta from the one point (e.g., x) brings no
interference while it is interfered according to formula (2.3) which is true only for large number of
independent emitters. Therefore the simplest “dedication” of the intensity interferometry method
(I3) has to be corrected to exclude the double accounting of the contributions of both particles
from the same points. This correction is significant if the number of independent emitters is not
large.

If the emission from points x; and x; is not independent at all (full coherence), then one
cannot use the diagonal matrix density associated with the probabilities p;, p, but only the pure
state: Ay, x,(p) = A1(p) +A2(p). The amplitude of the two identical bosons symmetrized over
p1,p2 inthis case is: Ay, y, (p1,p2) = Ay, x, (P1)Ax, x, (p2) and

WX17X2 (PlaPZ)
le X2 (pl)le X2 (pZ)

Both these cases of completely independent and fully coherent radiations from points x; and

C(p1,p2) = =1. (2.9)

x> can be reproduced in the formalism of partially coherent phases [[@]. To demonstrate it let us
consider the two-point source with coordinates x; and x, and some undetermined phases ¢ (x;)
(i =1,2) and express amplitude of single boson emission with momentum p

Avy s (p) = (P10 4 P20 2)) o iEL, (2.10)
The symmetrized amplitude of the two-boson radiation is
Ay 0 (P1,02) = Axy i (P1) Ay, (P2)- (2.11)
The probability to register the two identical particles with momenta p; and p» is

W(p1,p2) =< Axy 2y (P1)Ax; 0, (P2)AY, 1, (P1AS, 1, (P2) > (2.12)

where brackets mean an averaging over events with partially coherent phases (over all events of the
emission). Then in the case of random phases, (¢/(?(2)=001D)) = §4(x; —x,), we get result (Z8)
and for fully coherent radiation when (¢/(?(2)=001)) = | we get (ZT).

In the case of independent emitters in points x1,x; the above phase average can be presented
in the form [[]:

<ei(¢(x2)—¢(xl))> =8*(x1 —x) =Gpd(H — 1) (2.13)

where G, is the overlapping integral

Gij = ‘/d3X‘Pxi(t’X)lP;j(t,X> . (214)
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As it is demonstrated, an independent emission with fully random phases corresponds to the mixed
state with probabilities p; for i-states. Such a description is possible only if bosons are emitted inde-
pendently from different points x; in distinguishable/orthogonal quantum states. The latter require-
ment is satisfied in above case of the flat momentum spectra for each emitter, f(p) = W(p) = const,
since the initial quantum states 83 (x —x;) taken in different points i are orthogonal.

If the momentum spectrum f(p) is essentially not flat, this corresponds to the wave packet
characterized by its center x; and some finite width. One can discriminate between the different
states i and j only if they are approximately orthogonal: the overlapping integral (ZI4) is small,
G;; < 1. In other words, the distance between the centers of emitters have to be larger than the
width of the emitted wave packets. Since the latter is the inverse of the variance Ap of the momen-
tum spectra, so (x; —x j)2 > 1/Ap?. The latter expresses the uncertainty principle: one can discrim-
inate the wave packet i without noticeable violation of the particle spectra, if the measurement that
localizes the particle position somewhere inside the sphere with the center x; and the diameter not
less then 1/Ap is related to the quantum state i, but not j. So, the distance Ax = (x; —x;) should
satisfy to uncertainty principle in the form A2xAp* > 1. Then the system presented by the super-
position of quantum states A; with fully random phases like in Eq. (EZ10), after a phase averaging
(E13) is approximated well by the mixed state with diagonal density matrix p;;.

In relativistic physics there is another uncertainty principle: the measurement of the particle
momenta p has accuracy depending on the duration of the measurement 67: 8p ~ 1/8¢. So one can
measure the time of particle emission without noticeable violation of the momentum spectra with
accuracy not better than 1/Ap and, so, the §-function in Eq. (ZZI3) has to be smeared when one
deals with the wave packets. So, for normalized wave packets, one cannot use the random phase

approximation if the distance in space and time between emitters is less than the width 1/Ap of the
_iz AP T)?
spe 27, then Gp =e P

wave packet (in units s = ¢ = 1). For example, if f(p) = m

Ap2 (1 —19)? . .
atty =t and 8(t) — ) = G\, — e~ T The last term expresses uncertainty principle for

momentum-time measurements.

Therefore, the fully chaotic phases, or diagonal density matrix, are possible only under some
conditions which we discussed before. For normalized quantum states emitted from the points i
and j it can be written as

Apz(tifrj)2

<ei(¢(xz')*¢(Xj))> = Gie (2.15)

where G;; is the overlapping integral (14)), and Ap is a variance of the momentum spectrum of
emitters.

In opposite case when (x; —x j)2 < 1/Ap? the states are indistinguishable and overlapping
integral (T13) G;; ~ 1 at 1} = 1, since at x; = x; it is just normalization. Then we come back to
the fully coherent emission (ZZ9) which takes place for very closed emitters [H]. So, in both limited
cases of chaotic and fully coherent emission Eq. (EZ13) leads to physically obvious results, and so
we will use Eq. (713) at any distances between the emitters as accounting for uncertainty principle.

3. The results in simple model

Let us consider the simplest non-relativistic case of the simultaneous emission of bosons. Then
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the amplitude of emission of a particle with momentum 5 can be expressed as a superposition of
the wave functions vy, (p)

A() = ¢ [ Exy(P)p) G
where
v, () = eiﬁfc}eiqo(aa)f(ﬁ) (3.2)

and momentum spectrum with variance Ap = py is

3.3)

The distribution function of the centers of emission

1 \? _#2
p<xi>=(2nR2> e, p=p. (3.4)

Probability of the single particle emission averaged over events with different phase distribu-
tions is
W(p)=c / d*xid®x ;e P p (%)p () (7)) £ (B). (3.5)
Phase average (C13) is

PR %)

<ei(¢i*¢j)> —e . (3.6)
and one obtains the following expression for probability of one-particle emission

202
p2 148p3R

W(B) =Nie 8457 (3.7)

where Nj is the normalization constant.
In case of emission of two particles we have probability of emission averaged over events with
random phases

W(p1,P2) =Na / AP xid®x jd>xpd3 x, " PEHPEI PP £(5) £( )P (R;)
.<ei(<p1 ) +e2(¥))—o1 (ﬁ%@(ﬂ))) (3.8)

kel
—~
R
S~—
el
=l
z
kel
=l
S~—

Averaged phase factor is expressed as a sum of three members
<ei(<P1 (F)+ (%) -1 (ﬁ)-‘Pz(ﬂ))) = GG i+ GGy — GypGyGji (3.9)
where the third term removes double account which appears in the sum of the first two terms when

i=j=k=1
If one ignores the correction for double account, then

(3.10)
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Figure 1: The behavior of the two-particle Bose-Einstein correlation function accounting for the uncertainty
principle.

where ¢ = p; — p» and we fix the total normalization in the way which guarantees C(g) qZ:;m 1. As
one can see the observed interferometry radius of the system is reduced as compared to the initial
Gaussian radius of the source 5
Rerr 4Pk
R 1+4p3R*

@3.11)

The intercept of the correlation function also depends on the size of the system, more correctly
on p%RZ. To see this one should make correction for double account in Eq. (B9). The results are
presented in Fig. 1. One can see that the intercept of the correlation function tends to unity when
the size of the source or momentum spectrum variance tends to zero, poR — 0. There are two
extreme cases

poR>1 C(p1,pr) = |+ (P-PF (3.12)

which is associated with the standard results, and
poR<1 C(p1,pr) =1 (3.13)

which corresponds to undistinguished positions of the emitters due to uncertainty principle.

4. Conclusions

We discussed the principal problems of the interferometry of small sources associated with
peculiarities of the correlation femtoscopy formalism in the case of small sources. The new effects
appear when one accounts for a partial unobservability of the emitter points due to uncertainty
principle. In the case of small sources, Ap>R? < 1, the visible interferometry radii are reduced as
compared to the Gaussian radius of the source, and the correlation function is suppressed. The
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detail and full analysis of such effects in the correlation femtoscopy and the consequences for the

femtoscopic analysis will be presented in the next publications.
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