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1. Introduction

The Large Hadron Collider (LHC) at CERN started operating in the end of the year 2009 and

has been colliding protons at the center of mass energies of
√
s= 0.9 TeV,

√
s= 2.76 TeV and

√
s=

7 TeV. At the LHC, the ALICE experiment [1] focuses mainly on measuring heavy-ion collisions.

However, minimum-bias proton-proton collisions which provide the heavy-ion ’baseline’ are also

measured. The proton-proton data has been used by the ALICE [2, 3] and CMS [4] collaborations

in the two-pion Bose-Einstein femtoscopic analyses. In the detailed studies performed by ALICE

on 0.9 TeV and 7 TeV data, in three dimensions, we showed that the shape of the experimental

correlation function is clearly not Gaussian [3]. We tested different functional forms in each out,

side and long directions and proposed a better fitting formula according to the best fit. In this work

we extend the analysis to
√
s= 2.76 TeV data.

2. Data analysis

Data samples of approximately 4 million proton-proton collisions at center of mass energies of√
s= 0.9 TeV, 20 million at

√
s= 2.76 TeV and 60 million at

√
s= 7 TeV were analyzed. The sub-

systems used for the analysis were the Inner Tracking System (ITS), the Time Projection Chamber

(TPC) and the VZERO detectors. All the events were required to have a reconstructed interaction

point (primary vertex) within 10 cm from the center of the ALICE detector in the beam direction.

The ITS and TPC were used for tracking in the pseudorapidity range |η |< 1.0 while the VZERO

was used for a minimum bias trigger and to reject beam-gas and beam-halo collisions. Identifica-

tion of pions was based on the energy loss of the particle information from the TPC. The analysis

was always performed on primary particles and their selection was based on the minimum distance

between the track and the primary vertex (so-called Distance of Closest Approach or DCA). Tracks

were required to have DCA not greater than 0.018+0.035p−1.01
T in the transverse plane and 0.3 cm

in the longitudinal direction. We also applied specific procedures to suppress undesired two-track

effects, such as splitting (one track reconstructed as two) and merging (two tracks reconstructed as

one). For more details about the event and particle selection criteria see [3].

The analysis was performed in 8 ranges of total measured charged-particle multiplicity of the event

Nch and 6 ranges of pair transverse momentum kT = |~p1+~p2|
2

.

3. Results of the femtoscopy analysis

The femtoscopic analysis was performed in order to obtain the sizes of the particle emitting

region. The Spherical Harmonics decomposition of the three-dimensional correlation functions

was applied. This technique allows to represent the three-dimensional object as an infinite set of

one-dimensional spherical harmonics functions. The symmetries of the pair distribution make most

of the components vanishing and the first three of the non-zero ones, C0
0 , C

0
2 and C2

2 , capture most

important information about the correlation [5, 6]. The first one is the angle-averaged component,

the second measures the difference between out and side while the third is the difference between

transverse and long. The results show that the correlation functions are practically independent on

the collision energy but they depend on the event multiplicity and (more strongly) on pair trans-

verse momentum. Increasing the collision energy by an order of magnitude has less impact on the
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experimental correlation functions than changing the multiplicity by 50%. All these effects are

presented in Fig. 1.

Figure 1: Comparison of the correlation functions for π+π+ for a) different collision energies, b) different

multiplicity ranges, c) different pair transverse momentum ranges.

Let us focus on the C0
0 component. The femtoscopic effect, coming from the symmetrization

of the two-pion wave function, is visible as the increase of the correlation function below q =

0.5 GeV/c. The fall visible in the lowest bins is due to the Coulomb repulsion, but it has little

impact on the Bose-Einstein peak and, therefore, on the extracted radii. We also see a broad peak

extending in q from 0 up to, at least, 1.0 GeV/c. We performed a very detailed analysis of this

effect in [3]. Because such structure can be seen in Monte Carlo data, which does not include Bose-

Einstein correlations, it has clearly non-femtoscopic origin. Therefore, we can try to parameterize it

using Monte Carlo simulations and use this parameterization to fit the data. From various formulas

that we had tried to apply we found that it is quite well described by a Gaussian form inC0
0 andC

2
2 .

Therefore, the final functional form for the background treatment is:

B(q) = Ah exp
(

−q2A2
w

)

+Bh exp

(−(q−Bm)
2

2B2
w

)

(3cos2(θ)−1). (3.1)

The analysis of the minijet origin of the non-femtoscopic background using angular correlations is

described in [7].

4. Fitting of the correlation function

4.1 Gaussian fits

The femtoscopic correlation function is defined by the Koonin-Pratt formula [8]:

C(~q) =
∫

S(r)|Ψ(r,~q)|d4r. (4.1)

Usually it is assumed that the emission function describes a static source and has an ellipsoid

Gaussian profile in space:

S(r) = S(ro,rs,rl)∼ exp

(

− r2o

4R2
out

− r2s

4R2
side

− r2l

4R2
out

)

, (4.2)
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where Ri are the sizes of the source and r = [rout ,rside,rlong] is the pair separation vector. Using

formula (4.1) and such parametrization of the emission function, one gets the following form of the

correlation function:

C(q) =C(qout ,qside,qlong) = 1+λ exp
(

−R2
outq

2
out −R2

sideq
2
side−R2

longq
2
long

)

, (4.3)

where λ is the strength of the correlation (fraction of correlated pairs for which both pions were

correctly identified). In the data analysis we must also take into account the Coulomb interaction

between identical pions and strong interactions in the final state. However, since pions are emitted

from sources which are on the order of 2−3 fm in size, the strong contribution is small and can be

neglected [9]. The influence of Coulomb interaction is approximated using the Bowler-Sinyukov

formula which assumes that the Coulomb part can be factorized out from the wave function of the

pair and integrated separately. The modified correlation function, including Coulomb interaction,

is given by the equation:

C f (q) = (1−λ )+λK(q) · [1+λ exp
(

−R2
outq

2
out −R2

sideq
2
side−R2

longq
2
long

)

], (4.4)

where K is the Coulomb like-sign pion pair wave function averaged over the Gaussian source with a

radius of 1 fm. Because the Monte Carlo generators do not include Bose-Einstein correlations, they

can be used to estimate the non-femtoscopic background of the correlation function. In order to do

this we fit the Monte Carlo simulated data with equation (3.1) described in the previous section.

The final form of the fitting function is therefore:

C(q) =C(qout ,qside,qlong) = NC f (qout ,qside,qlong)B(qout ,qside,qlong), (4.5)

where N is the overall normalization. The Gaussian fits to the experimental correlation functions

are presented in the left panel of Fig. 2. It clearly underestimates the height of the peak. However

the width of the correlation function is reproduced.

4.2 Non-Gaussian fits

In the previous section we have shown that the Gaussian fits do not perfectly describe the

correlation functions obtained from the experimental data. In order to improve the fit we assume

that the source function factorizes into out, side and long directions:

S(r) = S(rout)S(rside)S(rlong). (4.6)

This leads to the factorization of the correlation function itself:

C(~q) = 1+λC(qout)C(qside)C(qlong). (4.7)

We can change the functional form of each of the components of the source (and therefore the

correlation function) independently. Three different functional forms of the source function were

analyzed - Gaussian, exponential and Lorentzian. They have the desired feature, that the inte-

gration in formula (4.1) can be performed analytically and lead to the Gaussian, Lorentzian and

exponential forms of the correlation function respectively. It is reasonable to fit the data with func-

tional forms other than Gaussian, especially in out and long directions, because resonances decay
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after random time and this process is determined by the exponential decay law, which transforms

into an exponential shape in space via the pair velocity (which by definition exists in out and long

directions, and vanishes in side direction). We performed a study of all 27 combinations of the

fitting functions for all the multiplicity and kT ranges. We found that universally in out direction

the correlation function was best described by an exponential form, corresponding to Lorentzian

emission function, which agrees with model expectations. In contrast, the side direction is equally

well described by a Gaussian or a Lorentzian: we chose the former because the Lorentzian corre-

lation function would correspond to exponential pair emission function with a sharp peak at 0.

The non-Gaussian fit is shown in the right panel of Fig. 2. One can see that the exponential form

Figure 2: Gaussian (a) and non-Gaussian (b) fits to the correlation function for the
√
s= 7 TeV collisions

with 23< Nch < 29 and pairs with 0.3< kT < 0.4 GeV/c.

in out and long reproduces the data much better, for both the peak height and its width.

4.3 Radii dependencies

The dependencies of the femtoscopic radii on event multiplicity and kT extracted from non-

Gaussian fits are shown in Fig. 3. We stress that the radii cannot be directly compared to the ones

from the Gaussian fits. We see that Rlong and Rside always fall with kT . On the other hand, Rout has a

different behavior - it firstly rises for the lowest kT ranges and then goes down. The radii also scale

linearly with multiplicity. This scaling is observed in every kT range. Rlong and Rout radii always

grow with multiplicity while Rout radius grows for the lower kT range and falls for the higher kT

range. Gaussian fits show similar behavior.

5. Conclusions

We performed a detailed study of the Bose-Einstein femtoscopic correlations in proton-proton

collisions at center of mass energies of
√
s = 0.9 TeV,

√
s = 2.76 TeV,

√
s = 7 TeV collected by

the ALICE experiment. We found that the correlation functions are almost independent on colli-

sion energy, however they depend on the event multiplicity and on the pair transverse momentum
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Figure 3: Pair transverse momentum and multiplicity dependencies of the femtoscopic radii from the non-

Gaussian fits to the correlation functions from 7 TeV data.

kT . The experimental correlation functions are clearly not Gaussians. We introduced an assump-

tion that the source function factorizes, which leads to the factorization of the correlation function.

Each component of the correlation function can be described by either Gaussian, exponential or

Lorentzian functional form in out, side and long directions. From the fitting of all possible com-

binations in all multiplicity and kT ranges we found that the exponential form in out and long and

Gaussian form in side fit data best. The extracted radii from both Gaussian and non-Gaussian fits

show similar behavior.
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