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1. Introduction

In high energy nucleus-nucleus collisions or hadron-hadron collisions, Bose-Einstein corre-
lations of identical particles are considered as one of the possible measures for the space-time
domain where identical particles are produced. If multiplicity distribution (MD) and Bose-Einstein
correlations (BEC) are constructed from the same observed data sample, some information on BEC
would be contained in the MD. Therefore, we can estimate parameters on BEC precisely from the
observed MD and BEC at fixed multiplicities.

One of the theoretical approaches to BEC is made on the analogy of the quantum[@jptics [
where two types of sources, chaotic and coherent are introduced. IB]Rieihulae for MD and
BEC in semi-inclusive events are derived in the QO approach, and a diagrammatic representation
of the cumulants is proposed.

Recently, new data on BEC and MDs in pp collisions are reported from the LHC experiments,
In the present paper, MD and BEC are analyzed by the formulae derived in the QO approach.

2. Momentum densities in semi-inclusive events

Then-particle momentum density in semi-inclusive events in the QO approach is defined by,

pn(p--- . pn) = ol | F (PP f(P)?) . f Zafn p) + fo(p (2.1)

In Eq.(Z]), co denotes a normalization factdi(p) is an amplitude composed of that of théh
chaotic sourceq(p), and that of the coherent sourdg(p), anda is a random complex number
attached to théth chaotic source. The number of independent chaotic souvtds,assumed to
be infiniteP]. ParenthesisF), in Eq.[2) denotes the average Bf over the random numbex
with a Gaussian weighf]];

(Fla= (ﬂé\i/exp[—ﬁjz]dza)F. (2.2)

The generating functional (GF) of momentum densities in semi-inclusive events is defined by

Zan( cOgn, TIOCERY 23)

whereh(p) is an arbitrary function. Tha-particle momentum density and theh order cumulant
in semi-inclusive events are given respectively by

B 5nzsm[ ( p)]
Pn(P1,-* 5 Pn) Ei---En h(p1) - (pn) (2.4)

_ o" |nzsm[ (p)]
gn(p]_’...’pn) - ElEn5 ( ( n) hp 0 (25)
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For a review of semi-inclusive events, s&. [ From Eqs[Z.9) and .8, we have an iteration
relation for momentum densities,

p1(p1) = Cog1(P1) = Colr (P1, P1) +C(P1, P1)],

Pa(Pr. P2) = G1(P1)p(P2) +co{ I (Pr. P2) P+ 2Rer (P, P2)cP2. Pu)] |-

-Pn(pl>"' ) pn) = gl(pl)Pn l(p27 ,pn)+COgn(pla *H pn)
n—-2

+ 21 > 9i+1(P1, Pjss -5 Pji)Pn-i-1(Pjisy -+, Pjny)» fOrn=2. (2.7)
1=

(2.6)

In EqQ.Z8), r(p1, p2) is a correlation caused by the chaotic sources, p2) = 3™, i@ (p1) g (p2),
andc(pa, p2) is a correlation by the coherent sourcéps, p2) = fe(p1) f&(p2)

The second summation on the right hand side offE@).(ndicates that all possible combina-
tions of (ja,---, Ji) and(jit+1, -, jn—1) are taken from2,3,--- n).

In order to calculate momentum densities at fixed multiplicity, following equations are defined;

1 d3 ds3
pr(]k)(p]" I pk) (n k / /pn P15 Prs P10 s pn) P ce Pn

Ek+1 En ’
G, 1 / / 5 C o PP
On’ (P1,--, Px) = =K On(PL, 5 Pks Pk, > Pn) s E (2.8)

The MD is given byP(0) = Zgm[0] = ¢o and

n—k)! d3 d3
P(n):pSO)Z( ) z/“'/prgk)(pl,'“,Dk)ﬁ“'?fk- (2.9)

For a review on MD, see for examp[8|[ From Eq.2.7), we have[f]

-1

ZJQ, pP(N—J), g”(p1) =Ri(p1. py) +3 Tim-a(pr.p), for n20)

PP (p1,p2) = Z(n e (po)ps”, (p2) +229, (p1. P2)P(N— ),

=1
@ s
9" (P, p2) = ZRj(Dl, P2)Rj-1 (P2, P1)
|=
i—2 |
- Z} > {Tmi-m(P1, P2)Rj—1-1(P2, P1) + Rj—1-1(P1, P2) Ty —m(P2, P1) }, (2.11)
I=0m=0
where, withRo(p1, p2) = E153(p1, p2),
, , . d3p
R;(p1, p2) = /f(plap)Rj—l(p,pz)?,
d3 /d3 /
Ti. (P1, P2) / R; (p1, P1)c(py, P2)R (P5, P2) E',Ol E?z. (2.12)
1 B
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3. Formulae for MD and BEC

In the followings, rapidityy; = tanh*(py_/E;) and transverse momentupy (i=1,2,---) are
used. Correlations(ps, p2) andc(pz, p2) are both assumed to be real and parametrized as,

r(Y1, Prri¥2, Pr) = Psmv/P (YL, Par)P(Yz, Por) expl—)L(AY)* — yr (Apr)?,
(Y1, P173 Y2, P2or) = (1— Psm) \/P(YL P11)P(Y2, Por),
Py Pir) = (no)y/71/a(m/B)exp—ayi — B pir,

whereAy =y, —y; andAp; = por — Pi7- The chaoticity parameter in semi-inclusive events is
assumed to be constant, and is denote@day=r(pi, pi)/p(pi)). As the longitudinal momentum
transfer squared? = (E; — E2)? — (p1. — pz)?, is approximately written a®? ~ (mr)?(Ay)? for

|Ay| << 1 with average transverse massr), /yL/(mr) roughly equal to the longitudinal source
size, and,/yr is the transverse souce size. Paramétgy is related to an average multiplicity.
If psm= 0, the MD defined by Eq¥1) becomes a Poisson distribution with an averags.
Parametersr are 3 are related to the width of rapidity distribution and thatmf distribution,
respectively.

Then, functiorR;(y1, P17, Y2, Por) in EQ.LZ13) is written as,

Ri (Y1, Pir. Y2, Por) = Njexp—A; (Y2 +Y3) + 2Cjy1y2 — Uj (PZr + P5r) + 2W, Par Par ),
where B, []]

Corernli(/r) L (r/rp)l?
A= 1—(r/ro)1 Ci=(r2 rl)1—(r1/rz)j’

o b-tilet)l (t1/t2))/2
N ral/2t, <p5m<no>a1/2B)i{ 1—(ry/r2) }1/2 1—(ta/tp)
o rat/2t 1—(ra/r2)! 1-(t/t2))’

r = %[a+2n—\/a2+4an], r2=%[0+2n+\/02+4ay@,

1 1
i = S[B+2yr — VB2 +4Byr], to=3S[B+2yr + VB2 +4Byr].
The MD in the QO approach is written 48[
12 . .
P = =y (8 + 8, )P(n- ), (3.1)

=1
where

AR = pem(n ><psm<no>x/5B)i—1 1-yn/r { 1-Vu/t }2
T Vit 1= (ra/r2) 2 L1 (/1) 12
CR Psm(No)v/a B\ i-1y 1—(r1/rz) \¥2 1—(t1/t2)
AL =0 psm)<n°>< 2tz ) {1—(r1/r2)i} 1 (/)]
As can be seen from the above equations, the MD contains four paranmter8i), h. = v /o
andhr = yr/B. The inclusive one-particle rapidity distribution is given by

Nmax

PV =3 A, o) = [ oo prdpr (32
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The Bose-Einstein correlation functi@}? (Ay) atn-particle events is defined as

Cr(]Z) (y) = nP(n) fffpr(lz) (Y1, P17, Y1+ AY, Py +Apr)dyid?pyrd?Apy . (3.3)
n-1 fffprgl) (Y1, plT)pI’(ll) (y1-+2y, pir +A4pr)dy1d?pyrd?Apy

4. Analysis of experimental data

The MD for negatively charged particles observed in the pseudo-rapidity regienl in pp
collisions at,/s =900 GeV [ is analyzed by EJ3J). It is constructed from the even prongs of
observed charged MD. At first, it is analyzed with four paramefgs, (no), h. andhy. The result
becomes thdtt =~ 0. Therefore, the data is re-analyzed with three parameters under the condition
thathr = O(yr = 0). Estimated parameters are shown in Téhlend comparison of the calculated
result with the observed MD is shown in HIj.

Psm (no) h Xr%in/n-d.f
0.6704+0.052 1.100+0.10 0.3514-0.294 41.1/(22-3)

Table 1: Estimated parameters in the analysis of negatively charged MD observed in pp col@ions [

In our calculations, transverse momentum is integrated. Therefore, parghietest included
in Eqs.B.2) and B.3. Calculated result on inclusive one-particle rapidity distributions is shown in
FiglZ2 Calculated result on Bose-Einstein correlation functions at fixed multiplicities as a function
of Ay is shown in Fig@ That of Bose-Einstein correlation functionggt= 0 is compared with the
data atQjny = 0 in Figldl The data is presented in fopf range[B]. Therefore we use the average
value of four cases.
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Figure 1: Analysis of negatively charged Figure 2: Inclusive one-particle rapidity
MD in |n| < 1 in pp collisions @ by distributions calculated witlr = 0.6 and

Eq.G.D. 1.2 by EqBD).

5. Summary

The observed MD and BEC &ty = 0 (Qj,v = 0) are analyzed by our model in the QO ap-
proach. In our formulation, six parameteggm,, (o), h. = y./a, hr = yr /B, a and are con-
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Figure 3: Bose-Einstein correlation func- figure 4: Comparison ofcrgo)(o) cal-

. 2 .
tion C?'(Ay) calculated witha = 1.2 by culated witha = 0.6 and 1.2 with the
Eq.B3J. data[@).

tained. In the present analysis, parametebecomes effectively zero arfél is not included in
Eq.33. Therefore, only parameter is effective to the analysis of BEC. As can be seen from
FigH, calculated result oE? (0) for 0.6 < a < 1.2 would not be inconsistent with the observed
data atAy = 0 (Qinv = 0). If the MD and BEC at fixed multiplicities are constructed from the
same data sample, we would obtain more precise information on the production region of like-sign
charged particles in the final states of hadronic interactions.
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