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1. Bayes factors

The Bayesian definition of probability differs radicallyofn the conventional “frequentist” one,
necessitating the overhaul of many concepts and techniggeabin statistics and its applications.
Since its introduction in 1900 [1], the? statistic has become the standard criterion for goodness of
fitin physics and many other disciplines, while Laplace’y&san approach [2] remained largely
forgotten until revived by Jeffreys [3]. Later refinementsls as the Maximum Likelihood occupy
a middle ground between the two approaches.

In this contribution, we demonstrate the use of one Baydsiamique in the simple context
of fitting or, more generally, the quantitative assessmérdvaence in favour of a hypothesis
H, as a description of given data, compared to a rival hypathdsi We do so by analysing
the concrete example of binned data for the correlationtfondC,(Q) in the four-momentum
differenceQ = /—(p1 — p2)? as published recently by the L3 Collaboration [4].

Suppose we have daia= {Q, ..., Qn} consisting oh measurements of particle four-momen-
tum differences, assumed to be mutually independent assisroary in femtoscopy. Typically,
the experimentalist will want to test how well various paedrisations fit the data. For the pur-
poses of Bayesian analysis, a given parametrisafi@| 8,) with Ny, free parameter®, =
{6m1, Be, - - ., Bmn, } is considered a “model” or “hypothesisiy,. The starting point is thedds in
favour of model |, compared to a different model,H, defined as the ratip(Hm|D)/p(H/|D),
while theevidence for i, versus Hl is the logarithm of the odds. Use of Bayes’ Theorem for both
hypotheses yields

P(Hm|D)  p(D|Hm)p(Hm) SkpP(D|Hk)p(Hk)  p(D|Hm) pP(Hm)

p(H/ /D) ~ 3xp(D[HYp(H) PO[H)P(H,)  p(D|H,) p(H)" (1.1)

The evidence ofiy, versusH, is therefore the same as tBayes factor B, =Ig[p(D |Hm)/p(D |H/)]

if there is no a priori reason to prefek, aboveH, and thereforep(Hm) = p(H,) = 1/2. A large

Bayes factor says that the evidence Iy is stronger than the evidence fdy and vice versa. It
can be written as a ratio of integrals over the respectivarpater spaces &, and@,,

P(D|Hm) | JdB p(D|Om, Hm) P(Om|Hm)

B,, =1 = .
™ =9 5D Hy) 7d8, p(D8,,Hy) p(8.[H,)

(1.2)

Solving the high-dimensional integrals will often be anuwards task. Fortunately, the indepen-
dence of the measurements implies that the likelihp@ad| 6,,Hm) factorises into the product of
likelihoods for individual data points, which by assumptizave the same form,

P(D|Om,Hm) = I_l P(Qi| Om, Hm) = [p(Q| Bm,Hm)]". (1.3)

Due to the large exponent, even the slightest nonuniformitg(Q|8m,Hm) will lead to the de-
velopment of a strong peak in parameter space for the oVikellhood, situated at the maximum
likelihood point8,. An asymmetric priomp(6m|Hm) will shift the peak to a valuéy,, but it will
not materially affect the width of the peak or its differeduility. Unless the shifted peak falls on a

1we use Ig= log,; other base units can be substituted as preferred.
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boundary of the parameter space or happens to be nondiftdlen it can therefore be expanded
around@,, [5]:

1
P(D | Om,Hm) P(Om|Hm) =~ p(D[ 0", Hm) p(8" |Hm) exp [—E(em - e;ﬁn)Ail(em— 0n| (1.4
whereA 1 is the Hessian of the expansion

Aifl — azln[p(D| ema Hm) p(em| Hm)]

(1.5)

m

andA is the parameter covariance matrix. As more data is accuewylthe peak narrows so that
we can neglect the fact that parameters may have finite rahgegrating the above as if it were a
Gaussian, one obtains Laplace’s result [2]

+oo
/7 d@ p(D|6m,Hm) p(6m|Hm) ~ p(D| 67, Hm) p(O,| Hm) \/ (2m)Nn detAp,, (1.6)

which under the stated assumptions is a good approximafitmedull-blown integral appearing
in Eq. (1.2) ifn 2 20N, The Bayes factor becomes simply the difference

Bmg ~ hg — hm (17)

=19 (D 81,10 p(6 1) 2 ceta. (18)

Evidencehy can be determined for any single mod#l, but has no meaning on its own; only
differencesh, — hy, are meaningful in quantifying the probability fbk, to be true compared tdy,,

P(Hm|D)  h—hy
p(HD) 2 (1.9)

2. Relationship to x2 and the Maximum Likelihood

The Bayesian results obtained above differ from the trawti Maximum Likelihood Estimate
(MLE), which ignores the priorg(6m|Hm) and approximates the integral (1.2) to the maxima of
the likelihoods,

Jd61m p(D|Bm, Hn) p(Bm[Hm) _  P(D|Bim, Hin)

6, p(D[8,, Hy) p(BiHy) 9 o(D18.Hy) (2.1)

Bmg:|g

The traditionaly? goodness-of-fit is related to the above as follows. The nreasents{Q;} are
binned into binsdb = 1,...,B with bin midpointsQy, yielding the histogram version of the data,
D= {nb}E:1 with $,n, = 1. The most general “parametrisation” of the histogram eatstis then
the multinomial withar = {a}E_, the set of Bernoulli probabilities witB — 1 degrees of freedom,

Ny

B ab
p(nja,n)=n! b|:|1n—b!, (2.2)
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which on use of the Stirling approximation becomes, up toranatisation constant,

p(n|a,n) :c-exp[—%nbln nn_;)] . (2.3)

Expanding the free parametaxsaround the measured datand truncating

p(nja,n) = c-exp[—% <(nab_nb)2 _ (nay— mo)? +>

2

(nap — nb)2]

:c-exp[—%% o

we can identify the multinomial quantities with the measum®rrelation functions at mid-bin
points Q, by setting n, — 1C2(Qp), C = YbC2(Qp), andn — IC. Then, in the denominator
is almost equal to the measured bin varianags g2(np) = 1202(C2(Qp)) so that the quadratic
term is

(2.4)

(N, —np)? _ [C2(Qp) — Y(Qo | Bm)]?
an B ZG(Cz(Qb))2 ’

wherena/I — y(Qp | 8m), which includes all the constants, is the unnormalisedmatasation
for C2(Q) in common use. Comparing this to the usual definition

[C2(Qb) — ¥(Qb | Bm)]?

(2.5)

2 _ ’ 2.6
(D AT R} 29

we see that the maximum likelihood is approximately equal to
P(D|0m, Hi) ~ & X*/2, 2.7)

so thaty? is seen to be an approximation of the Bayes formulation,gusinly a single point in
the parameter spad, = 0., and thereby effectively assuming a uniform prior. Furthemeny?
truncates the expansion of (2.4); this is probably the appration most vulnerable to criticism.

3. Parametrisations and Lévy-based polynomial expansions

We now apply the above general ideas to the specific case ohtimis parametrisations shown
in Table 1 for the correlation function data for two-jet eteepublished by the L3 Collaboration
[4]. HypothesedH; to H3 are taken from the L3 paper. Realising that it is importamuantify the
degree of deviation of Bose-Einstein correlation data ftbenGaussian or the exponential shape,
the L3 Collaboration also studied a “Laguerre expansionivalh as the symmetric Lévy source
distribution, characterized by the stretched-exponkntearelation function of hypothesid,. In

H4 andHs, we propose a hew expansion technique that measures dagifitbomH, in terms of a
series of “Lévy polynomials” that are orthogonal to the euaeristic function of symmetric Lévy
distributions, generalising the results presented in [&éf.

oo [ Hoo Hia H2a
Lix|a) = det( 1’“ X’“ ) Lo(x|a) =det| tg toa Haa etc. (3.1)
1 x X

2| is an arbitrary large integer to ensure th@s(Qp) is an integer. As it eventually cancels out, its size is imeriat.
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wherepy o = [o7dx X f(x|a) =1 F(%l). These reduce, up to a normalisation constant, to the La-

a
guerre polynomials foxr = 1. Figure 1 displays two examples for various valueg oPolynomials
cannot be both orthogonal and derivatives for transceatlamight functions [9], and therefore in

He andH; we also investigated nonorthogonal derivative functicithe stretched exponenttal

Hypothesis Functional form Nm
H, Gauss y[1+eQ] [1 +A e*RZQZ] 4
H, Stretched Exponential y[1+£Q] [1+ )\e—R"Q“} 5
Hz Simplified T-model Y1+ €Q] [14_ Ao RO codtan(a11/2) R2 Qza]] 5
Hs 1st-order Lévy polynomial y [1+Ae R (14 c1L1(Qla, R)]} 5
Hs 3rd-order Lévy polynomial y :1+)\e‘RaQa [14c1L1(Qla,R) +03L3(Q]a,R)]} 6
Hs 1st-order derivative Y :1+ Ae RIQT L cl%e‘R“Q“} 5
H7 3rd-order derivative y :1+ Ae R4 cldiQe*R"Q“ + Cg%efR“Q“] 6

Table 1: Summary of parametrisations tested
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Figure 1: Lévy polynomials of first and third order times the weightdtion e fora =0.8,1.0,1.2,1.4.

4. Application to L3 binned data

In Table 2, we show the results of applying the Laplace appration (1.6) to the L3 two-jet data,
which is provided in terms of 100 binned values for the catieh functionC(Qp) together with
standard errorer(C(Qp)) in the range 0< Q < 4 GeV. Throughout, we used a Gaussian prior
p(6;,|Hm) with a width which was determined by numerical integrativeroone of the L3 data
points. To illustrate the contributions of the likelihogatjor and determinant factors enterihg

3Note the absence of tH& + £Q] long-range correction term. L3 demonstrated that this teanishes if the dip,
the non-positive definiteness 65(Q) — 1, is taken into account by the parametrisation elsewhegepg the cosine in
H3z and by the first-order polynomials ky andHs, resulting ine values consistent with zero.
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in (1.8), we have listed their logarithmic contributionpagately in the three columns headed L, P
and F. These quantities are therefore the building blocksdltzulating the odds between any two
competing hypotheses. Thus one can, for example, deducin¢hadds foH; compared tdg are
21006-970 ~ 12:1. Also included in Table 2 are the traditiongd measure (C) and its associated
confidence level (CL).

Hypothesis Nm L P F hm C CL
H; Gauss 4 | 177.8|-3.6| 32.2| 206.5| 2.57| 3.4x10 3%
H, Stretched Exponential 5 | 138.5| -0.5| 34.0| 172.0| 2.02| 1.5x10 %%
H3 Simplified T-model 5 68.2| -3.4| 37.0| 101.8| 1.00 | 49.1%
H; 1st-order Lévy polynomiall 5 66.2| 2.2| 30.3| 98.8| 0.97| 57.3%
Hs 3rd-order Lévy polynomial 6 65.9| 3.8|41.6|111.3| 0.97| 55.7%
Hg 1st-order derivative 5 67.3| 4.2| 29.1| 100.6| 0.98 | 53.0%
H; 3rd-order derivative 6 60.4| 49| 31.7| 97.0| 0.89| 77.0%

Table 2: Results of fitting parametrisations listed in Table 1.
Legend: L =—IgP(D|6},Hm) =x?/(2In2) hhy=L+P+F
P=—IgP(6y|Hm) C=x%/(B—Nn)
F=—Ilg/(2mNndetA CL = confidence level

It is inappropriate to generalise conclusions based on peeific dataset with its specific circum-
stances. The fact that in the two-jet L3 data the correldtioctionC,(Q) drops well below 1.0 for
0.5 < Q< 2 GeV, for example, is probably the dominant influence on thedgess of fit. Under
this caveat, we make the following observations regardieg¢sults shown in Table 2:

1. At first sight, the Bayes factor and tly@ methodologies deliver judgements which are rather
similar: H; is consistently ranked best, whity andH, are ranked worst (least likely). The two
methodologies yield vastly different numbers when one bygsis is bad. As shown below,
there are surprising variations even among the better ones.

2. The determinant plays an important role. For examplapfae= 41.6 for Hs is significantly
larger than that of similar modeld; andHg even though the three log likelihoods are similar.
This can be traced to the fact that the uncertainty in therperers foHs is larger, as expressed
in the width of its Gaussian (1.4). Whij?, based only on the likelihood, can hardly distinguish
betweerH, andHs, the contribution of the largels determinant ensures that the Bayesian odds
for Hy versusHs are 5800:1. In other words, by taking into account not onéylibst parameter
values@; but also their uncertainties, the Bayes factor could distish whaty? could not.

3. Our Bayes factor calculation takes the experimentaldstaherrorso(C(Qp)) into account by
using (2.5) in the exponent of the likelihood; in other wonde assume that they are Gaussian.
We can improve on this approximation by doing a more comBetgesian analysis using not
the binned data but the pair momeR } themselves.

4. As Fig. 1 shows, the Lévy polynomials introduced here ae# suited to describe one-sided
strongly-peaked data. It may be helpful to use them, as we tHame here, merely as part of
parametrisations of data to which they show some resemildaviore systematic use in Gram-
Charlier or other expansions will be faced with issues iahem all asymptotic series [7, 8].
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5. Conclusions

1. In hypothesesl, to H7, we have presented new techniques to study deviations fretnetahed
exponential or Fourier-transformed Lévy shape. Detailshei published elsewhere.

2. The standard measures of fit quality lixé or CL are useful in rejecting models which are
inconsistent with a given dataset. Where two or more models@nsistent with the data, how-
ever, they are unable to select the more probable. The Bagas {1.9) permits quantification
of the evidence (relative probability) for the validity ofottels.

3. Besides the likelihood, the prior and determinant alsy plrole, sometimes decisively so.

4. The Laplace approximation (1.4) is usually fairly acterabut the assumption of Gaussian
errors for count data (2.4), which is made by truncation efTaylor expansion in the data, is
of dubious quality.

5. By integrating over parameter space, Bayesian evidexkas tinto accourdll possible values
of the parameters, whilg? and Maximum Likelihood do not.

6. Bayes factors depend linearly on the two priors. This &dga that they are made explicit, but
bad in the sense that results can and do change depending dmdilee of priors.

7. The omission of priors iy? is to its disadvantage as it discards important information

8. It may appear thax? does not need any alternative hypothesis to be of use. Thistiso,
however: the alternative implicit ig? is the “Bernoulli class” of multinomials [10].
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