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We study effects of a mean-field interaction on the spacetime geometry of the hadron source

measured by utilizing the Hanbury Brown and Twiss (HBT) interferometry in the ultrarelativistic

heavy-ion collisions. We show how a modification of a pion amplitude, caused in the freeze-out

process, is incorporated into the correlation function of the interferometry within a semiclassi-

cal method. Profiles of the distorted images are illustrated. To make a quantitative estimate of

the effects, we construct a mean-field-interaction model on the basis of the pion-pion scattering
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efficiently modify the HBT radii.
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1. Introduction

In prior to the RHIC experiments, the dynamics of the collective expansion was simulated
with hydrodynamical models assuming a formation of the quark-gluon plasma. Their results indi-
cated a prolonged lifetime of the matter, and a considerable difference in the transverse HBT radii,
Rout/Rside≃ 2, which has been supported by sophisticated models[1]. While these models have pre-
cisely reproduced the single-particle spectra, especially the elliptic flow, of the RHIC data, it was
unexpectedly found that there were systematic discrepancies between the theoretically predicted
and experimentally measured HBT radii. It has been known as the “RHIC HBT puzzle". This con-
tribution is based on the works [4, 5] originally motivated by solving this puzzle. We investigate
effects of a mean-field interaction, sketched in Fig.1, as a possible origin of the discrepancies.1.

We have shown how the modification of a pion amplitude due to a mean-field interaction re-
flects in a distorted HBT image[4], within a semiclassical framework. We also found a possible
improvement of the discrepancies, owing to cooperative effects of attractive and absorptive mean-
field interactions. To pursue this possibility, we have constructed a more realistic mean-field inter-
action on the basis of the pion-pion forward scattering amplitudes[5]. There, we actually obtained
attractive and absorptive mean-field interactions following from a strong attraction and attenuation
around the momentum regime of theρ-meson resonance. Based on those frameworks, we showed
how and to what extent the mean-field interaction efficiently modify the HBT radii.

2. Modification of the correlation function

We show how the effects of the mean-field interaction, encoded in the phase and attenuation
factors of the amplitude, reflect in the interference pattern. By using a semiclassical method to
evaluate the amplitude, a modified correlation function has been obtained in a time-independent
case[4], and then the framework has been extended to a time-dependent case to take into account
the expansion dynamics of the hadron source[5].

The correlation functionC in the HBT interferometry is defined by

C(kkk1,kkk2) =
P2(kkk1,kkk2)

P1(kkk111)P1(kkk222)
, (2.1)

wherekkk1 andkkk2 are the momenta of a particle pair.P1(kkk) andP2(kkk1,kkk2) are probabilities of detect-
ing a particle and identical particle pair, respectively. Without any interaction after the emission,
the correlation function is simply given by the Fourier transform of the source functionS(x,kkk) as,

C(kkk,qqq) = 1+η2(kkk)

∣∣∣∣∫ d4x S(x,kkk) eiqx

∣∣∣∣2 . (2.2)

The correlation function is measured as a function of the average and relative momenta,kkk andqqq.
The product of the single-particle spectra appears as a normalization factor,η−2(kkk) ≃ P2

1 (kkk) =[ ∫
d4x S(x,kkk)

]2
. In this expression, we have approximated the momenta askkk1 ≃ kkk2 ≃ kkk for the

small relative momentum(|qqq| ≪ |kkk|), which is a relevant regime for the HBT interferometry.

1Effects of mean-field interactions have been examined independently in Ref. [2] and [3] to the end of solving the
puzzle. We thank H. Fujii for calling our attention to those works.
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Figure 1: An emitted particle interacts with a mean-field
formed by other evaporating particles. This figure also
shows an interference between two possible trajectories
of an identical particle pair.

Figure 2: Phenomenological pion self-energy: a
propagating pion is scattered by other evaporat-
ing pions represented with a loop. Blob indicates
the forward scattering amplitude shown in Fig.4.

Once we incorporate effects of the mean-field interaction, they distort the kernel of the Fourier
transform in Eq. (2.2). In terms of the classical action of a pion propagating in the mean field, a
modified correlation function is obtained as,

C(kkk,qqq) = 1+η2(kkk)

∣∣∣∣∫ d4x S(x, ppp0(x,kkk)) e−2γ(x,kkk) eiqµ(xµ+∂ µ
k δScℓ

kkk (x))
∣∣∣∣2 , (2.3)

wherexµ = (t,xxx) is the emission point, and the derivative∂ µ
k operates on the four momentumkµ .

The mean-field interaction acts to accelerate the pion emitted with an initial momentumppp0(x,kkk) so
that it becomes the asymptotic onekkk. An attenuation factor is given by the coefficientγ(x,bk) which
is related to an imaginary part of pion self-energy (see Sec.3) 2. The deviation of the classical action
from that of the free propagation,δScℓ

kkk = Scℓ
kkk − kµxµ , appears as the phase distortion. Reflecting

the acceleration and attenuation in the mean field, the single-particle spectrum is also modified as,
η−2(kkk) =

[∫
d4x S(x, ppp0(x,kkk)) e−2γ(x,kkk)]2

.
In Fig. 3, we illustrate the distorted HBT images due to the mean-field interactions (see Ref.[4]

for details). A repulsive mean-field interaction induces an image elongated along the outward axis,
whereas an attractive one induces a stretched image with a longer extension along the sideward
axis. Effects of an attenuation also acts to stretch the sideward extension, because it cuts off a
propagation of the pion emitted on the opposite side to the detection point.

3. Phenomenological mean-field interaction

In the isospin-symmetric limit, an in-medium pion self-energy depicted in Fig.2 is written as, Π(t,xxx, ppp) =−
∫

d4p′

(2π)4 2πδ (p′2−m2) T(s) f (t,xxx, ppp′) (3.1)

p′µ∂µ f (t,xxx, ppp′) = S(t,xxx, ppp′) (3.2)

with the isospin averaged scattering amplitudeT(s) and distribution of the medium pionf (t,xxx, ppp′).
A Mandelstam variables= (p+q)2 is the squared center-of-mass energy of a two-body scattering

2We extended the semiclassical framework to take into account the relativity in an appendix in Ref. [5].
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Figure 3: Distorted HBT images atkkk⊥ = 100 MeV: contour plots show how an isotropic Gaussian profile,
with its varianceσ = 5 fm, is apparently distorted due to effects of repulsive and attractive interactions, and
cooperative effects of attenuation, as indicated above.

of on-shell pions. Eq. (3.2) describes the time-evolution of the distribution function in the presence
of a source termS(t,xxx, ppp′) which take into account the pion emission from the hadron source. We
take the source function being common to the one in Eq. (2.3) as,

S(t,xxx, ppp) =
1

(2π)3

∫
feq(x

′, p) δ (4)(x−x′) pµdσµ(x
′) , (3.3)

wherex′ is the emission point on the hypersurface, of which normal vector is given bydσµ(x′). The
thermal distribution functionfeq(x, p) = [exp{(pνuν −µ)/T}−1]−1 is specified with the macro
variables: temperatureT, pion chemical potentialµ and the flow vectoruµ ∝

(
t
τ ,vvv⊥,

z
τ
)

with the
normalizationuµuµ = 1. As a simple model, we takeT = 130 MeV andµ = 30 MeV, and assume
Bjorken flow and the transverse flow profile proportional to the transverse coordinater asvvv⊥ =

0.06r c−1 (see Ref [5] for details of the model).
The forward pion-pion scattering amplitude (3.1) is given by averaging over the isospin chan-

nels asT(s) = 3
(

1
9T0(s)+ 3

9T1(s)+ 5
9T2(s)

)
. The overall factor comes from the contributions of the

pion spices,π± andπ0, assuming the same emission rate (3.3) for each. Panels in Fig.4 show the
real and imaginary parts of the isospin-dependent scattering amplitudes and their average, respec-
tively. A strong attraction and attenuation around theρ-meson resonance efficiently modify a pion
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Figure 4: Real and imaginary parts of the forward pion-pion scattering amplitude[8]. Effects of theρ-meson
resonance manifest in the mean-field interaction as an attraction and attenuation.

amplitude. Because effects of the mean-field interaction (3.1) depend on a path and momentum of
a pion propagation, pions acquire phase shifts and attenuations in different magnitudes, depending
on their motions after the emissions. Therefore, they cannot maintain the interference compared
with the case without the mean-field interaction.

4. Results

In Fig. 5, we show effects of the mean-field interaction on the transverse HBT radii and single-
pion spectrum. Those effects appear as displacements from dotted curves (see caption) which
imitate typical results of the hydrodynamical simulations. We find that the mean-field interaction
mostly modify the sideward radius and that it acts to reduce a discrepancy between the dotted
curve and the experimental data which is seen in typical results of conventional hydrodynamical
simulations. Owing to this improvement, a deviation in the ratio of the transverse radii is also
improved in a low momentum regime.

The effect of the real part do not cause a considerable shift of the single-pion spectrum, and
an amount of attenuated pions noticed by the blue curve would be totally complemented if we
consistently take into account a decay of theρ-meson resonance as an inverse reaction of the
attenuation. This is a good point for a consistent description of the transverse HBT radii and
single-pion spectrum in a sense of improving the discrepancies found in the hydrodynamic picture:
otherwise precisely reproduced single-pion spectrum would be sacrificed.

5. Concluding remarks

We would like to remark on a prospect toward a consistent description of the hadron phase. It
would be worthwhile to investigate the effects of the mean-field interaction throughout the hadron
phase by more elaborate descriptions, because the interaction between an emitted pion and a rather
dense hadron source would be more effective, and because the magnitudes of the effects obtained
in our work are comparable to those of the individual effects obtained with several upgrades of
hydrodynamical modeling[6]. An analytic study of a mean-field interaction in terms of kinetic
theory will be found in Ref. [7].
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Figure 5: Transverse HBT radii and single-pion spectrum: red curves show these quantities in the presence
of the real part of the self-energy, while blue curves show cooperative effects of the real and imaginary parts
of the self-energy. Dotted curves show the quantities obtained without the mean-field interaction.
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